

YIPQS Long-term workshop

Computational Advances in Nuclear and Hadron Physics (CANHP 2015)

1

Relativistic description for novel rotation and exotic shape in nuclei

Pengwei Zhao (赵鹏巍)

Argonne National Laboratory

Nuclear Rotation

Outline

- ✓ Cranking covariant density functional theory
- ✓ Novel rotation:

magnetic and antimagnetic rotation

✓ Exotic shape:

stabilization of the rod shape in C isotopes

✓ Summary

Tilted axis cranking DFT

• **Covariant Density Functional Theory**

Meson exchange version:

3-D Cranking: *Madokoro, Meng, Matsuzaki, Yamaji, PRC 62, 061301 (2000)* 2-D Cranking: *Peng, Meng, Ring, Zhang, PRC 78, 024313 (2008)* Point-coupling version: Simple and more suitable for systematic investigations 2-D Cranking: *PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)* **2-D Cranking + Pairing:** *PWZ, Zhang, Meng, PRC 92, 034319 (2015)*

Skyrme Density Functional Theory

 3-D Cranking: *Olbratowski, Dobaczewski, Dudek, Płóciennik, PRL 93, 052501(2004)* 2-D Cranking: *Olbratowski, Dobaczewski, Dudek, Rzaca-Urban, Marcinkowska, Lieder, APPB 33, 389(2002)*

Self-consistent microscopic investigations

 \triangleright fully taken into account polarization effects

 \triangleright self-consistently treated the nuclear currents

Øno additional parameter beyond a well-determined functional

Covariant Density Functional Theory

Elementary building blocks

 $(\bar{\psi}\mathcal{O}_{\tau}\Gamma\psi)$ $\mathcal{O}_{\tau}\in\{1,\tau_i\}$ $\Gamma\in\{1,\gamma_{\mu},\gamma_5,\gamma_5\gamma_{\mu},\sigma_{\mu\nu}\}\$

Densities and currents

 $\textsf{Isoscalar-scalar}$ $\rho_S(\textbf{r}) = \sum \bar{\psi}_k(\textbf{r}) \psi_k(\textbf{r})$

k $j_{\mu}(\mathbf{r}) = \sum$ *occ k* $\vec{\rho}_S(\mathbf{r}) = \sum$ *occ* Isoscalar-vector Isovector-scalar

k

 $Isovector-vector$ \overline{j}

$$
j_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \gamma_{\mu} \psi_{k}(\mathbf{r})
$$

$$
\vec{\rho}_{S}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \vec{\tau} \psi_{k}(\mathbf{r})
$$

$$
\vec{j}_{\mu}(\mathbf{r}) = \sum_{k}^{occ} \bar{\psi}_{k}(\mathbf{r}) \vec{\tau} \gamma_{\mu} \psi_{k}(\mathbf{r})
$$

occ

Energy Density Functional

$$
E_{kin} = \sum_{k} v_k^2 \int \bar{\psi}_k \left(-\gamma \nabla + m \right) \psi_k d\mathbf{r}
$$

\n
$$
E_{2nd} = \frac{1}{2} \int (\alpha_S \rho_S^2 + \alpha_V \rho_V^2 + \alpha_{tV} \rho_{tV}^2) d\mathbf{r}
$$

\n
$$
E_{hot} = \frac{1}{12} \int (4\beta_S \rho_S^3 + 3\gamma_S \rho_S^4 + 3\gamma_V \rho_V^4) d\mathbf{r}
$$

\n
$$
E_{der} = \frac{1}{2} \int (\delta_S \rho_S \Delta \rho_S + \delta_V \rho_V \Delta \rho_V + \delta_{tV} \rho_{tV} \Delta \rho_{tV}) d\mathbf{r}
$$

\n
$$
E_{em} = \frac{e}{2} \int j_{\mu}^p A^{\mu} d\mathbf{r}
$$

Cranking Covariant Density Functional Theory

Transform to the frame rotating with a uniform velocity

$$
x^{\alpha} = \begin{pmatrix} t \\ x \end{pmatrix} \rightarrow \tilde{x}^{\mu} = \begin{pmatrix} \tilde{t} \\ \tilde{x} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & R_x(t) \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}
$$

Rotating Density Functional

Peng, Meng, Ring, Zhang, Phys. Rev. C 78, 024313 (2008). PWZ, Zhang, Peng, Liang, Ring, Meng, Phys. Lett. B 699, 181 (2011). PWZ, Peng, Liang, Ring, Meng, Phys. Rev. Lett. 107, 122501 (2011). PWZ, Peng, Liang, Ring, Meng, Phys. Rev. C 85, 054310 (2012). Meng, Peng, Zhang, PWZ, Front. Phys. 8, 55 (2013). PWZ, Zhang, Meng, Phys. Rev. C 92, 034319 (2015).

$$
E_{kin} = \sum_{k} v_k^2 \int \bar{\psi}_k \left(-\gamma \nabla + m \right) \psi_k d\mathbf{r}
$$

$$
E_{2nd} = \frac{1}{2} \int (\alpha_S \rho_S^2 + \alpha_V \rho_V^2 + \alpha_V \rho_V^2) d\mathbf{r}
$$

x

 $\lambda\Omega$

$$
E_{hot} = \frac{1}{12} \int (4\beta_S \rho_S^3 + 3\gamma_S \rho_S^4 + 3\gamma_V \rho_V^4) d\mathbf{r}
$$

$$
E_{der} = \frac{1}{2} \int (\delta_S \rho_S \triangle \rho_S + \delta_V \rho_V \triangle \rho_V + \delta_{tV} \rho_{tV} \triangle \rho_{tV}) d\mathbf{r}
$$

$$
E_{em} = \frac{e}{2} \int j_{\mu}^p A^{\mu} d\mathbf{r}
$$

Kohn-Sham/Dirac Equation:

Dirac equation for single nucleon

 \int

⎝

 $\overline{}$

$$
\begin{bmatrix}\nm + S + V - \Omega \cdot J & \sigma(p - V) \\
\sigma(p - V) & -m - S + V - \Omega \cdot J\n\end{bmatrix}\n\begin{bmatrix}\nf \\
g\n\end{bmatrix} = \varepsilon \begin{bmatrix}\nf \\
g\n\end{bmatrix}
$$

$$
V(r) = \alpha_V \rho_V + \gamma_V \rho_V^3 + \delta_V \Delta \rho_V + \tau_3 \alpha_{TV} \rho_{TV} + \tau_3 \delta_{TV} \Delta \rho_{TV} + e^{\frac{1 - \tau_3}{2}} A
$$

$$
V(r) = \alpha_V \mathbf{j}_V + \gamma_V \mathbf{j}_V^3 + \delta_V \Delta \mathbf{j}_V + \tau_3 \alpha_{TV} \mathbf{j}_{TV} + \tau_3 \delta_{TV} \Delta \mathbf{j}_{TV} + e^{\frac{1 - \tau_3}{2}} A
$$

$$
S(r) = \alpha_S \rho_S + \beta_S \rho_S^2 + \gamma_S \rho_S^3 + \delta_S \Delta \rho_S
$$

V(r) vector potential time-like **V(r)** vector potential space-like

S(r) scalar potential

7

PWZ, Zhang, Peng, Liang, Ring, Meng, Phys. Lett. B 699, 181 (2011)

Kohn-Sham/RHB Equation: With Pairing

RHB equation for single quasi-nucleon

$$
\begin{pmatrix} h_D - \lambda & \Delta \\ -\Delta^* & -h_D^* + \lambda \end{pmatrix} \begin{pmatrix} U_k \\ V_k \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix}
$$

$$
h_D = \left(\begin{array}{cc} m+S+V-\Omega \cdot J & \sigma(p-V) \\ \sigma(p-V) & -m-S+V-\Omega \cdot J \end{array}\right)
$$

$$
\Delta_{ab} = \frac{1}{2} \sum_{cd} \langle ab | V^{pp} | cd \rangle_a \kappa_{cd}.
$$

V(r) vector potential time-like **V(r)** vector potential space-like S(r) scalar potential

PWZ, Zhang, Meng, Phys. Rev. C 92, 034319 (2015)

Observables

Total energy

$$
E_{\text{tot}} = E_{\text{kin}} + E_{\text{int}} + E_{\text{cou}} + E_{\text{cm}} + E_{\text{pair}}
$$

Angular momentum

$$
J=\sqrt{\langle \hat{J}_x \rangle^2 + \langle \hat{J}_z \rangle^2} \equiv \sqrt{I(I+1)}
$$

Quadrupole moments and magnetic moments

$$
Q_{20} = \sqrt{\frac{5}{16\pi}} \langle 3z^2 - r^2 \rangle, \n Q_{22} = \sqrt{\frac{15}{32\pi}} \langle x^2 - y^2 \rangle, \n \mu = \sum_{i=1}^A \int d^3r \left[\frac{mc^2}{\hbar c} q \psi_i^{\dagger}(\mathbf{r}) \mathbf{r} \times \alpha \psi_i(\mathbf{r}) + \kappa \psi_i^{\dagger}(\mathbf{r}) \beta \Sigma \psi_i(\mathbf{r}) \right].
$$

B(M1) and B(E2) transition probabilites

$$
B(M1) = \frac{3}{8\pi} \mu_{\perp}^{2} = \frac{3}{8\pi} (\mu_{x} \sin \theta_{J} - \mu_{z} \cos \theta_{J})^{2},
$$

$$
B(E2) = \frac{3}{8} \left[Q_{20}^{p} \cos^{2} \theta_{J} + \sqrt{\frac{2}{3}} Q_{22}^{p} (1 + \sin^{2} \theta_{J}) \right]^{2},
$$

nuclear structure under extreme conditions

magnetic and antimagnetic rotation

Magnetic and antimagnetic rotation

Magnetic rotation $\langle \Longrightarrow \rangle$ Ferromagnet

- $\sqrt{\ }$ near spherical nuclei; weak E2 transitions
- $\sqrt{\ }$ rotational bands with $\Delta I = 1$
- ✓ strong M1 transitions
- $\sqrt{B(M1)}$ decrease with spin
- ✓ shears mechanism

Antimagnetic rotation \iff Antiferromagnet

- $\sqrt{\ }$ near spherical nuclei; weak E2 transitions
- \checkmark rotational bands with $\Delta I = 2$
- ✓ no M1 transitions
- $\sqrt{B(E2)}$ decrease with spin
- ✓ two "shears-like" mechanism

Frauendorf, Rev. Mod. Phys., 73 (2001) 463

Experiment: MR & AMR

PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

MR in 198Pb

Two shears-like mechanism AMR in 105Cd

PWZ, Peng, Liang, Ring, Meng PRL 107, 122501(2011)

- \checkmark The two proton angular momentum are pointing opposite to each other and are nearly perpendicular to the neutron angular momentum. They form the blades of the two shears.
- \checkmark Increasing Ω , the two proton blades towards to each other and generates the total angular momentum.

Energy and B(E2) AMR in 105Cd

nuclear structure under extreme conditions

Rod shape in C isotopes

Exotic deformation

Strongly deformed states towards a hyper-

Harmonic oscillator deformation might exist in light $N = Z$ nuclei due to a cluster structure.

✓ Linear-chain structure of three-α clusters was suggested about 60 years ago to explain the Hoyle state. **Morinaga PR 1956**

✓However, Hoyle state was later found to be a mixing of the linear-chain configuration and other configurations, and recently reinterpreted as an <u>α-condensate-like</u> state. **Fujiwara PTP1980; Tohsaki PRL 2001; Suhara PRL 2014**

Cluster structure in light nuclei

Alpha cluster chain and rod shape

Be-8 Ground state

Ground Hoyle

No firm evidence

Because of

- ✓ antisymmetrization effects
- ✓ weak-coupling nature

It is difficult to stabilize the rod-shaped configuration in nuclear systems.

Two important mechanisms

- ✓ Adding valence neutrons **Itagaki, PRC2001; Maruhn, NPA2010**
- ✓ Rotating the system

Ichikawa, PRL2011

Two important mechanisms

- ✓ Adding valence neutrons **Itagaki, PRC2001; Maruhn, NPA2010**
- ✓ Rotating the system

Ichikawa, PRL2011

Angular momentum

PWZ, Itagaki, Meng, Phys. Rev. Lett. 115, 022501 (2015)

Proton density distribution

Very large deformation Very clear clustering

Rod shape are obtained in all isotopes by tracing the corresponding rod-shaped configuration.

PWZ, Itagaki, Meng, Phys. Rev. Lett. 115, 022501 (2015)

Single-proton energy

Valence neutron density distribution

Isospin effects

 $AC - 12C$

C-15: valence neutrons

Low spin: π -orbital; proton unstable High spin: σ -orbital; proton stable

C-20: valence neutrons Low spin: σ -orbital; proton stable High spin: σ -orbital; proton stable

PWZ, Itagaki, Meng, Phys. Rev. Lett. 115, 022501 (2015)

Single-neutron energy

Coherent Effects

Rotation makes the sigma valence neutron orbital lower and easier to be occupied, and thus pull down the sigma proton orbitals.

PWZ, Itagaki, Meng, Phys. Rev. Lett. 115, 022501 (2015)

Single-neutron energy

Coherent Effects

Rotation makes the sigma valence neutron orbital lower and easier to be occupied, and thus pull down the sigma proton orbitals.

PWZ, Itagaki, Meng, Phys. Rev. Lett. 115, 022501 (2015)

Summary

Covariant density functional theory has been extended to describe rotational excitations.

- \triangleright Both MR and AMR and their mechanism could be described well.
- Pairing correlation could improve descriptions (more examples)
- \triangleright Two mechanisms to stabilize the rod shape, rotation (high spin) and adding neutrons (high Isospin), coherently work in C isotopes
- ➢ Coherent Effects:

Rotation makes the sigma valence neutron orbital lower, and thus

- 1. pull down the sigma proton orbitals
- 2. enhances the prolate deformation of protons

In collaboration with

Technical Univ. Munich

Peter Ring

Beijing Normal Univ. Jing Peng

Peking Univ. Qibo Chen Lingfei Yu Jie Meng Shuangquan Zhang Zhenhua Zhang

YITP, Kyoto Univ. Naoyuki Itagaki

RIKEN Haozhao Liang

many experimental colleagues @Argonne, GSI, iThemba Lab, …

Thank you for your attention! \cdots