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Nuclear Rotation
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Collectivity valence nucleon

Interplay

Twin PRL1986 Hübel PPNP2005 

 nuclear structure under extreme conditions 
exotic shape novel rotation



Outline

✓ Cranking covariant density functional theory  

✓ Novel rotation:  
magnetic and antimagnetic rotation 

✓ Exotic shape:  
stabilization of the rod shape in C isotopes  

✓ Summary 
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Øfully taken into account polarization effects 

Øself-consistently treated the nuclear currents 

Øno additional parameter beyond a well-determined functional

Tilted axis cranking DFT
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• Covariant Density Functional Theory 
      Meson exchange version: 
      3-D Cranking: Madokoro, Meng, Matsuzaki, Yamaji, PRC 62, 061301 (2000) 
       2-D Cranking: Peng, Meng, Ring, Zhang, PRC 78, 024313 (2008) 
      Point-coupling version:  Simple and more suitable for systematic investigations 
       2-D Cranking: PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

•  Skyrme Density Functional Theory 
       3-D Cranking: Olbratowski, Dobaczewski, Dudek, Płóciennik, PRL 93, 052501(2004)  
       2-D Cranking: Olbratowski, Dobaczewski, Dudek, Rzaca-Urban, Marcinkowska, Lieder, APPB 33, 389(2002) 

Self-consistent microscopic investigations

       2-D Cranking + Pairing: PWZ, Zhang, Meng, PRC 92, 034319 (2015)
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Covariant Density Functional Theory
Elementary building blocks
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Cranking Covariant Density Functional Theory
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Transform to the frame rotating with a uniform velocity
x

z
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Rotating Density Functional

Peng, Meng, Ring, Zhang, Phys. Rev. C 78, 024313 (2008). 
PWZ,  Zhang,  Peng, Liang, Ring, Meng, Phys. Lett. B 699, 181 (2011). 

PWZ, Peng, Liang, Ring, Meng, Phys. Rev. Lett. 107, 122501 (2011). 

PWZ, Peng, Liang, Ring, Meng, Phys. Rev. C 85, 054310 (2012). 
Meng, Peng, Zhang, PWZ, Front. Phys. 8, 55 (2013). 

PWZ, Zhang, Meng, Phys. Rev. C 92, 034319 (2015).



Kohn-Sham/Dirac Equation:
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Dirac equation for single nucleon

V(r)  vector potential time-like    
V(r)  vector potential space-like

V (r) =αVρV + γ VρV
3 +δVΔρV +τ 3αTVρTV +τ 3δTVΔρTV + e

1−τ 3
2

A

V(r) =αV jV + γ V jV
3 +δVΔjV +τ 3αTV jTV +τ 3δTVΔjTV + e

1−τ 3
2
A

S(r) =α SρS + βSρS
2 + γ SρS

3 +δ SΔρS

S(r)  scalar potential
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PWZ,  Zhang,  Peng, Liang, Ring, Meng, Phys. Lett. B 699, 181 (2011)



Kohn-Sham/RHB Equation: With Pairing
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RHB equation for single quasi-nucleon 

V(r)  vector potential time-like    
V(r)  vector potential space-like

S(r)  scalar potential
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PWZ, Zhang, Meng, Phys. Rev. C 92, 034319 (2015)



Observables
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Total energy

Angular momentum

Quadrupole moments and magnetic moments

B(M1) and B(E2) transition probabilites
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 nuclear structure under extreme conditions

exotic shape novel rotation

magnetic and antimagnetic rotation



Magnetic and antimagnetic rotation

✓ near spherical nuclei; weak E2 transitions 

✓ rotational bands with  ΔI = 1 

✓ strong M1 transitions 

✓ B(M1) decrease with spin 

✓ shears mechanism

✓ near spherical nuclei; weak E2 transitions 

✓ rotational bands with ΔI = 2 

✓ no M1 transitions 

✓ B(E2) decrease with spin 

✓ two “shears-like” mechanism
11

Antimagnetic rotation           Antiferromagnet

Magnetic rotation                Ferromagnet

Frauendorf, Rev. Mod. Phys., 73 (2001) 463



Experiment: MR & AMR

A~100
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MR: 85 nuclei

Meng, Peng, Zhang, PWZ, Front. Phys. 8, 55 (2013)

AMR

A~60

A~140
AMR Eu-143; Dy-144

Rajbanshi PLB 2015; Sugawara PRC 2009



PWZ, Zhang, Peng, Liang, Ring, Meng, PLB 699, 181 (2011)

Energy & 
Deformation
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MR in 60Ni 

Shears 
mechanism 



Yu, PWZ, Zhang, Ring, Meng PRC 85 (2012) 024318
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MR in 198Pb 
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More calculations in the future…
PWZ, Zhang, Meng, Phys. Rev. C 92, 034319 (2015)
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Two shears-like mechanism
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PWZ, Peng, Liang, Ring, Meng   PRL 107, 122501(2011)

ü The two proton angular momentum are pointing opposite to each other and are nearly 

perpendicular to the neutron angular momentum. They form the blades of the two shears. 
ü Increasing Ω, the two proton blades towards to each other and generates the total angular 

momentum.

AMR in 105Cd 



Energy and B(E2) 
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PWZ, Peng, Liang, Ring, Meng   PRL 107, 122501(2011)

AMR in 105Cd 
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 nuclear structure under extreme conditions 

exotic shape novel rotation

Rod shape in C isotopes



Exotic deformation
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Cluster structure 
in light nuclei 

Harmonic oscillatorStrongly deformed states towards a hyper- 
deformation might exist in light N = Z nuclei 
due to a cluster structure.
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✓ Linear-chain structure of three-α clusters 
was suggested about 60 years ago to 
explain the Hoyle state. Morinaga PR 1956 

✓However, Hoyle state was later found to be 
a mixing of the linear-chain configuration 
and other configurations, and recently 
reinterpreted as an α-condensate-like state. 
Fujiwara PTP1980; Tohsaki PRL 2001;  Suhara PRL 2014



Alpha cluster chain and rod shape
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Wiringa PRC 2000 
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Harmonic oscillator density

✓ antisymmetrization effects  

✓ weak-coupling nature

Because of 

No firm evidence

Ground Hoyle

It is difficult to stabilize the rod-shaped 
configuration in nuclear systems.

Be-8 Ground state

Green Function Monto Carlo 
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How can we stabilize linear chain configurations?

Two important mechanisms 

✓ Adding valence neutrons 
Itagaki, PRC2001; Maruhn, NPA2010 

✓ Rotating the system 
Ichikawa, PRL2011
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 s-orbital
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How can we stabilize linear chain configurations?

Two important mechanisms 

✓ Adding valence neutrons 
Itagaki, PRC2001; Maruhn, NPA2010 

✓ Rotating the system 
Ichikawa, PRL2011

 Coherent effects exist? 
 They facilitate the stabilization?

 s-orbital

p-orbitalp-orbital



Angular momentum 

21

➢C-12, C-13, C-14 
constant moments of inertia 

(MOI); like a rotor 

➢C-15, C-16, C-17, C-18 
abrupt increase of MOI; 
 some changes in structure 

➢C-19; C-20  
constant moments of inertia;  
much larger 

DD-ME2, 3D HO basis with N = 12 major shells

PWZ, Itagaki, Meng,  Phys. Rev. Lett. 115, 022501 (2015)



Proton density distribution
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Very large deformation  

Very clear clustering 

~!

0.0 MeV

3.0 MeV

12C 15C 20C

PWZ, Itagaki, Meng,  Phys. Rev. Lett. 115, 022501 (2015)

Rod shape are obtained in all 
isotopes by tracing the 
corresponding rod-shaped 
configuration. 



Single-proton energy 
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For C-15: 

Low spin: deexcitations easily happen 

High spin: More stable against deexcitations

 s-orbital

p-orbital

Rotating effects



Valence neutron density distribution
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 s-orbital s-orbital

15C 20C

~! 0.0 MeV 3.0 MeV

p-orbital  s-orbital

C-15: valence neutrons 
Low spin: p-orbital; proton unstable 
High spin: s-orbital; proton stable  

C-20: valence neutrons 
Low spin: s-orbital; proton stable 
High spin: s-orbital; proton stable 

Isospin effects

PWZ, Itagaki, Meng,  Phys. Rev. Lett. 115, 022501 (2015)

AC - 12C



 s-orbital
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Single-neutron energy 

p-orbital Spin and Isospin 
Coherent Effects

PWZ, Itagaki, Meng,  Phys. Rev. Lett. 115, 022501 (2015)

Rotation makes the sigma 
valence neutron orbital 
lower and easier to be 
occupied, and thus pull 
down the sigma proton 
orbitals. 



 s-orbital
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Single-neutron energy 

p-orbital
20C Spin and Isospin 

Coherent Effects

PWZ, Itagaki, Meng,  Phys. Rev. Lett. 115, 022501 (2015)

Rotation makes the sigma 
valence neutron orbital 
lower and easier to be 
occupied, and thus pull 
down the sigma proton 
orbitals. 



Summary
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➢ Both MR and AMR and their mechanism could be described well. 

➢ Pairing correlation could improve descriptions (more examples) 

➢ Two mechanisms to stabilize the rod shape,  
rotation (high spin) and adding neutrons (high Isospin), 
coherently work in C isotopes 

➢ Coherent Effects: 
Rotation makes the sigma valence neutron orbital lower, and thus  
1. pull down the sigma proton orbitals 
2. enhances the prolate deformation of protons

Covariant density functional theory has been extended to 

describe rotational excitations.
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