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USING DYNAMICS TO UNDERSTAND FUNCTIONALS

OVERVIEW

▸ Skyrme EDF 

▸ tensor terms in collisions 

▸ continuum BCs 

▸ fission 

▸ nuclear matter & giant resonances



T I M E - D E P E N D E N T  H A R T R E E - F O C K

Static HF

Time-dependent HF



DENSITY FUNCTIONAL & TDHF

SKYRME DENSITY FUNCTIONAL

!  T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959) 



DENSITY FUNCTIONAL & TDHF

SKYRME ENERGY DENSITY FUNCTIONAL
E=∫d3r∑t=0,1(Ctρ[ρ0]ρt2 + Cts[ρ0]st2 + CtΔρρt∇2ρt + Ct

∇∙s(∇∙st)2 +  

Ct∆sst∇2st + Ctτ(ρtτt–j2) + CtT(st∙Tt–Jt,μνJt,μν) + 

CtF(st∙Ft–½Jt,μμ–½Jt,μνJt,νμ) + Ct(ρt∇∙Jt+st∙∇×jt)
adjustable coefficients: Ctρ[ρ0], Cts[ρ0], CtΔρ, Ct

∇∙s, Ct∆s, Ctτ, CtT, CtF & Ct 

time-even densities & currents: 
ρq(r)=ρq(r,r’)|r=r’ 
τq(r)=∇∙∇’ρq(r,r’)|r=r’  
Jq,μν(r)=-½ i (∇μ–∇’μ)sq,ν(r,r’)|r=r’ 

time-odd densities & currents: 
sq(r)=sq(r,r’)|r=r’ 
jq(r) =-½ i (∇–∇’)ρq(r,r’)|r=r’ 
Tq(r)=∇∙∇’sq(r,r’)|r=r’ 
Fq(r)=½∑ν(∇μ∇’ν+∇’μ∇ν)sq,ν(r,r’)|r=r’ 



UPPER FUSION THRESHOLD IN 16O+16O

Can map out fusion 
landscape as a function of 
b and ECM.   

Lower boundary is due to 
Coulomb interaction and is 
insensitive to the force, but 
the upper boundary is 
force-dependent 

(N.B this sample landscape 
shows 40Ca+40Ca



UPPER FUSION THRESHOLDS IN 16O+16O



UPPER FUSION THRESHOLDS IN 16O+16O

ROLE OF J2 TENSOR



TENSOR FORCES IN ION-ION COLLISIONS 

T22 (TOP) VS T24 (BOTTOM) 16O+16O @ 68 MEV



TENSOR FORCES IN ION-ION COLLISIONS 

SEE ALSO…

▸ Dai GaoFeng, Guo Lu, Zhao EnGuang & Zhou ShanGui, 
Science China: Phys., Mech., Astro. 57, 1618 (2014) 

▸ Similar study but only including modification to spin-orbit 
strength when adding tensor terms 



CONTINUUM-TDHF

BOUNDARY CONDITIONS



B O X  S I Z E  D E P E N D E N C E

C. I. Pardi and P. D. Stevenson, Phys. Rev. C87 014330 (2013)



R A D I U S  V I B R AT I O N S  -  G M R



S T R E N G T H  F U N C T I O N S

 100 fm already impractical for all but spherical systems



CONTINUUM-TDHF



C O N T I N U U M  T D H F

TDHF equation in dimensionless form (Q=reduced wf in spherical coords)

Laplace transform time coordinate

Substitute z=br√s with b=-2i√2i:

This is a standard tabulated form, with Whittaker function solns
Full details in Pardi & Stevenson, PRC87, 014330 (2013)



C O N T I N U U M - T D H F  C O N T .

 Now apply the convolution theorem and evaluate the result at r=R (the end of our box):	
  

R

Recall, Q is the reduced wavefunction.  Note that for each each time, we 
have to integrate at the boundary from the beginning of time. 

In the above, the kernel is the inverse Laplace transform of 

Inverse transform not totally straightforward

Full details in Pardi & Stevenson, PRC87, 014330 (2013)



I N V E R S E  L A P L A C E  T R A N S F O R M

 For neutron kernels, we have κ=0, which gives a special case of the Whittaker functions 

 H are Hankel functions of the first kind, and 
h are spherical Hankel functions.  They 
are finite series for integer µ-1/2  

These can be manipulated into a rational 
form (right), which can be expressed 
analytically in partial fractions (below)

Full details in Pardi & Stevenson, PRC87, 014330 (2013)



I N V E R S E  L A P L A C E  T R A N S F O R M AT I O N
Use linearity of Laplace transformation & tabulated form of partial fraction 
expansion: 

 Where w is the Fadeeva function w(z)=exp(-z²)erfc(-iz) 

 Some further simplification yields 

 This is then discretised in space and time coordinates, and is the basis for what is evaluated at the boundary. 

What about protons?  What about Coulomb?  
Life does get quite a bit harder. 

 (We think that) there is no convenient analytic rearrangement of the kernel into partial fractions or similar form 
with tabulated inverse Laplace transform 

 Instead, we assume a rational, finite, polynomial form and fit to the Whittaker functions with a non-linear least 
squares method.  The finite polynomial is again expanded in partial fractions 

Extension of the continuum time-dependent Hartree-Fock method to proton states
Phys. Rev. E 89, 033312 (2014)

C. I. Pardi, P. D. Stevenson, and K. Xu



C O N T I N U U M  T D H F

Some very long-lived components = fine structure in the strength 
Continuum-TDHF with Coulomb in C. I. Pardi, P. D. Stevenson and K. Xu, arXiv: 1306.4500, accepted for 
publication in PRE



FISSION

FISSION IN TDHF

▸ Large amplitude collective motion 

▸ can in principle think of performing induced fission, 
starting from an excited state 

▸ TDHF cannot deal with spontaneous fission since it is 
deterministic in terms of trajectories of collective variables



FISSION

QUADRUPOLE LANDSCAPE IN 240PU



FISSION

FISSION IN 240PU



FISSION

BOOST-INDUCED FISSION
Starting from fission isomer, we give the 
nucleus a quadrupole boost 

a large amount of energy needs to be 
pumped in to the quadrupole mode so that 
enough of it goes into the fission pathway 



FISSION

Apply time-dependent boost 

quadrupole mode gets induced 
more gently, with low-frequency 
modes getting excited with higher 
amplitude that high-frequency 
modes 

fission occurs with tens, not 
hundreds of MeV

P. M. Goddard, PhD thesis, 
Surrey (2014)



FISSION

DEFORMATION-INDUCED FISSION



FISSION

SAMPLE OF DIFFERENT STARTING POINTS

non-adiabatic paths — leads to a kind of fragment distribution



FISSION

FRAGMENT DISTRIBUTION



FISSION

POWER SPECTRUM OF FRAGMENTS







GIANT RESONANCES & NUCLEAR MATTER

CONSTRAINING K’

▸ ISGQR dominated by single 
peak 

▸ extract energy from one cycle  
(automatically a continuum 
calculation) 

▸ correlate energy with K’ 

▸ K’=400±30 MeV

16O



SUMMARY

▸ TDHF applied to large & small amplitude motion 

▸ Effect of choice of Skyrme parameterisation and what 
time-odd terms are used can be significant 

▸ computationally expensive to systematically study too 
many interactions or include in fits — especially for some 
processes (like fission)


