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Gamow-Teller strength in deformed nuclei within the self-consistent charge-exchange
quasiparticle random-phase approximation with the Gogny force
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The charge-exchange excitations in nuclei are studied within the fully self-consistent proton-neutron
quasiparticle random-phase approximation using the finite-range Gogny interaction. No additional parameters
beyond those included in the effective nuclear force are included. Axially symmetric deformations are consistently
taken into account, both in the description of the ground-states and spin-isospin excitations. We focus on the
isobaric analog and Gamow-Teller resonances. A comparison of the predicted strength distributions to the existing
experimental data is presented and the role of nuclear deformation analyzed. The Gamow-Teller strength is used
to estimate the β−-decay half-life of nuclei for which experimental data exist. A satisfactory agreement with
experimental half-lives is found and justifies the additional study of the exotic neutron-rich N = 82, 126, and
184 isotonic chains of relevance for the r-process nucleosynthesis.
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I. INTRODUCTION

Spin-isospin nuclear excitations [1], in particular the
Gamow-Teller (GT) resonances, nowadays play a crucial role
in several fields of physics. First, in fundamental nuclear
physics by providing information on the nuclear interaction,
the equation of state of asymmetric nuclear matter, as well as
the nuclear skin thickness [2]. Second, in astrophysics where
they govern β decay, electron and neutrino capture processes,
hence stellar evolution and nucleosynthesis [3,4]. Finally, in
particle physics in connection with the evaluation of the Vud

element and the unitarity of the Cabibbo-Kobayashi-Maskawa
quark-mixing matrix [5], on the one hand, and with neutrino
physics beyond the standard model (neutrinoless double beta
decay [6–8] and neutrino oscillation [9,10]), on the other hand.

Experimentally, the spin-isospin nuclear excitations are
studied via charge-exchange reactions, such as (p,n), (n,p),
(d,2He), (3He,t) or (t ,3He) and β-decay measurements. In spite
of the great efforts and interest, the whole nuclear chart is still
not experimentally accessible, so that for the exotic nuclei,
one can rely on theoretical models only. In this context one
of the most popular models is the so-called proton-neutron
quasiparticle random-phase approximation (pnQRPA), first
introduced in Ref. [11]. For a reliable prediction of the
spin-isospin nuclear excitations, especially for experimentally
unknown nuclei, two main features of the theoretical model
are in order: the possibility to deal with deformed nuclei and
the use of a unique effective nuclear force. The term unique
has two different meanings here. First of all, it implies that
the interaction is the same for all nuclei, second, that the
nuclear interaction used to describe the ground and excited
states is the same; this latter property is usually referred as the
self-consistency of the calculation. Despite the relatively large
number of pnQRPA calculations (see, e.g., Refs. [12–25] and
references therein), the number of models, nowadays including
both features, remains small. Furthermore, even in the limited
number of self-consistent calculations performed either with
the zero-range Skyrme-type forces or in the relativistic

mean-field framework, there often remains a coupling con-
stant, typically in the particle-particle channel, which is treated
as a free parameter usually adjusted to β-decay half-lives or to
the position of GT excitation energies. The possibility to take
into account the nuclear deformation is also very important.
The β-decay properties of exotic neutron-rich nuclei (in
particular those of interest to the r-process nucleosynthesis [3])
as well as the nuclear matrix elements for the double β decay
have been shown to depend significantly on the deformation
parameter [24–27]. Furthermore, deformed nuclei present a
strong fragmentation in the response functions and different
nuclear shapes can be experimentally distinguished.

Here, we present a fully self-consistent axially symmetric-
deformed pnQRPA calculation without any additional pa-
rameters beyond those characterizing the effective nuclear
force, namely the finite-range Gogny force within its two
parametrizations, D1M [28] and D1S [29]. This work repre-
sents a transposition to the charge-exchange sector of the fully
consistent axially symmetric-deformed QRPA calculations
with the Gogny force, first presented in Ref. [30] and devoted
to the study of electromagnetic excitations in deformed
nuclei [31,32]. In Sec. II, the pnQRPA formalism is detailed.
In Sec. III, the resulting GT and isobaric analog resonance
(IAR) strength are analyzed and compared to the experimental
data. Based on the GT strength, the β−-decay half-lives are
predicted and compared to the experimental data and other
models in Sec. IV. Finally, conclusions and perspectives are
given in Sec. V.

II. FORMALISM

Our approach is based on the pnQRPA on top of axially
symmetric-deformed Hartree-Fock-Bogoliubov (HFB) calcu-
lations. The HFB equations are solved in a finite harmonic
oscillator basis. As a consequence, the positive energy contin-
uum is discretized. All HFB quasiparticle states are used to
generate the two-quasiparticle (2-qp) excitations. This means

0556-2813/2014/89(4)/044306(7) 044306-1 ©2014 American Physical Society
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Finite-amplitude method for charge-changing transitions in axially deformed nuclei
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We describe and apply a version of the finite amplitude method for obtaining the charge-changing nuclear
response in the quasiparticle random-phase approximation. The method is suitable for calculating strength
functions and beta-decay rates, both allowed and forbidden, in axially-deformed open-shell nuclei. We
demonstrate the speed and versatility of the code through a preliminary examination of the effects of tensor terms
in Skyrme functionals on beta decay in a set of spherical and deformed open-shell nuclei. Like the isoscalar
pairing interaction, the tensor terms systematically increase allowed beta-decay rates. This finding generalizes
previous work in semimagic nuclei and points to the need for a comprehensive study of time-odd terms in
nuclear density functionals.

DOI: 10.1103/PhysRevC.90.024308 PACS number(s): 21.60.Jz, 23.40.Hc

I. INTRODUCTION

Beta decay is an important process at the intersection
of nuclear physics, astrophysics, and particle physics. The
rapid neutron-capture process (r process) proceeds through
neutron-rich nuclei, the beta-decay rates for which determine
final abundance distributions. The significance of the reactor
neutrino anomaly for exotic new neutrino physics depends on
forbidden beta-decay rates in neutron-rich fission products [1].
In both these cases, the important rates are difficult or impos-
sible to measure; we need to be able to calculate them instead.

The random-phase approximation (RPA) and its generaliza-
tion, the quasiparticle random-phase approximation (QRPA),
nowadays typically used in conjunction with Skyrme energy-
density functionals (EDFs), are established tools for treating
nuclear excitations. The matrix version of the charge-changing
(or “pn”) Skyrme QRPA has been applied with some success
in spherical nuclei. When the rotational symmetry of the mean
field is broken, however, the dimension of the mean-field
two-quasiparticle basis increases by orders of magnitude and
the QRPA matrix becomes too large to fit in the main memory
of a typical computer without aggressive truncation. Even then,
supercomputing is needed to solve the equations. We have
constructed a deformed matrix Skyrme pnQRPA program [2]
from the code reported in Ref. [3] but cannot use it in
reasonable amounts of computing time.

The finite amplitude method (FAM) is a much more efficient
scheme for finding the linear response. Reference [4] first
proposed the method and Ref. [5] quickly applied it to obtain
the RPA response in spherical and deformed nuclei. Refer-
ence [6] generalized the approach to the QRPA, and Ref. [7]
applied the generalization to monopole transitions. In this
article, we further extend the FAM to charge-changing QRPA
transitions of arbitrary intrinsic angular momentum projection

*mika.t.mustonen@unc.edu
†tshafer@physics.unc.edu
‡zenginer@live.unc.edu
§engelj@physics.unc.edu

K in deformed nuclei. We call the resulting approach the
Skyrme proton-neutron finite amplitude method (pnFAM).

To illustrate the method, we examine the effects of Skyrme’s
tensor terms on beta-decay rates. Minato and Bai [8] observed
that a tensor interaction can reduce beta-decay half-lives of
magic and semimagic nuclei considerably, bringing them into
closer accord with experiment. If a similar reduction takes
place in deformed nuclei, it might make it impossible to include
an isoscalar pairing interaction without underpredicting half-
lives. On the other hand, it might instead allow a better-behaved
isoscalar pairing interaction, one that depends less on mass
than those in use today. After a preliminary pnFAM analysis
of the effects of tensor interaction in both semimagic and
deformed nuclei, we assess the situation here. This work will
serve as a stepping stone towards r-process studies in the
rare-earth region, evaluation of neutrino-capture rates, and a
more data-rich determination of the time-reversal (T) odd parts
of energy-density functionals.

The rest of the article is organized as follows: Section II
lays out the form of our Skyrme functionals and discusses
the application of the FAM to beta decay, Sec. III presents
our implementation and consistency checks, and Sec. IV uses
the pnFAM to study the tensor interaction in a small set of
open-shell and deformed nuclei. Section V is a conclusion.

II. THEORETICAL BACKGROUND

A. Skyrme energy-density functional

In the particle-hole channel we use the standard general
Skyrme EDF, the details of which may be found in many
places, e.g., in Refs. [9,10]. In the notation of Ref. [9], the
EDF takes the form

E =
∑

t=0,1

+t∑

t3=−t

∫
dr

(
Heven

t t3
(r) + Hodd

t t3
(r)

)
, (1)
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(r) ≡ C
ρ
t [ρ00]ρ2

t t3
+ C

"ρ
t ρt t3∇2ρt t3

+Cτ
t ρt t3τt t3 + CJ

t J2
t t3
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Large-scale calculations of the double-β decay of 76Ge, 130Te, 136Xe, and 150Nd in the deformed
self-consistent Skyrme quasiparticle random-phase approximation
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We use the axially deformed Skyrme quasiparticle random-phase approximation (QRPA) together with the
SkM∗ energy-density functional, both as originally presented and with the time-odd part adjusted to reproduce the
Gamow-Teller resonance energy in 208Pb, to calculate the matrix elements that govern the neutrinoless double-β
decay of 76Ge, 130Te, 136Xe, and 150Nd. Our matrix elements in 130Te and 136Xe are significantly smaller than
those of previous QRPA calculations, primarily because of the difference in pairing or deformation between the
initial and the final nuclei. In 76Ge and 150Nd, our results are similar to those of less computationally intensive
QRPA calculations. We suspect the 76Ge result, however, because we are forced to use a spherical ground state,
even though our mean-field theory indicates a deformed minimum.

DOI: 10.1103/PhysRevC.87.064302 PACS number(s): 21.60.Jz, 23.40.Hc

I. INTRODUCTION

Neutrinoless (0νββ) double-β decay can occur if neutrinos
are Majorana particles at a rate that depends on a weighted
average of neutrino masses (see Refs. [1,2] for reviews). The
experimental search for 0νββ is approaching sensitivity to
neutrino masses below 100 meV [3]. To extract a mass from
the results, however, or to set a reliable upper limit, will require
accurate values of the nuclear matrix elements that govern the
decay, matrix elements that cannot be measured and must,
therefore, be calculated. A number of theorists have attempted
the calculations by applying several distinct methods. Among
the most popular is the proton-neutron quasiparticle random
phase approximation (QRPA).

The QRPA can be carried out at various levels of sophistica-
tion. So far, with only a few exceptions [4–9], the mean fields
on which the QRPA is based have been spherical by fiat; most
of those that allow deformation have restricted themselves
to single-β decay or two-neutrino double-β (2νββ) decay.
And although many employ a kind of self-consistent QRPA
[10–12], only Ref. [13] has carried out the QRPA without the
use of an artificially inert core, and there, again, the calculation
(which was relativistic) was restricted to 2νββ decay. In none
of the calculations has the residual QRPA interaction ever
been fully consistent with that of an underlying Hartree-
Fock-Bogoliubov (HFB) calculation. Finally, even Ref. [13],
which treats all the nucleons as active, forces them to occupy
harmonic-oscillator levels rather than continuumlike states.
Here, we overcome all these limitations by allowing axially
symmetric deformation, by using a modern and well-tested
Skyrme functional for both the HFB mean-field calculation
and the QRPA that is based on it, by keeping all the nucleons
active, and by placing the nucleus inside a large cylindrical box
so that discretized versions of continuum states are available
up to high energy.

*mika.t.mustonen@unc.edu
†engelj@physics.unc.edu

In recent years, deformed Skyrme-QRPA calculations of
this type have been applied extensively to nuclear vibra-
tions (see, e.g., Refs. [14–18]) and will soon be applied to
single-β decay [19]. Our implementation, described in detail
below, is via a B-spline-based HFB code with the above-
mentioned cylindrical-box boundary conditions, followed by
the construction and diagonalization of the QRPA Hamiltonian
matrix in the basis of canonical two-quasiparticle states.
The calculations consume enough CPU hours to require a
supercomputer, and so we restrict ourselves to four isotopes—
76Ge, 130Te, 136Xe, and 150Nd—used in the some of the
most promising current or proposed experiments [20–28].
The deformation and pairing in the initial and final nuclei are
often quite different, and matrix elements can be suppressed
as a result [5]; our numbers depend crucially on the overlap
of intermediate-nucleus states created by exciting the initial
ground state with those created by exciting the final ground
state. The QRPA supplies only transition amplitudes and
so must be extended to obtain the overlap. Here, we will
apply a prescription like that in Ref. [5] while noting that
a well-justified and tractable expression is still lacking.

This article is organized as follows: Sec. II contains a brief
overview of the matrix elements that govern double-β decay
and of the Skyrme QRPA. Section III describes the details of
our computational implementation, and Sec. IV presents our
results. Section V is a conclusion.

II. DOUBLE-β DECAY AND THE QRPA

A. Decay operators

The lifetime for 0νββ decay, if there are no heavy particles
that mediate the decay, is

[
T 0ν

1/2

]−1 = G′0ν⟨mν⟩2|M ′0ν |2, (1)

where ⟨mν⟩2 is a weighted average of three neutrino masses,
G′0ν is a phase-space factor (recently recomputed in Ref. [29]),

064302-10556-2813/2013/87(6)/064302(9) ©2013 American Physical Society
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We develop a new framework for the self-consistent deformed proton–neutron quasiparticle-
random-phase approximation (pnQRPA), formulated in the Hartree–Fock–Bogoliubov (HFB)
single-quasiparticle basis. The same Skyrme force is used in both the HFB and pnQRPA cal-
culations, except in the proton–neutron particle–particle channel, where an S = 1 contact force
is employed. A numerical application is performed for Gamow–Teller (GT) strength distribu-
tions and β-decay rates in the deformed neutron-rich Zr isotopes located around the path of
rapid-neutron-capture-process nucleosynthesis. It is found that the GT strength distributions are
fragmented due to deformation. Furthermore, we find that the momentum-dependent terms in the
particle–hole residual interaction lead to a stronger collectivity of the GT giant resonance. The
T = 0 pairing enhances the low-lying strengths cooperatively with the T = 1 pairing correla-
tion, which shortens the β-decay half-lives by at most an order of magnitude. The new calculation
scheme reproduces well the observed isotopic dependence of the β-decay half-lives of deformed
100−110Zr isotopes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index D11, D13

1. Introduction

The study of unstable nuclei has been a major subject in nuclear physics for a couple of decades.
The collective mode of excitation emerging in the response of the nucleus to an external field is a
manifestation of the interaction among nucleons. Thus, the spin–isospin channel of the interaction
and the spin–isospin part of the energy-density functional (EDF), which is crucial for understanding
and predicting the properties of unstable nuclei and asymmetric nuclear matter, have been much
studied, especially through Gamow–Teller (GT) strength distributions [1,2].

The GT strength distribution has been extensively investigated experimentally and theoretically not
only because of interest in nuclear structure but also because β-decay half-lives set a time scale for
the rapid-neutron-capture process (r -process), and hence determine the production of heavy elements
in the universe [3]. The r -process path is far away from the stability line, and involves neutron-rich
nuclei. They are weakly bound and many of them are expected to be deformed according to the
systematic Skyrme-EDF calculation [4].

Collective modes of spin–isospin excitation in nuclei are described microscopically by the proton–
neutron random-phase approximation (pnRPA) or the proton–neutron quasiparticle-RPA (pnQRPA)
including the pairing correlations on top of the self-consistent Hartree–Fock (HF) or HF–Bogoliubov
(HFB) mean fields employing the nuclear EDF. There have been many attempts to investigate the

© The Author(s) 2013. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Restoration of the isospin symmetry breaking (ISB)

C. A. Engelbrecht and R. H. Lemmer, PRL24(1970)607
Even w/o the Coulomb int., the ISB occurs in N>Z nuclei in a MFA

Ex. 90Zr (N-Z=10) w/o Coulomb

excitation energy w.r.t the gs of 90Zr

SkM* w/o pairing

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

S− − S+ = 10.05

2

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.05

2

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.06

∆ν = 0.00 MeV

∆π = 0.41 MeV

vT=1
pp (r, r′) =

1− Pσ

2

1 + Pτ

2
V0

[
1− 1

2

ρ00(r)

ρ0

]
δ(r − r′)

[HMF, T−] ̸= 0

2

IAS appears as a NG mode in the pnRPA

~0.06 MeV



Restoration of the isospin symmetry breaking (ISB)

Ex. 90Zr (N-Z=10) w/o Coulomb, w/ pairing

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.06

2

SkM* + mixed-type pairing

E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.06

∆ν = 0.00 MeV

∆π = 0.41 MeV
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0.23 MeV
numerical error increases ??



Restoration of the isospin symmetry breaking (ISB)

Ex. 90Zr (N-Z=10) w/o Coulomb

inclusion of the S=0 pairing interaction in the pnQRPA
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E =

∫
drH(r)

H = Hkin+HSkyrme+Hem

HSkyrme =
∑

t=0,1

t∑

t3=−t

(
Heven

tt3 +Hodd
tt3

)

Heven
tt3 = Cρ

t ρ
2
tt3 + C∆ρ

t ρtt3∆ρtt3 + Cτ
t ρtt3τtt3 + C∇J

t ρtt3 ∇ · Jtt3 + CJ
t

←→
J 2

tt3

Hodd
tt3 = Cs

t s
2
tt3+C∆s

t stt3 ·∆stt3+CT
t stt3 ·Ttt3+C∇s

t (∇·stt3)2+Cj
t j

2
tt3+C∇j

t stt3 ·∇×jtt3

Hodd
tt3

H
ρ0

= 24/3
(
3π2

2

)2/3 [ !2
2m

+
(
Cτ

0 + Cτ
1 + CT

0 + CT
1

)
ρ0

]
ρ2/30 +

(
Cρ

0 + Cρ
1 + Cs

0 + Cs
1

)
ρ0

vres(r1, r2) ≡
δ2E

δρ(r1)δρ(r2)
∫

drrLYLψ
†(rστ)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ(rσ′τ ′)

∫
drrLYLŝ1t

ŝ1t = ψ†(rστ)⟨σ|σ|σ′⟩⟨τ |τ t|τ ′⟩ψ(rσ′τ ′)

ρmax × zmax = 14.7 fm× 14.4 fm

∆ρ = ∆z = 0.6 fm

E2qp ≤ 60 MeV

S− − S+ = 10.06

2

0.08 MeV

begin

vpp(r, r
′) = V0

[
1− 1

2

ρ(r)

ρ0

]
δ(r − r′)

end
ω̊

E =
k2

2m
+ Σ(k,E) =

k2

2m∗

m∗

m
=

m∗
k

m

m∗
E

m

(
hq(rσ)− λq h̃q(rσ)

h̃q(rσ) −(hq(rσ)− λq)

)(
ϕq
1,i(rσ)

ϕq
2,i(rσ)

)
= Ei

(
ϕq
1,i(rσ)

ϕq
2,i(rσ)

)

a

ΣE<EcB(E1;Kπ = 0−)

ΣE<EcB(E1;Kπ = 1−)
=

0.72

0.73
≃ 1

b

Ĥ =
∑

ij

tij ĉ
†
i ĉj +

1

4

∑

ijkl

v̄ijklĉ
†
i ĉ

†
j ĉlĉk + · · · (1)

v

E[ρ]

min
|Ψ⟩
⟨Ψ|Ĥ|Ψ⟩

min
ρ

E[ρ]

|Ψ0⟩
E0

ρ0

E[ρ] = min
|Ψ⟩→ρ

⟨Ψ|Ĥ|Ψ⟩

1



GTGR: the need of self-consistency
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98Zr

SLy4 + mixed-type pairing

0
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8
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104Zr

R
-  (

/M
eV

)

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

E [ρ(r), ρ̃(r)]

hq =
δE
δρq

, h̃q =
δE
δρ̃q

q = ν, π

β2,ν = 0.38

β2,π = 0.41

β2,ν = 0.39

β2,π = 0.43

3

[HMF, T−] ̸= 0

Ô†
λ =

∑

αβ

Xλ
αβ â

†
α,ν â

†
β,π − Y λ

αβ âβ̄,πâᾱ,ν

vres(r1, r2) =
δ2E

δρ1t3(r1)δρ1t3(r2)
τ 1 · τ 2 +

δ2E
δs1t3(r1)δs1t3(r2)

σ1 · σ2τ 1 · τ 2

E [ρ(r), ρ̃(r)]

hq =
δE
δρq

, h̃q =
δE
δρ̃q

q = ν, π

β2,ν = 0.38

β2,π = 0.41

β2,ν = 0.39

β2,π = 0.43

vph(r1 r2) = N−1
0 [f ′

0τ1 · τ2 + g′0σ1 · σ2τ1 · τ2] δ(r1 − r2)

3

✓the collectivity generated by the Landau-Migdal 
approximation is weak

LM parameter:  
M. Bender et al., PRC65(2002)054322

the self-consistent treatment of the 
static and dynamic calculations is 
needed for a quantitative description 
of the GTGR



proton-neutron pairing vibrations

Ref: PRC90(2014)031303R

✓ collectivity of T=0 and T=1 types



Pairing vibration and condensation (of neutrons)

neutron-pair operator; a probe to see the collectivity

q

<H>

0

P̂T=1,Tz=1,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ+|τ ′⟩ψ̂(rσ̄τ̄) = ψ̂ν(r ↓)ψ̂ν(r ↑)

q ≡ ⟨P̂T=1,Tz=1,S=0⟩ = ∆ν(r)

|⟨λ|P̂T=1,Tz=1,S=0|0⟩|2

|λ⟩

⟨ψ̂(rστ)⟩

1

w/ an enhanced transition strength

pairing condensation: order parameter

pairing vibration; 
precursory soft mode:

P̂T=1,Tz=1,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ+|τ ′⟩ψ̂(rσ̄τ̄) = ψ̂ν(r ↓)ψ̂ν(r ↑)

q ≡ ⟨P̂T=1,Tz=1,S=0⟩ = ∆ν(r)

|λ⟩

|⟨λ|P̂T=1,Tz=1,S=0|⟩|2

⟨ψ̂(rστ)⟩

1

cf. Bès and Broglia

is seen in normal nuclei (q=0)

|λ⟩

|⟨λ|P̂T=1,Tz=1,S=0|⟩|2

P̂T=1,Tz=0,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ0|τ ′⟩ψ̂(rσ̄′τ̄ ′) =
√
2ψ̂ν(r ↓)ψ̂ν(r ↑)

P̂T=1,Tz=0,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ0|τ ′⟩ψ̂(rσ̄′τ̄ ′)

P̂T=0,S=1 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δτ,τ ′⟨σ|σ|σ′⟩ψ̂(rσ̄′τ̄ ′)

P̂T=1,Tz=0,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ0|τ ′⟩ψ̂(rσ̄′τ̄ ′)

P̂T=1,Tz=1,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ0|τ ′⟩ψ̂(rσ̄′τ̄ ′) =
√
2ψ̂ν(r ↓)ψ̂ν(r ↑)

ρ(r) ≡
∑

σ

⟨ψ̂(rσ)ψ̂†(rσ)⟩

ρ̃(r) ≡ ⟨ψ̂(r ↓)ψ̂(r ↑)⟩

âα|⟩ = 0

q ≡ ⟨P̂T=1,Tz=1,S=0⟩ =
√
2ρ̃ν(r)

Q̂20 ≡
∫

dxr2Y20(r)ψ̂
†(x)ψ̂(x)

ω ∼ 1

R

E =

∫
drE [ρ(r)]

E = T +HSkyrme+Hem

∆01 > ∆10

∆ ∼
∫

drh̃(r)ρ̃(r)

h̃(r) =
1

2

δE
δρ̃
ρ̃(r)

1

begin
ψ̂(rσ̄τ̄) = (−2σ)(−2τ)ψ̂(r − σ − τ)

end

P̂T=1,Tz=1,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

ψ̂(rστ)δσ,σ′⟨τ |τ+|τ ′⟩ψ̂(rσ̄′τ̄ ′) =
√
2ψ̂ν(r ↓)ψ̂ν(r ↑)

√
⟨r2⟩ = 3.4

r2δρaddT=0,Sz=0(r) (fm−1)

r (fm)

S− − S+ = 3(N − Z)

∆E = ĒQRPA − Ē2qp

Ē =

∫∞
0 ωS(ω)dω
∫∞
0 S(ω)dω

δσσ′

Ô =

∫
dr

∑

σσ′

∑

ττ ′

ψ̂†(rστ)rLYL(r̂)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ̂(rσ′τ ′)

1

begin

P̂T=1,Tz=1,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

∫
drψ̂(rστ)δσ,σ′⟨τ |τ+|τ ′⟩ψ̂(rσ̄′τ̄ ′) =

√
2

∫
drψ̂ν(r ↓)ψ̂ν(r ↑)

end

ψ̂(rσ̄τ̄) = (−2σ)(−2τ)ψ̂(r − σ − τ)

√
⟨r2⟩ = 3.4

r2δρaddT=0,Sz=0(r) (fm−1)

r (fm)

S− − S+ = 3(N − Z)

∆E = ĒQRPA − Ē2qp

Ē =

∫∞
0 ωS(ω)dω
∫∞
0 S(ω)dω

δσσ′

Ô =

∫
dr

∑

σσ′

∑

ττ ′

ψ̂†(rστ)rLYL(r̂)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ̂(rσ′τ ′)

1

begin

q ≡ ⟨P̂T=1,Tz=1,S=0⟩ =
√
2

∫
drρ̃ν(r)

end

P̂T=1,Tz=1,S=0 ≡ 1

2

∑

σ,σ′

∑

τ,τ ′

∫
drψ̂(rστ)δσ,σ′⟨τ |τ+|τ ′⟩ψ̂(rσ̄′τ̄ ′) =

√
2

∫
drψ̂ν(r ↓)ψ̂ν(r ↑)

ψ̂(rσ̄τ̄) = (−2σ)(−2τ)ψ̂(r − σ − τ)

√
⟨r2⟩ = 3.4

r2δρaddT=0,Sz=0(r) (fm−1)

r (fm)

S− − S+ = 3(N − Z)

∆E = ĒQRPA − Ē2qp

Ē =

∫∞
0 ωS(ω)dω
∫∞
0 S(ω)dω

δσσ′

Ô =

∫
dr

∑

σσ′

∑

ττ ′

ψ̂†(rστ)rLYL(r̂)⟨σ|σ|σ′⟩⟨τ |τ |τ ′⟩ψ̂(rσ′τ ′)

1

pairing gap:



Proton-neutron pairing collectivity

T=1 (Tz=0), S=0 pair

T=0, S=1(Sz=0,±1) pair

n n n

n

p

p

p p
T = 1
S = 0

T = 0
S = 1strong collectivity is expected as in nn and pp 

pairings

many works on the possible occurrence of the 
condensation, but largely unknown

S. Frauendorf and A. O. Macchiavelli, 
Prog. Part. Nucl. Phys. 78 (2014) 24

Nuclear pairing in the TÄ0 channel reexamined

E. Garrido,1 P. Sarriguren,1 E. Moya de Guerra,1 U. Lombardo,2 P. Schuck,3 and H. J. Schulze4
1Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientı́ficas, Serrano 123, E-28006 Madrid, Spain

2Dipartimento di Fisica, Università di Catania, 57 Corso Italia, I-95129 Catania, Italy
3Institut de Physique Nucléaire, Université Paris-Sud, F-91406 Orsay Cedex, France

4Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Spain
!Received 28 November 2000; published 22 February 2001"

Recent published data on the isoscalar gap in symmetric nuclear matter using the Paris force and the
corresponding BHF single particle dispersion are corrected, leading to an extremely high proton-neutron gap of
#$8 MeV at %$0.5%0. Arguments of whether this value can be reduced due to screening effects are dis-
cussed. A density dependent delta interaction with cutoff is adjusted so as to approximately reproduce the
nuclear matter values with the Paris force.

DOI: 10.1103/PhysRevC.63.037304 PACS number!s": 21.65.!f, 21.30."x, 21.10."k, 05.30.Fk

In a recent publication &1', the possibility to reproduce the
gap in nuclear matter, as obtained, e.g., from the Paris NN
force, by an effective density dependent zero range force was
investigated. Supplied with an energy cutoff, such effective
forces indeed turned out to be able to reproduce very reason-
ably the gap values in the isospin T#0 and T#1 channels
over the whole relevant range of densities. The adjustments
were performed on previously published solutions of the gap
equation using Brückner-Hartree-Fock results for the single
particle spectra &2'. Such effective forces may possess some
analogies, with similar ones frequently used in recent struc-
ture calculation of superfluid nuclei &3'. Unfortunately, due
to the subtleties connected with the numerical solution of the
gap equation, the published results in the T#0 channel were
not accurate enough so that the corresponding gap is under-
estimated in Refs. &1,2' by about 20%. It is the purpose of
this note to give the corrected results for the gap in the T
#0 channel and also to readjust the corresponding density-
dependent (-force. We also discuss again the issue of
whether screening affects the T#1 and T#0 channels dif-
ferently.
In Fig. 1 we show the correct result for the isoscalar gap

as obtained with the Paris force &4' using two independent
numerical codes. We also checked that the Argonne V14
force &5' gives practically the same result. What is striking is
the giant gap value of $8 MeV at maximum, which is of the
same order as the Fermi energy at the corresponding density.
Even around saturation, # is still of the order of several
MeV. This is clearly a strong coupling situation, as expected
from the fact that at low density the n-p Cooper pair turns
into the deuteron wave function &2'. The above values are
actually much more compatible with earlier calculations of
the critical temperature in Ref. &6' than the previous results
&2'. Indeed, considering the usual relation ##1.76 Tc &7',
quantitative agreement between the results of Ref. &6' and
the ones in Fig. 1 is obtained. In order to obtain an estimate
of the typical magnitude of the isoscalar gap in a finite
nucleus, we apply the local density approximation and aver-
age the local gap over the density at the Fermi energy. This
procedure has given reliable estimates of the average energy
dependent gap in the isovector channel &8'. We therefore
calculate

##
! drr2#!kF!r ""kF!r "

! drr2kF!r "
, !1"

where the local Fermi momentum is defined as

kF!r "#!!)"V!r ""2m/*2, !2"

with ) the chemical potential. We take the same single par-
ticle potential V(r) as in Ref. &8' and the result for, e.g., N
#Z#35 is that # is of the order of 3 MeV. Compared to the
neutron-neutron and proton-proton channels this is a very
high value.

FIG. 1. Pairing gap vs Fermi momentum for symmetric nuclear
matter in the T#0 channel from the Paris potential.
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We already discussed in Ref. !1" and show again in Fig. 2
that the use of the Paris force in conjunction with the k-mass,
m*/m , yields gap values as a function of density that are
globally very similar to the ones of the Gogny force for T
!1, and therefore, the use of a bare force seems not unrea-
sonable in the T!1 channel. The fact that # for T!1 drops
off quite a bit faster close to saturation for the Paris force
than for the Gogny D1S force may be attenuated in a finite
nucleus to quite some extent, since a certain averaging over
all densities $"$0 takes place. Therefore, the needed me-
dium renormalization of the bare force seems to be of minor
importance in the T!1 channel.1 However, the situation
may not be the same for T!0 pairing. The extremely strong
T!0 pairing stems essentially from the fact that with respect
to the T!1 channel the tensor force is acting additionally.
Without the tensor force np (T!0) and nn (T!1) pairing
would be of comparable magnitude. The screening of the
tensor force in the medium is, however, still a controversial
subject !9". On the other hand, even for very low densities
where screening should not be so important, T!0 pairing
remains strong. Therefore, there may be a good chance that
the new heavier exotic nuclei with N!Z experience quite
pronounced np superfluidity. This may well be the cause for
the so-called Wigner energy of the nuclear mass formula,
since it can be shown !10" that away from symmetric nuclei,
T!0 pairing very quickly loses its strength.
Let us now proceed to the readjustment of the effective

T!0 delta force. We use the standard ansatz !1,11"

v%r1! ,r2! &!v0! 1#'"$# r1$r2
2 $ % /$0&(' )%r1!#r2! &%1

$P*&/2. %3&

With the above density-dependent zero range force, the gap
equation reads

1!#
v0
+2 !1#'%$/$0&("

%# m*%$&

2,2
$ 3/2(

0

-C
d-! -

%-#-F&2$#2. %4&

In Fig. 3 we present two fits for the above ansatz, one of
the fits is obtained from the following parameters: (!0.2,
'!#0.10 and a cutoff energy -C!60 MeV %see Ref. !1"&,
using the effective mass m*/m as obtained from the Gogny
force. The other fit is obtained by using a bare mass and
parameters (!0.90, '!0.40, and -C!60 MeV.
As one can see in Fig. 3, the fit obtained using the bare

mass is able to reproduce the microscopic calculation up to
the highest values of kF (kF.1.7 fm#1), while the fit ob-
tained using the effective mass breaks down at lower densi-
ties corresponding to kF.1.35 fm#1. The reason for this
different behavior can be traced back to the dependence on
the effective mass inside the integral of the gap equation. It
turns out that in order to get a solution of the gap equation
%4&, the energy cutoff -C should be larger than the Fermi
energy -F . Otherwise, no value of # satisfies the equation.
In the case of the energy cutoff used in Figs. 3 and 4 (-C
!60 MeV&, the largest kF reachable is kF.1.7 fm#1 when

1Of course, it cannot be excluded that the medium completely
reshuffles the distribution of gap values, still reproducing experi-
mental pairing phenomena in finite nuclei.

FIG. 2. Pairing gap #F in the 1S0 channel in symmetric nuclear
matter calculated with the Gogny force D1S compared with results
from the Paris force.

FIG. 3. T!0 pairing gap in nuclear matter. The dots are the
results obtained for the Paris potential. The curves are fits with Eq.
%3& using an energy cutoff -C!60 MeV, v0!#480 MeV fm3, and
different parameters for the fit with effective mass m* %solid line,
'!#0.10, (!0.20) and for the fit with the bare mass %dashed
line, '!0.40, (!0.90).
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Ē =

∫∞
0 ωS(ω)dω
∫∞
0 S(ω)dω

δσσ′
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Fig. 1. The two-dimensional space of phases of the model. Various limiting schemes are indicated. 

distinct regions. One containing the origin in which the system can be described as 
performing harmonic vibrations in the degrees of freedom related to spin and isospin. 
Two symmetric situations arise whenever a vibrational motion is associated with 
one set of degrees of freedom (say those associated with the spin) and the rotational 
motion is present for the other set (the isospin). Finally, a fourth situation occurs 
when a permanent deformation in spin-isospin and gauge spaces is present. 

3.2. ENERGY SPECTRUM 

In fig. 2 we show the energy spectrum obtained for the closed shell nucleus. The 
pattern is seen to be amenable to a description in terms of four elementary modes 
of excitation that are the vibrational quanta which can either add one pair of particles 
to or remove one pair of particles from a vacuum state represented by the closed 
shell. This can have either (S, T) = (0,l) or (1,O). The corresponding phonon 

Pairing phase diagram: Pairing vibration and rotation
G.G.Dussel et al., NPA450(1986)164

normal

T=1 
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T=0 
super

T=0 and 1 
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All the models considered hitherto involve only one parameter. In ref. ‘) it is 
associated with the ratio of the strengths of the two residual two-nucleon forces. In 
the second set of examples the parameter is essentially given by the ratio of the 
strength of the residual interaction to the single-particle energy gap. The model that 
we consider in the present paper involves instead two parameters Xol, and X,,, that 
measure the strengths of the (S, T) = (0,l) and (S, T) = (1,O) channels of the residual 
force in units of the single-particle energy splitting. The phase diagram associated 
with this situation may be represented in a plane and has four different regions that 
correspond respectively to: (i) X,,,<< 1 and X1,<< 1; (ii) X0,<< 1 and XlO>> 1; (iii) 
X0, >> 1 and X,,C< 1 and (iv) X0, >> 1 and X1,,>> 1. We can consequently expect 
different types of “phase transitions” to occur across the various boundaries of the 
X0, versus X,, plane. 

The model that is discussed in the present paper is one of the very few in which 
all possible regions of the two-dimensional phase space can be studied through a 
tractable exact diagonalization. This situation is rarely found in the models dealt 
with in the existing literature because most of the calculations are either limited to 
a given number of particles or to a specific set of single-particle levels. Both 
limitations are absent in the present approach. We consider two sets of degenerate 
Z-shells with different total degeneracies and separated by a single-particle splitting 
that can be thought of as being due to an average self-consistent one-body field. 
To perform the calculation, we classify all the many particle configurations in each 
set through the irreducible representations of the symmetry group O(8) as explained 
in detail in ref. ‘). We consider only basic states with shell-seniority zero. We then 
vector couple the two many-particle wave functions to give basic states with definite 
total spin and isospin. In this fashion it is possible to discuss not only the behaviour 
of energy eigenvalues but also that of the spectroscopic amplitudes for two- or 
four-particle transfer. Some selected spectroscopic amplitudes can be used as a 
direct measure of the phase in the system. The appearance of a condensate of pairs 
- or even quartets - for specific regions of the X0, versus Xl0 plane, can be associated 
with the enhancement of the matrix elements of the corresponding operator. 

2. Description of the model 

We consider a set of 2N nucleons moving in two non-degenerate I-shells with 
degeneracies 0, and L&. The hamiltonian is 

H=2N,-X,, c I$,&,-x,, 1 P;,P,,% (1) 
11’=1,f* t,r=r,r* 

p p 

In eq. (1) the single-particle gap between the levels (1) and (2) is taken equal to 
unity and level (1) is taken at zero energy. The single-particle term thus only involves 
the number operator NZ that counts the number of pairs (one half the number of 
particles) in the upper level. 

two-level solvable model:



SGII + surface pairing
V0 = -520 MeV fm3

Interactions employed for pn-pairing vibrations in fp-shell nuclei

KSB(HFB) eq:

pnQRPA eq:
p-h channel: SGII
p-p channel:

cf. C. Bai et al., PLB719(2013)116

44Ti
Δn = 1.82 MeV
Δp = 1.87 MeV

changing “f” to see an effect of the residual interaction
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FIG. 1: (Color online) pn pair-addition strengths of 40Ca →
42Sc and 56Ni → 58Cu in the Jπ = 1+ [(a), (b)] and Jπ = 0+

[(c), (d)] states smeared with a width of 0.1 MeV. For the
(J, T ) = (1, 0) channel, shown are the strengths obtained with
factors f = 0, 1.0, 1.3, and 1.5. For the (J, T ) = (0, 1) channel,
the unperturbed single-particle transition strengths are also
shown by a dotted line.

for the particle-hole (ph) channel because the spin-isospin
properties were considered to fix the coupling constants
entering in the EDF [14]. For the pp channel, the density-
dependent contact interactions are employed:

vT=0
pp (rστ, r′σ′τ ′)

= f × V0
1 + Pσ

2

1− Pτ

2

[
1− ρ(r)

ρ0

]
δ(r − r′), (1)
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= V0
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2

1 + Pτ

2

[
1− ρ(r)

ρ0

]
δ(r − r′), (2)

where ρ0 = 0.16 fm−3 and ρ(r) = ρν(r) + ρπ(r). The
pairing strength V0 is determined so as to produce ap-
proximately the T = 1 pairing gaps of the fp-shell nuclei
as 12/

√
A (MeV). The strength V0 = −520 MeV fm3

gives ∆ν = 1.82 MeV and ∆π = 1.87 MeV in 44Ti by
solving the SHF-Bogoliubov equation with an energy cut
off at 60 MeV. We assume that the T = 1 pairing inter-
action is rotationally invariant in isospace. The factor f
appearing in the T = 0 channel (1) is changed to see an
effect of the interaction [15], whereas an analysis made
in Ref. [7] suggests f ≃ 1.6 for the density-independent
contact interactions based on a phenomenological shell-
model Hamiltonian in the fp-shell nuclei.

Figure 1 shows the strength distributions for the
monopole (L = 0) pn-pair-addition transfer |⟨Z +1, N +
1;λ|P̂ †

T,S |Z,N⟩|2 ≡ |
∑

αβ M
T,S
αβ |2 as functions of the

RPA frequency ωλ in 40Ca and 56Ni. Here, the L = 0

TABLE I: Microscopic structure of the collective Jπ = 1+

and 0+ states in 42Sc calculated with f = 1.3. Listed are the
configuration, its excitation energy, and the matrix element.
The excitation energies are given in MeV. The pp and hh
excitations possessing the amplitude |X2 − Y 2| greater than
0.01 are only shown. Sums of the backward-going amplitudes
squared and the matrix elements are shown in the last lines.
For the Jπ = 1+ state, the Jz = 0 component is only shown.

42Sc Jπ = 1+ Jπ = 0+

configuration Eα + Eβ MS=1,Sz=0
αβ MS=0

αβ

π1f7/2 ⊗ ν1f7/2 7.5 1.70 2.85
π1f7/2 ⊗ ν1f5/2 15.2 0.62
π1f5/2 ⊗ ν1f7/2 14.7 0.51
π2p3/2 ⊗ ν2p3/2 16.1 0.17 0.22
π1d3/2 ⊗ ν1d3/2 4.2 0.25 0.48
π2s1/2 ⊗ ν2s1/2 6.6 0.25
π1d3/2 ⊗ ν1d5/2 10.1 0.32
π1d5/2 ⊗ ν1d3/2 10.2 0.32
π1d5/2 ⊗ ν1d5/2 16.1 0.16 0.31

∑
αβ Mαβ 6.63 5.70∑
ij Y

2
ij 0.17 0.09

T = 0 pn-pair-addition operators are defined as
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in terms of the nucleon field operator, where ψ̂†(rσ̃τ̃) ≡
(−2σ)(−2τ)ψ̂†(r−σ− τ). Note that the absolute values
of the RPA frequency do not directly correspond to the
excitation energies observed experimentally. The parti-
cle excitation energies here are measured from the Fermi
energies; Eα = |ϵα − λ|. Since in the spatially spheri-
cal “normal” nuclei, the spin orientation is not uniquely
determined, i.e., rotationally invariant in spin space, the
strengths for the spin-triplet (S = 1) pair-addition trans-
fer (3) are all the same. Therefore, the strengths for
Sz = 0,±1 are summed up in Figs. 1(a) and 1(b).

One sees that the excitation energy and the strengths
of the Jπ = 1+ state are strongly affected by the T = 0
pairing interaction. In the case of f = 0, without the
T = 0 pairing interaction, the lowest 1+ state in 42Sc
located at ω = 7.5 MeV is a single-particle excitation
πf7/2 ⊗ νf7/2. As the pairing interaction is switched
on and the strength is increased, the 1+ state is shifted
lower in energy with an enhancement of the transition

f=1.3π[413]7/2⊗ ν[413]5/2
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Figure 3. B(GT) distributions in (a)42Sc,
(b)46V, (c)50Mn and (d)54Co.

For 50Mn and 54Co, the shell model
calculations were performed up to 12
MeV. The experimental B(GT) distri-
butions were well reproduced up to 7
MeV in both nuclei. On the other hand,
above 7 MeV the theoretical strengths
were larger. The cumulative sum of the
B(GT)’s up to 12 MeV were 50% and
40% larger than experimental ones for
50Mn and 54Co, respectively, as shown
in Fig. 4 (a) and 4 (b). At higher exci-
tations above the proton separation en-
ergy, a continuous spectrum caused by
the quasifree scattering appears in the
experiment. It is interesting to see that
a good agreement of both strengths is
attained if this continuous part is all
counted as the GT strength.

5. Summary

GT transitions from Tz = +1 to Tz = 0 nuclei in pf -shell were studied via (3He, t)
high-resolution experiment. With the energy resolution of 60, 33, 29 and 21 keV in 42Sc,
46V, 50Mn and 54Co, respectively, discrete GT states were identified. Since no accurate
B(GT) values are available from β decay for A = 42, 46, 50 and 54 systems, B(GT) values
were derived from the R2 values. The R2 values for A = 42 and A = 50 were derived in
the “merged analysis” using β decay half life T1/2. The R2 values for A = 46 and A = 54
were derived by the interpolation of the mass A systematic.

By comparing the B(GT) distribution among these four pf -shell nuclei, we see that
the centroid of the B(GT) strengths moves to higher excitation energies as mass number
increases. The experimental B(GT) distributions were compared with shell model calcu-
lations. From the fact that the fragmentation around 3 MeV in 46V was not reproduced,
it is suggested that the contribution of the sd-shell configurations should be included. For
50Mn and 54Co, the shell model can reproduce the B(GT) distribution well below 7 MeV.
However, above 7 MeV the strengths are much stronger.
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TABLE II: Same as Table I but for 58Cu.

58Cu Jπ = 1+ Jπ = 0+

configuration Eα + Eβ MS=1,Sz=0
αβ MS=0

αβ

π2p3/2 ⊗ ν2p3/2 4.5 1.28 1.90
π2p1/2 ⊗ ν2p3/2 6.4 0.39
π2p3/2 ⊗ ν2p1/2 6.5 0.37
π2p1/2 ⊗ ν2p1/2 7.9 0.26
π1f5/2 ⊗ ν1f5/2 9.7 0.15 0.55
π1f7/2 ⊗ ν1f7/2 5.1 0.17 0.50

∑
αβ Mαβ 4.25 4.68∑
ij Y

2
ij 0.03 0.03

strength. In Table I, the microscopic structure of the 1+

state obtained by setting f to 1.3 is summarized. This
1+ state is constructed by many pp excitations involv-
ing an f5/2 and a p3/2 orbitals located above the Fermi
levels as well as the πf7/2 ⊗ νf7/2 excitation. It is par-
ticularly worth noting that the hh excitations from the
sd-shell have an appreciable contribution to generate this
T = 0 pn-pair-addition vibrational mode, indicating a
40Ca core-breaking. Furthermore, all the pp and hh exci-
tations listed in the table construct the vibrational mode
in phase. The strong collectivity can be also seen from a
large amount of the ground-state correlation: A sum of
the backward-going amplitudes squared is 0.17
The low-lying 1+ state in 58Cu is also sensitive to the

T = 0 pairing interaction. As shown in Table II, this
mode is dominantly constructed by a πp3/2 ⊗ νp3/2 ex-
citation together with many other pp excitations involv-
ing a p1/2 and an f5/2 orbitals. In contrast to a large
core breaking in 42Sc, a role played by the hh excitation
πf7/2 ⊗ νf7/2 is minor in 58Cu.
In Figs. 1(c) and 1(d), the strength distributions for the

T = 1 pn-pair-addition transfer are shown together with
the strengths obtained without the residual interactions.
The low-lying 0+ state is predominantly constructed by
the πf7/2 ⊗ νf7/2 excitation in 42Sc similarly to the 1+

state. Though the number of possible pp configuration
in the bound states is smaller than in the T = 0 channel,
the energy shift due to the T = 1 pairing interaction is
large and the ground-state correlation is strong. The 0+

state in 58Cu is as collective as the 1+ state.
In an attempt to explore characteristic features of the

collective T = 0 pn-pairing vibration, we investigate the
pn pair-removal strengths in 40Ca and 56Ni. The strength
distributions for the pn-pair removal transfer are shown
in Fig. 2. Similarly to the T = 0 pn-pair-addition vibra-
tion, the frequency and the transition strengths to the
low-lying 1+ state strongly depend on the strength of the
T = 0 pairing interaction, in particular, for 40Ca → 38K.
In the case of f = 1.3, the 1+ state is mainly generated
by a πd3/2 ⊗ νd3/2 excitation with a matrix element of

FIG. 2: (Color online) Same as Fig. 1 but for the pn pair-
removal strengths.

FIG. 3: (Color online) (a) Energy difference ∆E = ω1+ −ω0+

in 38K, 42Sc, 54Co and 58Cu calculated with f = 0, 1.0, 1.3,
and 1.5. (b) Ratio of the energy difference calculated to the
experimental value ∆E/∆Eexp. The experimental data are
taken from Ref. [16]. Lines are drawn to guide the eye. A
horizontal line represents unity.

0.82. Furthermore, many other hh excitation participate
to generate this T = 0 pn-pair-removal vibrational mode:
they are πs1/2 ⊗ νs1/2 (with M = 0.07), πd5/2 ⊗ νd3/2
(0.30), πd3/2⊗νd5/2 (0.30), πd5/2⊗νd5/2 (0.16) together
with the pp excitation of πf7/2 ⊗ νf7/2 (0.39). We see a
coherence among the hh and pp excitations, and a strong
ground-state correlation:

∑
mn Y

2
mn = 0.11.

A change of the excitation energy due to the T = 0
pairing interaction is summarized in Fig. 3(a). Here, a
energy difference between the 1+ and 0+ states are plot-
ted. The 1+ state is sensitive to the symmetry energy
coefficient [11], and both the 0+ and 1+ states are af-
fected by the pairing interactions. In the doubly-magic
nuclei, the pairing collectivity is generated by only the
residual pairing interactions (1) and (2).

Both the T = 0 pn pair-addition and pair-removal
vibrational modes are sensitive to the pairing interac-
tion employed. One clearly sees that the T = 0 pn-
pairing vibrational mode gets lower in energy with in-

f=1.3

1+

0+

✓coherent superposition of 
(p)2 and (f5/2)2 excitations 

✓ (f7/2)2 excitation as a 
ground-state correlation

weaker collectivity than 
in 40Ca
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TABLE II: Same as Table I but for 58Cu.

58Cu Jπ = 1+ Jπ = 0+

configuration Eα + Eβ MS=1,Sz=0
αβ MS=0

αβ

π2p3/2 ⊗ ν2p3/2 4.5 1.28 1.90
π2p1/2 ⊗ ν2p3/2 6.4 0.39
π2p3/2 ⊗ ν2p1/2 6.5 0.37
π2p1/2 ⊗ ν2p1/2 7.9 0.26
π1f5/2 ⊗ ν1f5/2 9.7 0.15 0.55
π1f7/2 ⊗ ν1f7/2 5.1 0.17 0.50

∑
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ij Y
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ij 0.03 0.03

strength. In Table I, the microscopic structure of the 1+

state obtained by setting f to 1.3 is summarized. This
1+ state is constructed by many pp excitations involv-
ing an f5/2 and a p3/2 orbitals located above the Fermi
levels as well as the πf7/2 ⊗ νf7/2 excitation. It is par-
ticularly worth noting that the hh excitations from the
sd-shell have an appreciable contribution to generate this
T = 0 pn-pair-addition vibrational mode, indicating a
40Ca core-breaking. Furthermore, all the pp and hh exci-
tations listed in the table construct the vibrational mode
in phase. The strong collectivity can be also seen from a
large amount of the ground-state correlation: A sum of
the backward-going amplitudes squared is 0.17
The low-lying 1+ state in 58Cu is also sensitive to the

T = 0 pairing interaction. As shown in Table II, this
mode is dominantly constructed by a πp3/2 ⊗ νp3/2 ex-
citation together with many other pp excitations involv-
ing a p1/2 and an f5/2 orbitals. In contrast to a large
core breaking in 42Sc, a role played by the hh excitation
πf7/2 ⊗ νf7/2 is minor in 58Cu.
In Figs. 1(c) and 1(d), the strength distributions for the

T = 1 pn-pair-addition transfer are shown together with
the strengths obtained without the residual interactions.
The low-lying 0+ state is predominantly constructed by
the πf7/2 ⊗ νf7/2 excitation in 42Sc similarly to the 1+

state. Though the number of possible pp configuration
in the bound states is smaller than in the T = 0 channel,
the energy shift due to the T = 1 pairing interaction is
large and the ground-state correlation is strong. The 0+

state in 58Cu is as collective as the 1+ state.
In an attempt to explore characteristic features of the

collective T = 0 pn-pairing vibration, we investigate the
pn pair-removal strengths in 40Ca and 56Ni. The strength
distributions for the pn-pair removal transfer are shown
in Fig. 2. Similarly to the T = 0 pn-pair-addition vibra-
tion, the frequency and the transition strengths to the
low-lying 1+ state strongly depend on the strength of the
T = 0 pairing interaction, in particular, for 40Ca → 38K.
In the case of f = 1.3, the 1+ state is mainly generated
by a πd3/2 ⊗ νd3/2 excitation with a matrix element of

FIG. 2: (Color online) Same as Fig. 1 but for the pn pair-
removal strengths.

FIG. 3: (Color online) (a) Energy difference ∆E = ω1+ −ω0+

in 38K, 42Sc, 54Co and 58Cu calculated with f = 0, 1.0, 1.3,
and 1.5. (b) Ratio of the energy difference calculated to the
experimental value ∆E/∆Eexp. The experimental data are
taken from Ref. [16]. Lines are drawn to guide the eye. A
horizontal line represents unity.

0.82. Furthermore, many other hh excitation participate
to generate this T = 0 pn-pair-removal vibrational mode:
they are πs1/2 ⊗ νs1/2 (with M = 0.07), πd5/2 ⊗ νd3/2
(0.30), πd3/2⊗νd5/2 (0.30), πd5/2⊗νd5/2 (0.16) together
with the pp excitation of πf7/2 ⊗ νf7/2 (0.39). We see a
coherence among the hh and pp excitations, and a strong
ground-state correlation:

∑
mn Y

2
mn = 0.11.

A change of the excitation energy due to the T = 0
pairing interaction is summarized in Fig. 3(a). Here, a
energy difference between the 1+ and 0+ states are plot-
ted. The 1+ state is sensitive to the symmetry energy
coefficient [11], and both the 0+ and 1+ states are af-
fected by the pairing interactions. In the doubly-magic
nuclei, the pairing collectivity is generated by only the
residual pairing interactions (1) and (2).

Both the T = 0 pn pair-addition and pair-removal
vibrational modes are sensitive to the pairing interac-
tion employed. One clearly sees that the T = 0 pn-
pairing vibrational mode gets lower in energy with in-

Collective pn-pairing vibration mode precursory to 
the T=0 pairing condensation

ΔE=ω1+ - ω0+

approaching the critical point to the T=0 pairing condensation

fc=1.53 (40Ca)
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Summary

✓ self-consistent deformed pnQRPA
• investigation of a rich variety of excitation modes 
• quest for new types of collective mode

Possible occurrence of a new kind of collective mode associated 
with the spin-triplet pairing condensation

We can study the nature of T=0 pairing in nuclei even if they are in the 
“normal” phase.

In LS-closed nuclei, the spin-orbit partners have a coherent contribution to 
the collective mode.

We don’t need to stick about an emergence of the spin-triplet pairing condensation.


