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Future Surveys of Cosmic Structure 

LSST will cover 18000 deg2 with 6 band 
imaging, measuring weak lensing and 
photometric galaxy clustering. 

DESI will cover 14000 deg2 with 
spectroscopy, measuring 3D 
clustering and BAO and RSD. 

WFIRST will go deep, with red/NIR imaging and 
IFU spectroscopy, measuring 3D clustering     
at z>1.5.  
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The Pull of Gravity 

In general relativity, (linear) growth of structure 
and expansion are tied together – one predicts the 
other. Cosmic growth tests GR. 
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Is growth 
suppressed? 

Or is     
beyond linear 
modeling 
insufficient? 
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Gravitational Strength 

weak lensing 

growth  
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Cosmic Growth + Light Deflection 

Modified gravity affects both the growth of structure 
and the deflection of light (lensing). Look at the 
effective gravitational strength for each: GM, GL.  

Mueller+ arXiv:1612.00812 
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Strengths of Gravity 
The assumed model or time variation has a major 
impact on observational constraints. 
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Expansion History vs Growth History 

Since the growth rate is very flat with redshift, one 
can instead compare growth directly with expansion. 

This has some features that show growth effects 
beyond expansion.  4

Shifts in the dark energy equation of state do not be-
have substantially differently from shifts in the matter
density. This holds as well for a time evolving equation
of state; the mirage dark energy model with strong evolu-
tion (w0, wa) = (−0.8,−0.732) that nevertheless matches
the CMB distance to last scattering of the ΛCDM model
[21] lies within the envelope defined by the w = −0.9 and
w = −1.1 curves over the redshift range plotted. This
means that most viable standard models, i.e. within gen-
eral relativity and not too far from ΛCDM, have roughly
the same shape and lie within a band around the fidu-
cial model. They mostly differ in the exact degree and
location of the wiggle.

Next we consider models that enhance or suppress
growth relative to standard models within general rel-
ativity. First we examine a modified gravity model, the
exponential f(R) gravity of [22] with c = 3. This has
an expansion history extremely close to that of ΛCDM
but has the generically enhanced growth of scalar-tensor
gravity. Figure 5 illustrates a strong effect on the wiggle
feature, with an enhanced growth rate at constant ex-
pansion rate (note the x’s of the modified gravity model
are horizontally aligned with the ΛCDM model with the
same matter density). Note that the wiggle would veer
even further to the right if we showed this model with the
fiducial Ωm = 0.3 rather than Ωm = 0.28 as used. That
is, already with Ωm = 0.28 the f(R) track and its wig-
gle sweep all the way from the leftmost standard curve
past the rightmost one. Thus, such a modified gravity
model should be clearly distinguishable – especially with
low redshift measurements.

Modified gravity models in general have scale depen-
dent growth as well. Figure 5 illustrates this by showing
the history vs history tracks for two different values of
the density perturbation wave number, k = 0.02 and
0.1 h/Mpc. At high redshift, the modified gravity theory
acts like general relativity but deviates more recently in
the low Ricci scalar curvature regime. On larger scales
(smaller k) the deviation in growth at low redshift is more
mild as scalar-tensor theories generally involve k2 correc-
tions to Einstein gravity. This gives the characteristic
enhanced, late, scale dependent wiggle seen in Fig. 5.
Note that the expansion histories remain identical, to
each other and to Ωm = 0.28 ΛCDM, as shown by the
x’s lined up horizontally at the same values of H(z)/H0.
Thus, signatures of modified gravity are particularly vis-
ible in this expansion history vs growth history plane.

The opposite case of suppressed growth is more diffi-
cult to achieve within modified gravity for the standard
expansion history (since scalar-tensor theories generate
additional attractive forces that enhance growth). In-
stead, we use the superdecelerating dark energy model
of [20, 23]. This is purely phenomenological and in-
volves a period of enhanced dark energy density with
w = −1 at early times (though still too little to affect
significantly the CMB or cause an epoch of early accel-
eration) then a step up to the maximal equation of state
w = +1 for a standard scalar field, in order to dilute

FIG. 5. As Fig. 4 but showing a modified gravity model
instead of the dark energy w curves. The modified gravity
curves are for an exponential f(R) gravity model and exhibit
scale dependence in growth, with a clear difference between
wave numbers k = 0.02 h/Mpc (orange, dot-dash curve) and
k = 0.1 h/Mpc (brown, long dashed curve). The f(R) model
has an expansion history equivalent to Ωm = 0.28 LCDM
(blue, short dashed curve), but a very different growth history.

quickly the extra density (the superdeceleration), and a
restoration to w = −1 at more recent times. The en-
hanced dark energy density reduces the source term in
the growth equation and suppresses growth. This causes
a “stutter” in growth, where basically the momentum of
the growth (δ̇) drops significantly as matter domination
wanes and the enhanced dark energy density comes into
play. Even though the conditions after the step back
down to w = −1 are identical to low redshift ΛCDM, the
growth has been stunted and takes time to recover.

The results in Fig. 6 show the impact of this model.
We choose a step of length N = 0.2 e-folds ending at
zd = 2, falling in the middle of the allowed region of
Fig. 5 in [23]. Too long a period of superdeceleration,
at too recent an epoch, changes the CMB distance to
last scattering and causes an excessive integrated Sachs-
Wolfe effect (see [20, 23] for detailed discussion of the
physical effects). Growth is indeed suppressed for nearly
the same expansion history over the range of redshifts
plotted. The wiggle now is pushed to the left, from the
rightmost standard curve (we use this model with Ωm =
0.32) toward those with lower matter density.

To understand the behavior, note that at high redshift,
well above the transition in behavior, there is enhanced
dark energy density (by a factor e6N). During the mat-
ter dominated regime, this has little effect and the su-
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mologies should go to fσ8H2/3 = constant during that
epoch. To investigate whether convolving the expansion
and growth histories in such a way improves distinction
between models, we plot this combination vs redshift in
Fig. 3.

FIG. 3. The combination fσ8(H/H0)
2/3 is plotted vs scale

factor for the models in Fig. 1. This combination goes to a
constant at high redshift (small a). This constancy provides
an important test of early matter domination and general
relativity, but is at redshifts z ! 4 where observations are dif-
ficult. At redshifts z " 1.5, the degeneracy between Ωm and
w is apparent, so measurements out to z ≈ 3 are important.

The evolutionary tracks are quite similar, lying in a
fairly narrow band. In particular, the curve shapes do
not have any distinguishing features. The amplitudes

go to a constant involving (Ωmh2)2/3A1/2
s at high red-

shift, where As is the scalar perturbation power ampli-
tude of the CMB. Since the CMB similarly tightly con-
strains the combination Ωmh2, models start out at small
a close together and are mostly affected by more recent
growth effects such as suppression from cosmic accelera-
tion. Because of the lack of shape features, the fσ8H2/3

test seems better suited as a consistency test, though
precision data during the high redshift (z ! 3) constant
regime is difficult to obtain.
The approach in the next section appears much more

promising to discriminate visually between cosmologies.

III. HISTORY VS HISTORY

Another approach to conjoint analysis of the expansion
and growth histories is, rather than combining the func-
tions, to contrast them. That is, consider the histories as

a function of each other, rather than of time for either the
individual or convolved histories. The time dependence
will run along the curves in the two dimensional space of
expansion vs growth, or more specifically H vs fσ8.
Figure 4 shows that this has useful characteristics, in-

cluding a fairly well defined bump or wiggle that could
clarify visually distinctions between cosmological models.
Moreover, the interpretation in terms of physics remains
in the forefront: e.g. for a given expansion rate (hori-
zontal cut), the growth rate is seen to be enhanced or
suppressed relative to a fiducial model. Because the axes
involve rates, this gives a focused view rather than being
complicated by inertia from earlier or later conditions, as
the overall growth factor or distances would be.

FIG. 4. The expansion rate H(z)/H0 and growth rate fσ8

are plotted against each other for the cosmological models
in Fig. 1. Redshift, or scale factor, runs along the curves;
small x’s indicate z = 0.6, 1, 2 along the individual curves
(from bottom to top). The cyan, dot-long dash curve is a
mirage dark energy model. Plotted jointly, the expansion
history and growth history exhibit more definite curvature,
and discrimination beyond z ! 1.5. Error bars along the
Ωm = 0.3 LCDM (solid black) curve indicate 1% uncertainties
in measurements of expansion and of growth at z = 0.6, 1, 2.

The models have been normalized to all have the same
Ωmh2, which is well measured by the CMB. Thus at high
redshift the tracks are all parallel to each other. While
the y-axis is labeled as H/H0, this is actually the H0

of the Ωm = 0.3 model, so models with different Ωm

have H(z = 0)/H0 = (0.3/Ωm)1/2 rather than unity. At
intermediate redshifts, the history vs history tracks show
a prominent wiggle in the range z ≈ 0.4−1. Since such a
feature aids distinction between models, this approach is
particularly useful since this region has the most accurate
measurements with current, and much future, data.

Linder 1610.05321 
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Cosmic Growth vs Expansion 
Growth vs 
expansion can be 
tested in a model 
independent way.  
 

Beyond linear 
clustering must 
treat modGR 
consistently 
(perturbation 
theory).  

Song+ 1507.01592 
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Gernerally Testing Gravity 

9 

Cosmic acceleration suggests that Einstein relativity 
may need modification.  

How should we test cosmic gravity,           
other than one model at a time? How do      
we connect observations and theory in a          
model independent manner?  

Note the expansion history H(z)          
is merely one free function of time.  

For cosmic structure we have 5 times as many! 
(kineticity, Planck mass running, braiding, tensor speed). 

Now the tensor sector is as important as the scalar 
(matter) sector!  
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The Richness of Gravity 

In GR, expansion determines growth.  

In modified gravity, cosmology is much richer.       
Plus the tensor sector!  

We have learned to fit H(z) with just a few parameters: 
Ωm, w0, wa.  

Can we do the same with gravity functions?  

Need close connection between theory, computation, 
and data to test/interpret the results. 
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Property Functions 

How do we parametrize the modGR time dependence 
and how do we capture the general physics?  

A relatively new approach is the Effective Field Theory 
of dark energy. This writes the most general theory 
possible, subject to symmetries – model independent!  

Property functions give phenomenological 
combinations of EFT functions. Bellini & Sawicki 2014  

αB – braiding: mixing scalar and tensor sectors  
αK – kineticity: kinetic structure  
αM – running Planck mass (coupling)  
αT – tensor wave speed deviation (cT

2-1) 

All are functions of time, and 0 within GR. 
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Fitting Property Functions 

Very difficult to fit these modified gravity functions of 
time to observations with just a few parameters, even 
for simple theories.  

Planck mass running 
1 parameter f(R) gravity 

Today Linder 1607.03113 
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Observations First 

Instead, put the observations in forefront. Modified 
Poisson equations Bertschinger & Zukin 2008, Zhao+ 2009; Song+ 2010; 
Daniel+ 2010, Bertschinger 2011 

This is robust. The question is only how 
complicated is the time and space dependence of 
Gm(k,a), Gl(k,a). 

Here we focus on the cosmic growth of structure 
and show that very simple parametrization of 
Gm(k,a) works very well.  

weak lensing 

growth  
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Cosmic Growth Rate 

For cosmic growth we focus on Gmatter. Can we avoid 
parametrizing it (since it can be complicated)? 

Look at the growth rate f.  

2

critical density, and Gmatter is the gravitational strength
in units of Newton’s constant GN .

The source term of the gravitational instability, the
term proportional to δ, arises from the modified Poisson
equation relating the Newtonian gravitational potential
ψ to the density perturbation,

∇2ψ = 4πGNGmatterρmδ . (2)

The growth equation as written assumes that the modi-
fication is purely to the gravitational coupling strength,
that there are no nonminimal couplings of the matter
sector to other sectors. For the rest of this article we
abbreviate Gmatter as Gm.

At high redshift, such as around last scattering of the
cosmic microwave background (CMB), observations in-
dicate that general relativity is an excellent description
of gravity and so the initial conditions for the growth
equation are taken to be unchanged. In the high red-
shift matter dominated universe, where Ωm = 1 and
H2 = 2/(3t), the solution for the growth is δ ∝ a. This
makes it convenient to define a normalized growth factor
g = (δ/a)/(δi/ai), where a subscript i indicates an initial
time in that epoch.

The growth equation can then be written

g′′ +

[
5 +

1

2

d lnH2

d ln a

]
g′

a

+

[
3 +

1

2

d lnH2

d ln a
− 3

2
Ωm(a)Gm(a)

]
g

a2
= 0 , (3)

where a prime denotes a derivative with respect to a.
In order to focus on the impact of the modified Gm, we
take the background expansion to be identical to that of
ΛCDM, a flat matter plus cosmological constant universe.

The mass fluctuation amplitude σ8 is proportional to
the growth factor g, but is difficult to extract from galaxy
redshift surveys since the galaxy bias has a similar effect.
The growth rate f = 1+d ln g/d ln a is of particular inter-
est since it gives a more instantaneous sensitivity to the
conditions at a particular redshift than the integrated
growth that enters the growth factor. The observable
from redshift space distortions (RSD), at the linear level,
is the product fσ8, or fga ∝ dδ/d ln a. We will exam-
ine the impact of modified gravitational strength on f ,
g, and fσ8.

To build intuition for the physical interpretation of the
later numerical results, let us begin with an analytic in-
vestigation. This can most fruitfully be done in terms of
the growth rate equation, derived from the growth equa-
tion to be

df

d ln a
+f2+

[
2 +

1

2

d lnH2

d ln a

]
f− 3

2
Ωm(a)Gm(a) = 0 . (4)

Next consider the deviation in growth rate between the
model with modified gravity and that without, i.e. stan-

dard ΛCDM:

d(f − fΛ)

d ln a
+
[
(f − 1)2 − (fΛ − 1)2

]

+

[
4 +

1

2

d lnH2

d ln a

]
(f − fΛ) =

3

2
Ωm(a) [Gm(a)− 1] .(5)

Until dark energy begins to dominate, f (and fΛ) are
close to one so we could neglect the square bracket in-
volving the difference of the (f − 1)2 factors. Integrating
the equation over ln a, we find

∫ a

0
d ln a′

{
dδf

d ln a′
+

[
4 +

1

2

d lnH2

d ln a′

]
δf

}

=
3

2

∫ a

0
d ln a′ Ωm(a′) [Gm(a′)− 1] , (6)

where δf = f − fΛ and δGm = Gm − 1. The first term
on the left is a total derivative and δf vanishes at early
times so the contribution is simply δf(a). Restricting
to the matter dominated epoch, where H2 ∝ a−3 and
Ωm(a) = 1, yields

∫ a

0
d ln a′ δf ≈ 3

5

∫ a

0
d ln a′ δGm − 2

5
δf(a) . (7)

This is a very interesting expression because recall the
relation of growth rate to growth factor:

g = a−1 e
∫ a
0 d ln a′ f(a′) , (8)

and thus

g

gΛ
= e

∫ a
0 d ln a′ [f(a′)−fΛ(a′)] = e

∫ a
0 d ln a′ δf(a′) . (9)

If the deviations are small (recall that even for 10% devi-
ations in growth the difference between ex and the first
order expansion 1 + x is small, less than 0.5%) then we
can expand the exponential to get

δg

gΛ
≈

∫ a

0
d ln a′ δf(a′) . (10)

That is, the growth factor deviation is approximately the
area under the growth rate deviation curve, and Eq. (7)
tells us this is closely related to the area under the grav-
itational strength curve.
In particular, if the growth rate change from the grav-

itational modification has faded by the time at which
the growth factor is evaluated, then we can neglect the
(2/5)δf(a) term in Eq. (7). Then the growth factor
change is indeed proportional to the area under δGm.
We can be more precise by writing Eq. (5) under the
same assumptions of small deviations and matter domi-
nation and using the integrating factor method for solu-
tion. Then

dδf

d ln a
+

5

2
δf ≈ 3

2
δGm(a) (11)

Ignoring the small squared term, this has solution 

�f (a) =
3

2

Z a

0
d ln a0

"
a04H(a0)
a4H(a)

#
⌦m(a0) �Gm(a0)

1

14 
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Cosmic Growth Factor 

Consider the integral form of the growth rate eq.  

2

critical density, and Gmatter is the gravitational strength
in units of Newton’s constant GN .

The source term of the gravitational instability, the
term proportional to δ, arises from the modified Poisson
equation relating the Newtonian gravitational potential
ψ to the density perturbation,

∇2ψ = 4πGNGmatterρmδ . (2)

The growth equation as written assumes that the modi-
fication is purely to the gravitational coupling strength,
that there are no nonminimal couplings of the matter
sector to other sectors. For the rest of this article we
abbreviate Gmatter as Gm.

At high redshift, such as around last scattering of the
cosmic microwave background (CMB), observations in-
dicate that general relativity is an excellent description
of gravity and so the initial conditions for the growth
equation are taken to be unchanged. In the high red-
shift matter dominated universe, where Ωm = 1 and
H2 = 2/(3t), the solution for the growth is δ ∝ a. This
makes it convenient to define a normalized growth factor
g = (δ/a)/(δi/ai), where a subscript i indicates an initial
time in that epoch.

The growth equation can then be written

g′′ +

[
5 +

1

2

d lnH2

d ln a

]
g′

a

+

[
3 +

1

2

d lnH2

d ln a
− 3

2
Ωm(a)Gm(a)

]
g

a2
= 0 , (3)

where a prime denotes a derivative with respect to a.
In order to focus on the impact of the modified Gm, we
take the background expansion to be identical to that of
ΛCDM, a flat matter plus cosmological constant universe.

The mass fluctuation amplitude σ8 is proportional to
the growth factor g, but is difficult to extract from galaxy
redshift surveys since the galaxy bias has a similar effect.
The growth rate f = 1+d ln g/d ln a is of particular inter-
est since it gives a more instantaneous sensitivity to the
conditions at a particular redshift than the integrated
growth that enters the growth factor. The observable
from redshift space distortions (RSD), at the linear level,
is the product fσ8, or fga ∝ dδ/d ln a. We will exam-
ine the impact of modified gravitational strength on f ,
g, and fσ8.

To build intuition for the physical interpretation of the
later numerical results, let us begin with an analytic in-
vestigation. This can most fruitfully be done in terms of
the growth rate equation, derived from the growth equa-
tion to be

df

d ln a
+f2+

[
2 +

1

2

d lnH2

d ln a

]
f− 3

2
Ωm(a)Gm(a) = 0 . (4)

Next consider the deviation in growth rate between the
model with modified gravity and that without, i.e. stan-

dard ΛCDM:

d(f − fΛ)

d ln a
+
[
(f − 1)2 − (fΛ − 1)2

]

+

[
4 +

1

2

d lnH2

d ln a

]
(f − fΛ) =

3

2
Ωm(a) [Gm(a)− 1] .(5)

Until dark energy begins to dominate, f (and fΛ) are
close to one so we could neglect the square bracket in-
volving the difference of the (f − 1)2 factors. Integrating
the equation over ln a, we find

∫ a

0
d ln a′

{
dδf

d ln a′
+

[
4 +

1

2

d lnH2

d ln a′

]
δf

}

=
3

2

∫ a

0
d ln a′ Ωm(a′) [Gm(a′)− 1] , (6)

where δf = f − fΛ and δGm = Gm − 1. The first term
on the left is a total derivative and δf vanishes at early
times so the contribution is simply δf(a). Restricting
to the matter dominated epoch, where H2 ∝ a−3 and
Ωm(a) = 1, yields

∫ a

0
d ln a′ δf ≈ 3

5

∫ a

0
d ln a′ δGm − 2

5
δf(a) . (7)

This is a very interesting expression because recall the
relation of growth rate to growth factor:

g = a−1 e
∫ a
0 d ln a′ f(a′) , (8)

and thus

g

gΛ
= e

∫ a
0 d ln a′ [f(a′)−fΛ(a′)] = e

∫ a
0 d ln a′ δf(a′) . (9)

If the deviations are small (recall that even for 10% devi-
ations in growth the difference between ex and the first
order expansion 1 + x is small, less than 0.5%) then we
can expand the exponential to get

δg

gΛ
≈

∫ a

0
d ln a′ δf(a′) . (10)

That is, the growth factor deviation is approximately the
area under the growth rate deviation curve, and Eq. (7)
tells us this is closely related to the area under the grav-
itational strength curve.
In particular, if the growth rate change from the grav-

itational modification has faded by the time at which
the growth factor is evaluated, then we can neglect the
(2/5)δf(a) term in Eq. (7). Then the growth factor
change is indeed proportional to the area under δGm.
We can be more precise by writing Eq. (5) under the
same assumptions of small deviations and matter domi-
nation and using the integrating factor method for solu-
tion. Then

dδf

d ln a
+

5

2
δf ≈ 3

2
δGm(a) (11)

When one component dominates, the square bracket 
is constant and we have a term 

2

critical density, and Gmatter is the gravitational strength
in units of Newton’s constant GN .

The source term of the gravitational instability, the
term proportional to δ, arises from the modified Poisson
equation relating the Newtonian gravitational potential
ψ to the density perturbation,

∇2ψ = 4πGNGmatterρmδ . (2)

The growth equation as written assumes that the modi-
fication is purely to the gravitational coupling strength,
that there are no nonminimal couplings of the matter
sector to other sectors. For the rest of this article we
abbreviate Gmatter as Gm.

At high redshift, such as around last scattering of the
cosmic microwave background (CMB), observations in-
dicate that general relativity is an excellent description
of gravity and so the initial conditions for the growth
equation are taken to be unchanged. In the high red-
shift matter dominated universe, where Ωm = 1 and
H2 = 2/(3t), the solution for the growth is δ ∝ a. This
makes it convenient to define a normalized growth factor
g = (δ/a)/(δi/ai), where a subscript i indicates an initial
time in that epoch.

The growth equation can then be written

g′′ +

[
5 +

1

2

d lnH2

d ln a

]
g′

a

+

[
3 +

1

2

d lnH2

d ln a
− 3

2
Ωm(a)Gm(a)

]
g

a2
= 0 , (3)

where a prime denotes a derivative with respect to a.
In order to focus on the impact of the modified Gm, we
take the background expansion to be identical to that of
ΛCDM, a flat matter plus cosmological constant universe.

The mass fluctuation amplitude σ8 is proportional to
the growth factor g, but is difficult to extract from galaxy
redshift surveys since the galaxy bias has a similar effect.
The growth rate f = 1+d ln g/d ln a is of particular inter-
est since it gives a more instantaneous sensitivity to the
conditions at a particular redshift than the integrated
growth that enters the growth factor. The observable
from redshift space distortions (RSD), at the linear level,
is the product fσ8, or fga ∝ dδ/d ln a. We will exam-
ine the impact of modified gravitational strength on f ,
g, and fσ8.

To build intuition for the physical interpretation of the
later numerical results, let us begin with an analytic in-
vestigation. This can most fruitfully be done in terms of
the growth rate equation, derived from the growth equa-
tion to be

df

d ln a
+f2+

[
2 +

1

2

d lnH2

d ln a

]
f− 3

2
Ωm(a)Gm(a) = 0 . (4)

Next consider the deviation in growth rate between the
model with modified gravity and that without, i.e. stan-

dard ΛCDM:

d(f − fΛ)

d ln a
+
[
(f − 1)2 − (fΛ − 1)2

]

+

[
4 +

1

2

d lnH2

d ln a

]
(f − fΛ) =

3

2
Ωm(a) [Gm(a)− 1] .(5)

Until dark energy begins to dominate, f (and fΛ) are
close to one so we could neglect the square bracket in-
volving the difference of the (f − 1)2 factors. Integrating
the equation over ln a, we find

∫ a

0
d ln a′

{
dδf

d ln a′
+

[
4 +

1

2

d lnH2

d ln a′

]
δf

}

=
3

2

∫ a

0
d ln a′ Ωm(a′) [Gm(a′)− 1] , (6)

where δf = f − fΛ and δGm = Gm − 1. The first term
on the left is a total derivative and δf vanishes at early
times so the contribution is simply δf(a). Restricting
to the matter dominated epoch, where H2 ∝ a−3 and
Ωm(a) = 1, yields

∫ a

0
d ln a′ δf ≈ 3

5

∫ a

0
d ln a′ δGm − 2

5
δf(a) . (7)

This is a very interesting expression because recall the
relation of growth rate to growth factor:

g = a−1 e
∫ a
0 d ln a′ f(a′) , (8)

and thus
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gΛ
= e

∫ a
0 d ln a′ [f(a′)−fΛ(a′)] = e

∫ a
0 d ln a′ δf(a′) . (9)

If the deviations are small (recall that even for 10% devi-
ations in growth the difference between ex and the first
order expansion 1 + x is small, less than 0.5%) then we
can expand the exponential to get
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≈
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0
d ln a′ δf(a′) . (10)

That is, the growth factor deviation is approximately the
area under the growth rate deviation curve, and Eq. (7)
tells us this is closely related to the area under the grav-
itational strength curve.
In particular, if the growth rate change from the grav-

itational modification has faded by the time at which
the growth factor is evaluated, then we can neglect the
(2/5)δf(a) term in Eq. (7). Then the growth factor
change is indeed proportional to the area under δGm.
We can be more precise by writing Eq. (5) under the
same assumptions of small deviations and matter domi-
nation and using the integrating factor method for solu-
tion. Then

dδf
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2
δGm(a) (11)

This is very interesting because the growth factor 
deviation 
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critical density, and Gmatter is the gravitational strength
in units of Newton’s constant GN .

The source term of the gravitational instability, the
term proportional to δ, arises from the modified Poisson
equation relating the Newtonian gravitational potential
ψ to the density perturbation,

∇2ψ = 4πGNGmatterρmδ . (2)

The growth equation as written assumes that the modi-
fication is purely to the gravitational coupling strength,
that there are no nonminimal couplings of the matter
sector to other sectors. For the rest of this article we
abbreviate Gmatter as Gm.

At high redshift, such as around last scattering of the
cosmic microwave background (CMB), observations in-
dicate that general relativity is an excellent description
of gravity and so the initial conditions for the growth
equation are taken to be unchanged. In the high red-
shift matter dominated universe, where Ωm = 1 and
H2 = 2/(3t), the solution for the growth is δ ∝ a. This
makes it convenient to define a normalized growth factor
g = (δ/a)/(δi/ai), where a subscript i indicates an initial
time in that epoch.

The growth equation can then be written
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where a prime denotes a derivative with respect to a.
In order to focus on the impact of the modified Gm, we
take the background expansion to be identical to that of
ΛCDM, a flat matter plus cosmological constant universe.

The mass fluctuation amplitude σ8 is proportional to
the growth factor g, but is difficult to extract from galaxy
redshift surveys since the galaxy bias has a similar effect.
The growth rate f = 1+d ln g/d ln a is of particular inter-
est since it gives a more instantaneous sensitivity to the
conditions at a particular redshift than the integrated
growth that enters the growth factor. The observable
from redshift space distortions (RSD), at the linear level,
is the product fσ8, or fga ∝ dδ/d ln a. We will exam-
ine the impact of modified gravitational strength on f ,
g, and fσ8.

To build intuition for the physical interpretation of the
later numerical results, let us begin with an analytic in-
vestigation. This can most fruitfully be done in terms of
the growth rate equation, derived from the growth equa-
tion to be
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Next consider the deviation in growth rate between the
model with modified gravity and that without, i.e. stan-
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Until dark energy begins to dominate, f (and fΛ) are
close to one so we could neglect the square bracket in-
volving the difference of the (f − 1)2 factors. Integrating
the equation over ln a, we find
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where δf = f − fΛ and δGm = Gm − 1. The first term
on the left is a total derivative and δf vanishes at early
times so the contribution is simply δf(a). Restricting
to the matter dominated epoch, where H2 ∝ a−3 and
Ωm(a) = 1, yields

∫ a
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This is a very interesting expression because recall the
relation of growth rate to growth factor:
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∫ a
0 d ln a′ f(a′) , (8)

and thus
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∫ a
0 d ln a′ δf(a′) . (9)

If the deviations are small (recall that even for 10% devi-
ations in growth the difference between ex and the first
order expansion 1 + x is small, less than 0.5%) then we
can expand the exponential to get

δg
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≈

∫ a

0
d ln a′ δf(a′) . (10)

That is, the growth factor deviation is approximately the
area under the growth rate deviation curve, and Eq. (7)
tells us this is closely related to the area under the grav-
itational strength curve.
In particular, if the growth rate change from the grav-

itational modification has faded by the time at which
the growth factor is evaluated, then we can neglect the
(2/5)δf(a) term in Eq. (7). Then the growth factor
change is indeed proportional to the area under δGm.
We can be more precise by writing Eq. (5) under the
same assumptions of small deviations and matter domi-
nation and using the integrating factor method for solu-
tion. Then

dδf

d ln a
+
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2
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2
δGm(a) (11)
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Parametrization without Parametrization 

For gravitational deviations during matter domination 
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critical density, and Gmatter is the gravitational strength
in units of Newton’s constant GN .

The source term of the gravitational instability, the
term proportional to δ, arises from the modified Poisson
equation relating the Newtonian gravitational potential
ψ to the density perturbation,

∇2ψ = 4πGNGmatterρmδ . (2)

The growth equation as written assumes that the modi-
fication is purely to the gravitational coupling strength,
that there are no nonminimal couplings of the matter
sector to other sectors. For the rest of this article we
abbreviate Gmatter as Gm.

At high redshift, such as around last scattering of the
cosmic microwave background (CMB), observations in-
dicate that general relativity is an excellent description
of gravity and so the initial conditions for the growth
equation are taken to be unchanged. In the high red-
shift matter dominated universe, where Ωm = 1 and
H2 = 2/(3t), the solution for the growth is δ ∝ a. This
makes it convenient to define a normalized growth factor
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where a prime denotes a derivative with respect to a.
In order to focus on the impact of the modified Gm, we
take the background expansion to be identical to that of
ΛCDM, a flat matter plus cosmological constant universe.

The mass fluctuation amplitude σ8 is proportional to
the growth factor g, but is difficult to extract from galaxy
redshift surveys since the galaxy bias has a similar effect.
The growth rate f = 1+d ln g/d ln a is of particular inter-
est since it gives a more instantaneous sensitivity to the
conditions at a particular redshift than the integrated
growth that enters the growth factor. The observable
from redshift space distortions (RSD), at the linear level,
is the product fσ8, or fga ∝ dδ/d ln a. We will exam-
ine the impact of modified gravitational strength on f ,
g, and fσ8.

To build intuition for the physical interpretation of the
later numerical results, let us begin with an analytic in-
vestigation. This can most fruitfully be done in terms of
the growth rate equation, derived from the growth equa-
tion to be
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where δf = f − fΛ and δGm = Gm − 1. The first term
on the left is a total derivative and δf vanishes at early
times so the contribution is simply δf(a). Restricting
to the matter dominated epoch, where H2 ∝ a−3 and
Ωm(a) = 1, yields

∫ a
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d ln a′ δf ≈ 3
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∫ a
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This is a very interesting expression because recall the
relation of growth rate to growth factor:

g = a−1 e
∫ a
0 d ln a′ f(a′) , (8)

and thus
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∫ a
0 d ln a′ [f(a′)−fΛ(a′)] = e

∫ a
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If the deviations are small (recall that even for 10% devi-
ations in growth the difference between ex and the first
order expansion 1 + x is small, less than 0.5%) then we
can expand the exponential to get

δg

gΛ
≈

∫ a

0
d ln a′ δf(a′) . (10)

That is, the growth factor deviation is approximately the
area under the growth rate deviation curve, and Eq. (7)
tells us this is closely related to the area under the grav-
itational strength curve.
In particular, if the growth rate change from the grav-

itational modification has faded by the time at which
the growth factor is evaluated, then we can neglect the
(2/5)δf(a) term in Eq. (7). Then the growth factor
change is indeed proportional to the area under δGm.
We can be more precise by writing Eq. (5) under the
same assumptions of small deviations and matter domi-
nation and using the integrating factor method for solu-
tion. Then
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d ln a
+
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2
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After the deviation dGm, df fades rapidly, as       
(a4H)-1~a-5/2-a-4. So growth deviations only depend on 
the “area” of the modification dGm, not the whole 
dGm(a). No need to parametrize dGm(a)!  
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0
d ln a′ a′5/2δGm(a

′) . (12)

Substituting Eq. (12) into Eq. (7) and Eq. (9) gives
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(
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a
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]
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If the evaluation time a is much after the epoch when
δGm(a′) is nonnegligible, then the square bracket quan-
tity simply goes to one. In this situation the fractional
growth factor deviation is just (three-fifths) the area un-
der the gravitational modification curve.

A similar approach to converting the different equation
for the growth rate into an integral over a source term
and kernel has appeared in [16]1. They give a clear jus-
tification of the form of the modified Poisson equation,
i.e. why Gm is central, and the quasistatic approxima-
tion (see also [17, 18]). They restrict to the case where
the gravitational modification is much smaller than unity,
δGm ≪ 1, and find several of the characteristics discussed
in this section (such as the lag of f and its decay), but
do not seek a general parametrization or identify the area
as a key quantity. It is well worth reading Ref. [16] for a
different focus on the problem.

For the modified gravitational strength Gm we want to
use a parametrization that is tractable in terms of hav-
ing only a few parameters, but that is consistent with
the behavior of at least some theories of gravity. In par-
ticular, it should vanish at high redshift. To explore the
signatures of modified gravity on growth, it is an ad-
vantage if δG is also fairly localized so we can explore
the effect of deviations at different redshifts on growth
during the observable epoch of z ≈ 0− 3, where the red-
shift z = a−1 − 1. That is, we want to build up our
intuition and understanding of the connection between
gravitational modifications and observables.

We adopt the form

Gm = 1 + δGe−[(ln a−ln at)
2/(2σ2)] , (15)

where δG describes the amplitude of the deviation, at
the scale factor at which it peaks, and σ measures its
duration. This fulfills the desired characteristics above,
and is Gaussian in e-folds of expansion, ln a. Such a peak
gives similar results to the deviations seen in theories of
modified gravity having multiple, competing terms in the
Lagrangian, such as the Horndeski class; see Fig. 5 of [19]
for example.

1 We are grateful to Tessa Baker for bringing this to our attention,
with grace, after this article appeared on arXiv.

We emphasize that localization through use of a Gaus-
sian is for clarity in interpretation; we derived above that
the area under the gravitational modification curve was
a key parameter, so one could equally well treat multiple
Gaussians, or some other function, as long as it held to
the assumptions used above. We also stress that the ana-
lytic arguments above were to guide intuition, and we do
not assume matter domination at all redshifts, rather we
take the expansion history to be that of ΛCDM. We dis-
cuss treatment of modifications at recent times in Sec. IV
but again our main aim is to achieve some insight in un-
derstanding the signature of a deviation at a particular
redshift on subsequent cosmic growth.
Given a Gaussian, the area under the modification

curve is easy to calculate and in particular if we are in-
terested in the total growth factor to the present then we
have

δg0
gΛ,0

≈ 3

5
Area ≈ 3

5

√
2πσ2δG ≈ 1.5σδG . (16)

To summarize, our analytic understanding is that the
growth rate deviation δf(a) should approximately trace
δGm(a), with somewhat lower amplitude (e.g. at its peak,
where df/d ln a = 0, δf ≈ (3/5)δGm), slightly shifted
to later times due to the integral, and skewed to later
times due to the (a′/a)5/2 factor (or alternately due to
that the magnitude of df/d ln a subtracts from the δf
term in the growth rate equation before the peak but
adds to it afterward). The growth factor itself is in turn
an integral over f , and if δGm and so δf is sufficiently
localized then at later times δg should go to a constant
offset proportional to the area under the gravitational
modification curve, described by Eq. (16).
In the next section we carry out a full numerical evo-

lution of the cosmic growth and test our understanding
of the signatures of this gravitational modification.

III. SIGNATURES IN GROWTH EVOLUTION

A. Effects on observables

Taking a gravitational strength modification as a
Gaussian in the expansion e-fold scale on top of the gen-
eral relativity behavior, i.e. Eq. (15), we solve numeri-
cally the growth evolution equation to obtain the cosmic
growth rate f , growth factor g, and redshift space dis-
tortion amplitude fσ8. Figure 1 shows the results for
δGm = (GmGN − GN )/GN and δf/fΛ = (f − fΛ)/fΛ
for the fiducial cosmology of a flat ΛCDM universe with
present matter density Ωm = 0.3.
Indeed our analytic expectations of the previous sec-

tion are reasonably good. The quantity δf/fΛ is roughly
Gaussian and slightly delayed from the gravitational
strength perturbation. We can anticipate that if the red-
shift of the gravitational modification is moved closer to
the present, or if its width is broadened, then the effect
on f might overlap the present.
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during the observable epoch of z ≈ 0− 3, where the red-
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2/(2σ2)] , (15)

where δG describes the amplitude of the deviation, at
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take the expansion history to be that of ΛCDM. We dis-
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derstanding the signature of a deviation at a particular
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where df/d ln a = 0, δf ≈ (3/5)δGm), slightly shifted
to later times due to the integral, and skewed to later
times due to the (a′/a)5/2 factor (or alternately due to
that the magnitude of df/d ln a subtracts from the δf
term in the growth rate equation before the peak but
adds to it afterward). The growth factor itself is in turn
an integral over f , and if δGm and so δf is sufficiently
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offset proportional to the area under the gravitational
modification curve, described by Eq. (16).
In the next section we carry out a full numerical evo-

lution of the cosmic growth and test our understanding
of the signatures of this gravitational modification.
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eral relativity behavior, i.e. Eq. (15), we solve numeri-
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growth rate f , growth factor g, and redshift space dis-
tortion amplitude fσ8. Figure 1 shows the results for
δGm = (GmGN − GN )/GN and δf/fΛ = (f − fΛ)/fΛ
for the fiducial cosmology of a flat ΛCDM universe with
present matter density Ωm = 0.3.
Indeed our analytic expectations of the previous sec-

tion are reasonably good. The quantity δf/fΛ is roughly
Gaussian and slightly delayed from the gravitational
strength perturbation. We can anticipate that if the red-
shift of the gravitational modification is moved closer to
the present, or if its width is broadened, then the effect
on f might overlap the present.

16 
Denissenya & Linder 2017 



17 

Signatures in Cosmic Growth 

df is a lagged, skewed version of dGm,      
dg approaches a constant offset,            
dfσ8 is a convolution of these two.  17 
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Accurate Parametrization 
All that is important is the area under dGm, not Gm(a). 
This one parameter model is accurate to ~0.3% in the 
observables g, fσ8.  7
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FIG. 7. Isocontours of δg/g(z = 0) are plotted in the σ-δG
plane, for fixed at = 0.1. Dotted curves for the 0.05, 0.1, 0.15,
and 0.2 level contours show the analytic, area prediction.
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FIG. 8. As Fig. 7 but for isocontours of δfσ8/fσ8(z = 0).

C. Extended modifications

While Sec. II showed analytically that the late time
growth evolution should depend on the area of the
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FIG. 9. As Fig. 7 but for isocontours of δfσ8/fσ8(z = 1).

modification, and we demonstrated this numerically in
Sec. III B for a localized modification of various ampli-
tudes and widths, we now illustrate this for extended
early modifications. Figure 10 plots the deviations in the
growth factor g(a) and the RSD observable fσ8(a) due to
three different forms for the gravitational modification: a
Gaussian as used in earlier plots, a box function with the
same peak amplitude but the width adjusted to match
the same area, and a box function with half the ampli-
tude but twice the width (in e-fold, i.e. ln a, units), so it
also has the same area.

We see that indeed the quantities δg/g and δfσ8/fσ8
are each nearly identical between models for a ! 0.3 de-
spite the gravitational modification redshift dependences
being very different, just their area being preserved.
Quantitatively, the deviations between the growth factors
g(a) for the Gaussian modification and the box modifica-
tion are less than 0.1% (0.25%) for a ≥ 0.25 for the box
with the same peak amplitude (half the peak amplitude,
twice the duration). For the RSD observable fσ8(a), the
corresponding deviations are 0.15%, 0.35%. This lends
credence to the concept that an acceptable parametriza-
tion of matter dominated era gravitational modifications
(such as are predicted by many theories involving multi-
ple terms in the Lagrangian, e.g. in the Horndeski class of
gravity) is a single parameter corresponding to the area
of the modification, for matter growth observables.

In the next section we explore late time modifications,
where no such simplification is evident.

18 
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Early and Late Gravity 

Thus gravity in the entire matter dominated era, 
z~3-1000, can be dealt with by one parameter.  

We also showed that one can simply add this early era 
to late time modifications.  

19 

1 parameter for 
early times.  

Next: late times. 



20 20 

Late Gravity 

The simplest model independent parametrization for 
late time gravity is simply bins in a.  

How many bins do we need for subpercent accuracy 
on the observable, fσ8? (not on Gm)  

•  Accuracy determined by next generation data, 
e.g. DESI.  

•  Want accurate parametrization for many different 
gravity theories. 

•  Want informative constraints, i.e. pointing to 
physics. 
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Theories and Data 

We consider a suite of model behaviors for dGm(a): 

•  Rising (power law) 

•  Falling (power law) 

•  Nonmonotonic (Gaussian pulse) 

•  Nonmonotonic (convolution of Gaussians) 

•  DGP 

•  f(R) 

We solve for the exact growth, and place error bars 
corresponding to DESI measurement precision. 

Denissenya & Linder 
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Fitting Results 

Comparison to using simple 2 bin values of Gm  
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Fitting Results 

Comparison to using simple 2 bin values of Gm  
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Fitting Results 

More important than the deviation is the impact on 
cosmology estimation – e.g. a sawtooth doesn’t look 
like a change in cosmology. 

We calculate the bias on cosmology (Ωm,w0,wa) from 
using 2 bins to parametrize Gm(a):  4

Model ∆χ2 [δp/σ(p)]max Riskmax

Gaussian (ac = 0.7) 0.02 0.02 1.00
Gaussian (ac = 0.5) 0.13 0.33 1.05
Gaussian (ac = 0.3) 0.16 0.22 1.02
Gaussian (ac = 0.7; δG = 0.1) 0.09 0.04 1.00
Gaussian3 (ac = 0.3) 0.09 0.22 1.02
Gaussian2 (σ = 0.25) 0.03 0.09 1.00
Gaussian2 (σ = 0.5) 1.78 0.35 1.06
Gaussian2

3 (σ = 0.5) 0.03 0.07 1.00
Rising a3 0.01 0.09 1.00
Falling a−3 0.36 0.25 1.03
Falling3s a−3 0.10 0.23 1.03
DGP 2.28 0.45 1.10
DGP3 0.00 0.02 1.00
f(R) (k0 = 0.02) 0.07 0.06 1.00
f(R) (k0 = 0.10) 1.81 1.34 1.67
f(R)3s (k0 = 0.10) 0.18 0.40 1.08
f(R) (k0 = 0.14) 2.57 1.52 1.82
f(R)3s (k0 = 0.14) 0.12 0.31 1.05

TABLE I. Parameter bias levels corresponding to the approx-
imation of δG. ∆χ2 is the shift in the dark energy equation
of state parameter w0-wa plane due to the bias; recall that
∆χ2 = 2.3 corresponds to a 1σ shift in the joint parameter fit.
The maximum bias of a parameter relative to its statistical
uncertainty is shown in the δp/σ(p) column. The Risk column
shows the maximum “bloat” of the Risk, i.e. the increase in
the uncertainty due to the bias. The subscript 3 denotes the
three bin fit with an early bin, and 3s denotes a three bin fit
splitting the mid z bin. The superscript 2 denotes a convolu-
tion of two Gaussians, with ac = 0.3 and ac = 0.7. Note the
approximate form is good to ∆χ2 < 0.18 for all models.

Negligible!  

Much much less 
than 1σ (dχ2=2.3).  

Only 2-3 parameters 
needed. 
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Summary & Future 

DESI, Euclid, LSST, WFIRST, etc. will have exciting 
next generation surveys providing accurate tests of 
gravity.  

Very difficult to go from theory to observations in 
model independent way: H(z) + 4 functions.  

Keeping observations in front, we show subpercent 
accuracy with just 2-3 gravity parameters, for cosmic 
growth. 

Future: does it work for lensing? for tensors? 


