Cosmic acceleration and large scale structure observations

Gong-Bo Zhao National Astronomical Observatories, China (NAOC) & ICG, University of Portsmouth http://icosmology.info gbzhao@nao.cas.cn

September 6, 2017

YITP, Kyoto

Cosmology=宇(space)宙(time)学(study)

YITP, Kyoto

Cosmology=宇(space)宙(time)学(study)

Super Relativity?!

YITP, Kyoto

Cosmology=宇(space)宙(time)学(study)

Super Relativity?!

YITP, Kyoto

CMB

SNe

The expansion of the Universe can **accelerate** if

In GR, to add new 'repulsive matter', which contributes 70% total energy

Dark Energy

$$G_{\mu\nu} = 8\pi G \widetilde{T}_{\mu\nu}$$

 \sum

To modify General Relativity

Modified Gravity

$$\widetilde{G}_{\mu
u} = 8\pi G T_{\mu
u}$$

YITP, Kyoto

The expansion of the Universe can accelerate if

In GR, to add new 'repulsive matter', which contributes 70% total energy

 $\mathbf{\mathbf{y}}$

To modify General Relativity

Dark Energy

 $G_{\mu\nu} = 8\pi G \widetilde{T}_{\mu\nu}$

Modified Gravity

 $\widetilde{G}_{\mu\nu} = 8\pi G T_{\mu\nu}$

LSS surveys can help break the degeneracy

YITP, Kyoto

LSS surveys are census of galaxy polulations

2.5 meter

eBOSS quasar clustering

eBOSS galaxies

2009

Redshift 2

0

20.2

Redshift

eBOSS quasar absorpti

SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) **1.6 million LRGs** (z<0.6) Largest in the world in the past 5 years^{09/2017}

YITP, Kyoto

Latest BAO measurements

BOSS (Alam et al), 2016, 1607.03155

YITP, Kyoto

BOSS (Alam et al), 2016, 1607.03155

YITP, Kyoto

Explore the redshift data as much as possible

BOSS (Alam et al), 2016, 1607.03155

YITP, Kyoto

^{06/09/2017}

Tomographic BAO measurements from BOSS DR12

GBZ, Wang, et al, (BOSS team), 1607.03153, MNRAS, 2017 Wang, GBZ, et al, (BOSS team), 1607.03154

Tomographic galaxy correlation function measurement BOSS (Wang, GBZ et al), 2016

YITP, Kyoto

BOSS (Yuting Wang, GBZ et al), 2016, 1607.03154

Latest BOSS tomographic BAO measurements

BOSS (GBZ, Yuting Wang et al), 2016, 1607.03153

YITP, Kyoto

BOSS (GBZ, Yuting Wang et al), 2016, 1607.03153

YITP, Kyoto

The Redshift Space Distortion (RSD)

We use redshift z to infer distance d in redshift surveys!

$$cz = H_0 d$$

YITP, Kyoto

Galaxies have *peculiar motions* due to the local overdensity on top of the Hubble velocity

On large scales

YITP, Kyoto

Redshift Space Distortions (RSD)

real to redshift space separations

$$\nabla \cdot \mathbf{v_p} = -aHf \, \delta_m$$

 $|v_P| \sim d \sigma_8/d \ln a = \sigma_8 * f$

squashed along line of sight

X

 $f = d \ln \sigma_8 / d \ln a$

Kaiser, 1987

Ζ

isotropic

Latest BOSS DR12 RSD measurements

BOSS (Alam et al), 2016, 1607.03155

YITP, Kyoto

BOSS (Alam et al), 2016, 1607.03155

YITP, Kyoto

Free streaming effect: a probe for neutrinos

YITP, Kyoto

YITP, Kyoto

eBOSS Survey (started summer 2014)

Planned eBOSS coverage of the universe

- ♦ Dark-time observations
- ♦ Fall 2014 Spring 2020
- ♦ 1000 fibers per 7 deg2 plate
- ♦ Wavelength: 360-1000 nm, resolution
 R~2000

↔ 1–2% distance measurements from baryon acoustic oscillations between 0.6 < z < 2.5

http://www.sdss.org

eBOSS specification

eBOSS specification

eBOSS cosmological forecast (GBZ et al, 1510.08216)

YITP, Kyoto

YITP, Kyoto

eBOSS ability to constrain MG

eBOSS status

- Year 2 observation (till 2016 summer shutdown) successfully finished
- DR14 data ready internally (QSO and LRG)
- Year 2 data being analysed
- A 4% BAO has been detected using QSO (Ata et al); multiple collaboration papers to release in the fall of 2017

DE as a solution to the accelerating universe problem

 $G_{\mu\nu} = \frac{1}{M_p^2} \widetilde{T}_{\mu\nu}$

YITP, Kyoto

YITP, Kyoto

YITP, Kyoto

PFS parameters taken from Takada et al, 2014

YITP, Kyoto

GBZ, et al., 2012, PRL

Reconstruct w(a) non-parametrically

Zhao et al., (BOSS collaboration), 2017 Nature Astronomy, 1, 627-632

YITP, Kyoto

Principal Component Analysis (PCA) Hamilton & Tegmark 1999, Huterer & Starkman 2002

Diagonalise the *w* block of the Fisher matrix to find the orthonormal basis, on which we can expand w(z)+1,

Modified Gravity as a solution to the accelerating universe problem

$$\widetilde{G}_{\mu\nu} = \frac{1}{M_p^2} T_{\mu\nu}$$

YITP, Kyoto

Cosmological tests of GR on linear scales

YITP, Kyoto

High-resolution numerical simulations are needed!

12 billion years ago

10 billion years ago

8 billion years ago

Today

f(R) Gravity

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + L_m \right]$$

Mimic GR at high z;
Accelerate the expansion at low z;
Recover GR locally to pass solar system test.

Numerical Simulations 1011.1257 GBZ, B.Li, K.Koyama, PRD 11

• Code: Modified MLAPM

• f(R) model:

$$f(R) = -m^2 \frac{c_1 (R/m^2)^n}{c_2 (R/m^2)^n + 1} \qquad m^2 \equiv \frac{8\pi G\bar{\rho}_{\mathrm{M},0}}{3} = H_0^2 \Omega_{\mathrm{M}}$$

• Model parameters:

$$n = 1, \quad |f_{R0}| = \frac{nc_1}{c_2^2} \left[3 \left(1 + 4 \frac{\Omega_{\Lambda}}{\Omega_M} \right) \right]^{-n-1} = 10^{-4}, \ 10^{-5}, \ 10^{-6}$$

• Cosmological parameters: WMAP7

Equations to solve in the code

$$\frac{ac^2}{(H_0B)^2} \nabla_c^2 f_R = \frac{1}{3} \left(n \frac{c_1}{c_2^2} \right)^{\frac{1}{n+1}} f_R^{-\frac{1}{n+1}} \Omega_{\mathrm{M}} a^3 - \Omega_{\mathrm{M}} \rho_c - 4\Omega_{\Lambda} a^3$$

$$\begin{aligned} \nabla_{c}^{2} \Phi_{c} &= \frac{3}{2} \Omega_{\mathrm{M}} (\rho_{c} - 1) \\ &+ \left[\frac{1}{2} \Omega_{\mathrm{M}} \rho_{c} + 2 \Omega_{\Lambda} a^{3} - \frac{1}{6} \Omega_{\mathrm{M}} a^{3} \left(n \frac{c_{1}}{c_{2}^{2}} \right)^{\frac{1}{n+1}} f_{R}^{-\frac{1}{n+1}} \right] \end{aligned}$$

YITP, Kyoto

Gongbo Zhao et al, Phys. Rev. Lett. 2011

f(R)

GR

GR

f(R)

Mass Difference $\frac{dr}{dr}$ - $\Delta_M \equiv M_D / M_L - 1 = \frac{d\Phi(r)}{d\Phi_+(r)}$ 1

YITP, Kyoto

Screened purely by environment

GBZ et al, 2011

YITP, Kyoto

Screening on the edge shows environmental dependence!

YITP, Kyoto

Observationally...

Lensing Mass

Dynamical Mass

YITP, Kyoto

- Measure lensing and dynamical mass for each halo;
- Divide the sample using D;
- Compare!

- Measure lensing and dynamical mass for each halo;
- Divide the sample using D;
- Compare!

Apply to (e)BOSS, DES, Euclid data

LCDM: Smith et al vs. simulation

YITP, Kyoto

LCDM: Takahashi et al vs. simulation

YITP, Kyoto

Hu-Sawicki: Smith et al vs. simulation

YITP, Kyoto

In default Halofit $\Delta^2 \equiv rac{k^3 P(k)}{2\pi^2} = \Delta^2_{ m Q} + \Delta^2_{ m H}$ $\Delta_{\rm Q}^2(k) = \Delta_{\rm L}^2(k) \frac{[1 + \Delta_{\rm L}^2(k)]^{\beta(n_{\rm eff},\mathcal{C})}}{1 + \alpha(n_{\rm eff},\mathcal{C})\Delta_{\rm T}^2(k)} \exp\left[-\left(y/4 + y^2/8\right)\right]$ $\Delta_{ m H}^2(k) ~=~ rac{\Delta_{ m H}^{2'}(k)}{1+\mu(n_{ m eff},\mathcal{C})/y+ u(n_{ m eff},\mathcal{C})/y^2}$ $a(n_{ m eff}, {\cal C})y^{3f_1(\Omega_{ m M})}$ $\Delta_{\mathrm{H}}^{2'}(k) = rac{a(n_{\mathrm{eff}}, \mathcal{C})y^{3J_1(\mathfrak{M}_{\mathrm{M}})}}{1 + b(n_{\mathrm{eff}}, \mathcal{C})y^{f_2(\Omega_{\mathrm{M}})} + [c(n_{\mathrm{eff}}, \mathcal{C})f_3(\Omega_{\mathrm{M}})y]^{3 - \gamma(n_{\mathrm{eff}}, \mathcal{C})}}$ ſ

$$\begin{aligned} \sigma^2(R,z) &= \int \Delta_{\rm L}^2(k,z) \exp(-k^2 R^2) \mathrm{d} \ln k \\ n_{\rm eff} &\equiv \left. \frac{\mathrm{d} \ln \sigma^2(R)}{\mathrm{d} \ln R} \right|_{\sigma=1} - 3; \quad \mathcal{C} \equiv \left. \frac{\mathrm{d}^2 \ln \sigma^2(R)}{\mathrm{d} \ln R^2} \right|_{\sigma=1}, \quad y \equiv \frac{k}{k_{\rm NL}}, \quad \sigma(k_{\rm NL}^{-1},z) = 1 \end{aligned}$$

YITP, Kyoto

Generalising Halofit

- (A) It should well predict the power spectrum for a wide range of HS model parameter f_{R0} and for various background cosmologies at various redshifts;
- (B) When $|f_{R0}| \rightarrow 0$, it should recover Halofit;
- (C) The screening effect must be included, *i.e.*, for small field models $(|f_{R0}| \ll 10^{-4})$, or at higher redshifts, the power should be suppressed compared to the Halofit prediction on small scales;
- (D) The suppression should decrease when $|f_{R0}|$ increases, or z increases;
- (E) On large scale, the prediction should agree with the linear prediction;
- (F) On all scales, the prediction of Δ_P should not exceed the linear prediction;
- (G) On all scales, Δ_P should be positive definite.

$$\tilde{\Delta}^2 \equiv \frac{k^3 P(k)_{\rm HS}^{\rm MGHalofit}}{2\pi^2} = \tilde{\Delta}_{\rm Q}^2 + \tilde{\Delta}_{\rm H}^2$$

$$egin{aligned} & ilde{\Delta}_{ ext{Q}}^2(k) = \Delta_{ ext{L}}^2(k) rac{[1+ ilde{\Delta}_{ ext{L}}^2(k)]^{ ilde{eta}(n_{ ext{eff}},\mathcal{C},\mathcal{F})}}{1+ ilde{lpha}(n_{ ext{eff}},\mathcal{C},\mathcal{F}) ilde{\Delta}_{ ext{L}}^2(k)} ext{exp}[-f(y)] \ & ilde{\Delta}_{ ext{H}}^2(k) = rac{ ilde{\Delta}_{ ext{H}}^{2'}(k)\xi(n_{ ext{eff}},\mathcal{C},\mathcal{F})}{1+ ilde{\mu}(n_{ ext{eff}},\mathcal{C},\mathcal{F})/y+ ilde{
u}(n_{ ext{eff}},\mathcal{C},\mathcal{F})/y^2} \end{aligned}$$

$$ilde{\Delta}_{\mathrm{H}}^{2'}(k) = rac{ ilde{a}(n_{\mathrm{eff}}, \mathcal{C}, \mathcal{F})y^{3f_1(\Omega)}}{1 + ilde{b}(n_{\mathrm{eff}}, \mathcal{C}, \mathcal{F})y^{f_2(\Omega)} + [ilde{c}(n_{\mathrm{eff}}, \mathcal{C}, \mathcal{F})f_3(\Omega)y]^{3 - ilde{\gamma}(n_{\mathrm{eff}}, \mathcal{C}, \mathcal{F})}}$$

$$\begin{split} \tilde{\Delta}_{\mathrm{L}}^{2}(k) &= \Delta_{\mathrm{L}}^{2}(k) \left[1 + \mathcal{F} \left(x_{1} + x_{2}n_{\mathrm{eff}} + x_{3}\mathcal{C} \right) \right] \\ \tilde{\alpha} &= \alpha + \mathcal{F} \left(x_{4} + x_{5}n_{\mathrm{eff}} + x_{6}n_{\mathrm{eff}}^{2} + x_{7}\mathcal{C} \right) \\ \tilde{\beta} &= \beta + \mathcal{F} \left(x_{8} + x_{9}n_{\mathrm{eff}} + x_{10}n_{\mathrm{eff}}^{2} + x_{11}\mathcal{C} \right) \\ \tilde{\gamma} &= \gamma + \mathcal{F} \left(x_{12} + x_{13}n_{\mathrm{eff}} + x_{14}n_{\mathrm{eff}}^{2} + x_{15}\mathcal{C} \right) \\ \log_{10}\tilde{a} &= \log_{10} \left[a + \mathcal{F} \left(x_{16} + x_{17}n_{\mathrm{eff}} + x_{18}n_{\mathrm{eff}}^{2} + x_{19}\mathcal{C} \right) \right] \\ \log_{10}\tilde{b} &= \log_{10} \left[b + \mathcal{F} \left(x_{20} + x_{21}n_{\mathrm{eff}} + x_{22}n_{\mathrm{eff}}^{2} + x_{23}\mathcal{C} \right) \right] \\ \log_{10}\tilde{c} &= \log_{10} \left[c + \mathcal{F} \left(x_{24} + x_{25}n_{\mathrm{eff}} + x_{26}n_{\mathrm{eff}}^{2} + x_{27}\mathcal{C} \right) \right] \\ \log_{10}\tilde{\mu} &= \log_{10} \left[\mu + \mathcal{F} \left(x_{28} + x_{29}n_{\mathrm{eff}} + x_{30}n_{\mathrm{eff}}^{2} + x_{31}\mathcal{C} \right) \right] \\ \log_{10}\tilde{\nu} &= \log_{10} \left[\nu + \mathcal{F} \left(x_{32} + x_{33}n_{\mathrm{eff}} + x_{34}n_{\mathrm{eff}}^{2} + x_{35}\mathcal{C} \right) \right] \\ \xi &= \exp \left[\mathcal{D} \left(x_{36} + x_{37}n_{\mathrm{eff}} + x_{38}n_{\mathrm{eff}}^{2} + x_{39}\mathcal{C} \right) \right] \end{split}$$

$$\mathcal{F} \equiv |f_{R0}|/(3 imes 10^{-5})$$
 $\mathcal{D} \equiv \left|rac{P(k)_{
m HS}^{
m lin.}}{P(k)_{
m \Lambda CDM}^{
m lin.}} - \max\left[rac{P(k)_{
m HS}^{
m Halofit}}{P(k)_{
m \Lambda CDM}^{
m Halofit}}, 1
ight]
ight|$

A upgrade: the ECOSMOG code B.Li, GBZ, R. Teyssier, K.Koyama, JCAP 2012

- Code: Modified RAMSES (AMR code, **MPI**)
- $N_p = 1024^3$
- Models: f(R), DGP, symmetron, dilaton, general chameleon, and Galileon.
- Data analysis: RSD, ISW, matter and velocity power spectrum, halo spin, halo morphology,

Halos and Voids in f(R)

Halos and Voids in f(R)

Li, GBZ and Koyama (2012)

Figure 6. (Colour Online) The void number density as a function of a volume. The black squares, red circles, green triangles and blue diamonds are from the Λ CDM simulation and f(R) simulations with $|f_{R0}| = 10^{-6}$, 10^{-5} , 10^{-4} respectively. Each curve is the averaged result of ten realisations. The magenta pentagons are results for Λ CDM from Colberg et al. (2005) for consistency check. All results are at a = 1.

YITP, Kyoto
3D screening map in the SDSS region

Cabre, Vikram, GBZ, Jain and Koyama (2012)

YITP, Kyoto

Halos spin faster in f(R) Lee, GBZ, Li and Koyama (2013)

YITP, Kyoto

RSD in f(R)

Jennings, Baugh, Li, GBZ and Koyama (2012)

YITP, Kyoto

RSD in f(R)

Nonlinear matter/velocity power spectra

Li, Hellwing, Koyama, GBZ, Jennings, Baugh (2013)

YITP, Kyoto

Nonlinear matter/velocity power spectra

Li, Hellwing, Koyama, GBZ, Jennings, Baugh (2013)

YITP, NYULU

DGP model simulations

Li, GBZ, Koyama (2013)

$$\nabla^2 \varphi + \frac{r_c^2}{3\beta(a)a^2} [(\nabla^2 \varphi)^2 - (\nabla_i \nabla_j \varphi)(\nabla^i \nabla^j \varphi)] = \frac{8\pi G a^2}{3\beta(a)} \rho \delta,$$
(4)

and

$$\nabla^2 \Psi = 4\pi G a^2 \rho \delta + \frac{1}{2} \nabla^2 \varphi, \tag{5}$$

$$\tilde{\nabla}^2 \tilde{\varphi} + \frac{R_{\rm c}^2}{3\beta a^4} \left[\left(\tilde{\nabla}^2 \tilde{\varphi} \right)^2 - \left(\tilde{\nabla}_i \tilde{\nabla}_j \tilde{\varphi} \right)^2 \right] = \frac{\Omega_m a}{\beta} \left(\tilde{\rho} - 1 \right)$$

$$\nabla^2 \varphi = \frac{1}{2(1-w)} \left[-\alpha \pm \sqrt{\alpha^2 + 4(1-w)\Sigma} \right]$$

$$\alpha \equiv \frac{3\beta a^4}{R_c^2},$$

$$\Sigma \equiv \left(\nabla_i \nabla_j \varphi\right)^2 - w \left(\nabla^2 \varphi\right)^2 + \frac{\alpha}{\beta} \Omega_m a \left(\rho - 1\right),$$

YITP, Kyoto

DGP model simulations

Li, GBZ, Koyama (2013)

YITP, Kyoto

Morphology-dependent screening Falck, Koyama, GBZ, Li (2014)

YITP, Kyoto

A new gravity probe using Minkowski functionals Fang, Li & GBZ, PRL (2017)

1.0 GR 0.8 C F5 F6 $\Delta V_0 [10^{-2}]$ 0.6 Volume nDGP F5 5 0.4 nDGP F6 nDGP F5-GR F5-GR 0.2 F6-GR H nDGP F6-GR 0.0 10 8 $\Delta V_1 \left[10^{-4} \, h/Mpc
ight]$ $V_1 [10^{-3} h/Mpc]$ 6 8 Δ 6 Surface area 2 0 2 0 2 2 $\Delta V_2 \left[10^{-5} \left(h/Mpc \right)^2 \right]$ $Z_2 \left[10^{-4} \left(h/Mpc
ight)^2
ight]$ 1 1 0 0 curvature -1-2 -3 -3 1 2 $\Delta V_{3} [10^{-6} \left(h/Mpc
ight)^{3}]$ $V_{3}[10^{-5}\,(h/Mpc)^{3}\,]$ 0 genus -1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 $\rho/\bar{\rho}$ $\rho/\overline{\rho}$ $\rho/\overline{\rho}$

YITP, Kyoto

Halo, galaxy scales

Structure formation scales

Cosmological scales

The next step

Adding baryons into the simulation

2.5-degree thick wedge of the redshift distribution of galaxies MAIN galaxy sample has median redshift z = 0.1

Blue: dark matter Green: galaxies

Real galaxy map from SDSS YITP, Kyoto Preliminary hydrodynamical f(R) simulations GBZ, in prep

Gravity tests using clusters

YITP, Kyoto

YITP, Kyoto

Caveats

- The Hydrostaticity (to be verified)
- The non-thermal pressure is negligible (probably not true in MG)
- The NFW profile (?)
- A few fitting formulae calibrated using LCDM hydrosimulations

THE MISSING LINK

High-resolution MG hydro-simulations

Hydro-simulation of MG GBZ & Shiming Gu, in prep

• Code: MGENZO (block AMR, MPI, full hydro, excellent data analysis support using yt)

- An improved algorithm: Monotone-Gauss-Seidal instead of NGS. More stable for complicated MG models
- Plan: Full zoom-in hydro-simulations for MG

YITP, Kyoto

YITP, Kyoto

Summary

- Galaxy surveys can provide key information for cosmology, and tomographic BAO/RSD analyses are crucial for DE and MG;
- Data/likelihood of our BOSS measurements available at https://sdss3.org/science/boss_publications.php
- \blacktriangleright BOSS DR12 data (combined with others) show a hint of DE dynamics at 3.5 sigma level;
- There is rich information on nonlinear scales for gravity test, but we need high-resolution hydro-simulations in order to use the excellent observational data (eBOSS, DES, DESI, LSST, Euclid, PFS etc) in the next few years. YITP, Kyoto