ICG-NAOC-YITP joint workshop, "Next-generation cosmology with large-scale structure," 04-14 Sep 2017 @ YITP

Gravitational clustering of massive neutrinos around cold dark matter halos

Takashi Hiramatsu

Rikkyo University

Collaboration with Naoya Ohishi (formerly YITP), Atsushi Taruya (YITP)

Introduction

Gravitational clustering of massive neutrinos

Neutrinos are initially relativistic, but become non-relativistic at

$$z \simeq 200 \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right)$$

Neutrinos' free-sreaming scale :

$$k_{\rm fs} = 0.0058 \Omega_{\rm m}^{1/2} \left(\frac{m_{\nu}}{0.1 \,{\rm eV}}\right)^{1/2} h \,{\rm Mpc}^{-1}$$

Neutrino density fluctuations on the scale $k > k_{fs}$ cannot grow.

 \rightarrow modify small-scale structures.

Lesgourgues, Pastor, Rhys. Rept. 429 (2006) 307

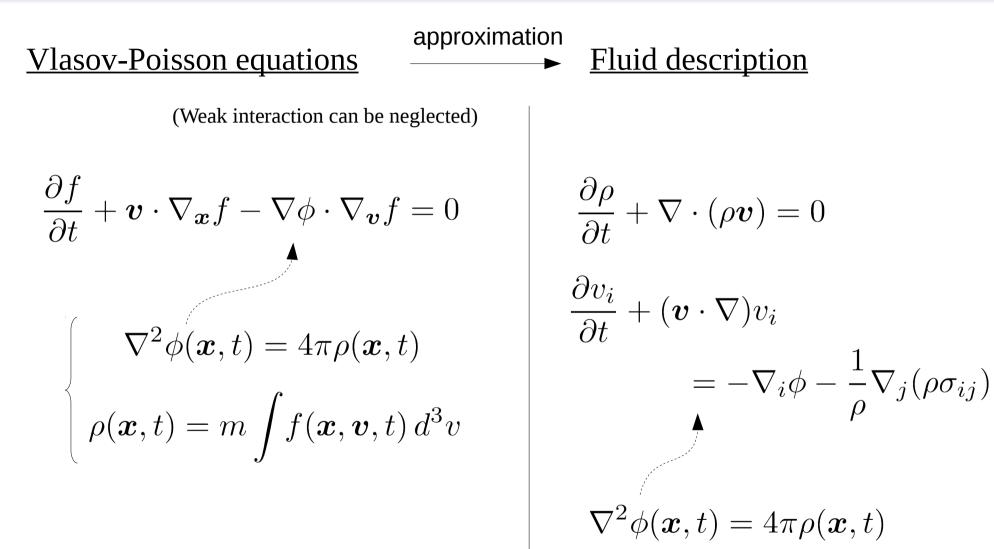
Neutrinos cluster onto a gravitational potential of CDM (their contribution to gravitational potential can be neglected)

 \mathcal{V} The second ν $\nu \nu$ ν $\nu_{\nu} \nu$

Clustering neutrinos open a new window to measure their mass ?

Before that, *how can we treat massive neutrinos in CDM halos*?

Vlasov v.s. Fluid



How well does the fluid approximation work for massive neutrinos clustering in a CDM halo ?

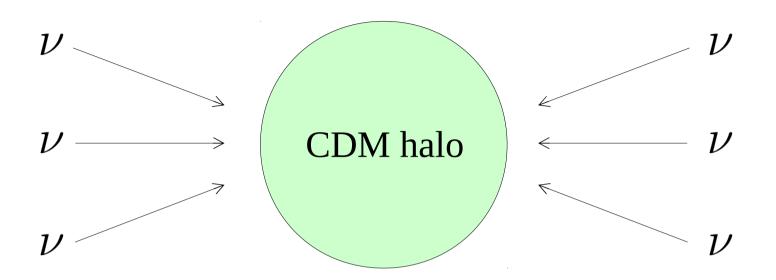
- Compute density profiles of neutrinos in fluid description and Vlasov-Poisson picture
- Show how we improve the fluid description for neutrinos

Pioneering work : Ringwald, Wong, JCAP 0412 (2004) 005

<u>Method</u>

Gravitational clustering of massive neutrinos

Setup



- $z = 10 \rightarrow 0$
- $M_{\rm halo} = 10^{12} \sim 10^{15} M_{\odot}/h$
- Mass growth is taken into account Zhao et al., APJ 707 (2009) 354
- $m_{\nu} = 0.15, 0.3 \text{ eV}$
- Use NFW profile \rightarrow gravity potential ϕ
 - ν is treated as a test particle

Vlasov eq. \rightarrow N-one-body approach

立教大学 RIKKYO UNIVERSITY Takashi Hiramatsu

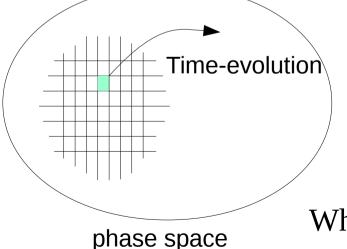
- Neutrinos do not contribute to the gravitaional potential.
- Gravitational potential of a CDM halo is given.

No needs to solve Poisson eq.

Solve the orbit of each phase-space element = N-1-body simulation

Ringwald, Wong, JCAP 0412 (2004) 005

Liouville theorem :

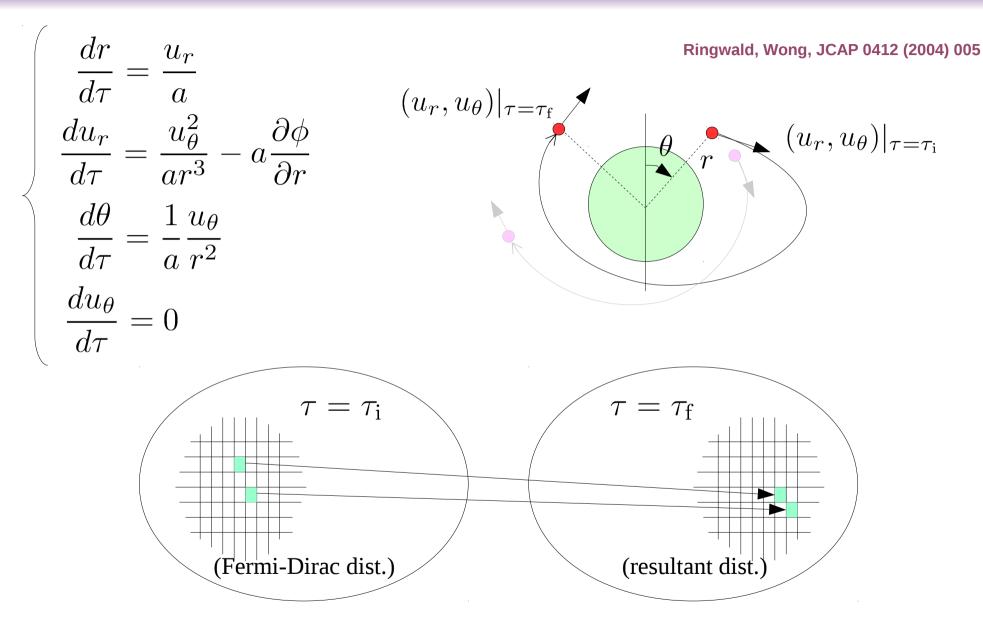


 $f(\boldsymbol{x}, \boldsymbol{v}, t)d^3\boldsymbol{x}d^3\boldsymbol{v} = f_{\mathrm{in}}(\boldsymbol{x}_{\mathrm{in}}, \boldsymbol{v}_{\mathrm{in}}, t_{\mathrm{in}})d^3\boldsymbol{x}_{\mathrm{in}}d^3\boldsymbol{v}_{\mathrm{in}}$

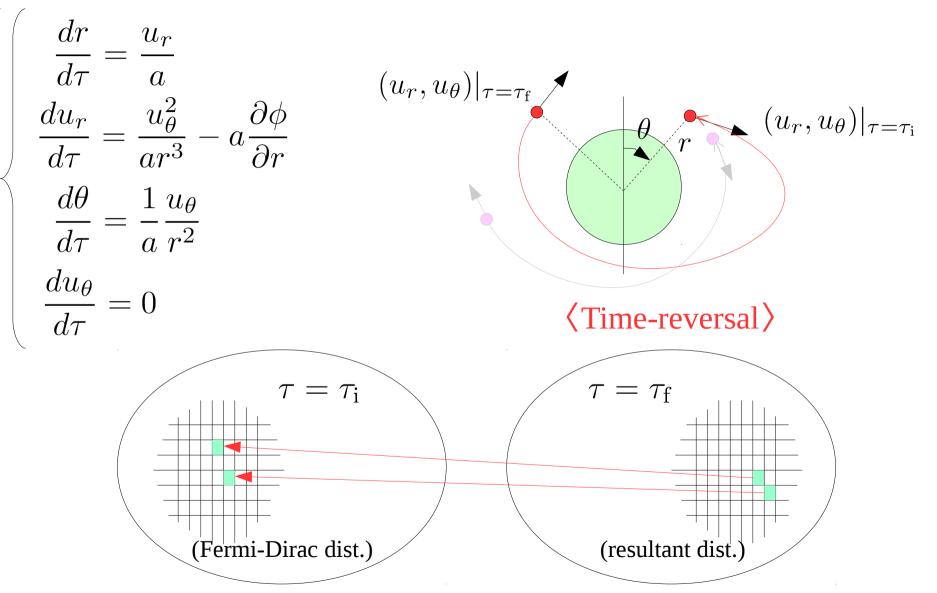
$$f(\boldsymbol{x}, \boldsymbol{v}, t) = f_{\text{in}}(F_{\boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{v}, t), F_{\boldsymbol{v}}(\boldsymbol{x}, \boldsymbol{v}, t), t_{\text{in}})$$

What we should to know is the mapping of phase-space positions from initial time to present time.

N-one-body simulation



Time-reversal N-one-body simulation



We'd like to have the distribution functions in the finite range of phase space around the halo <u>at the present time</u>. So we first fix the range, and find their original points at $\tau = \tau_i$ in the phase space.

Gravitational clustering of massive neutrinos

Fluid approximation

Moments

$$\rho(\boldsymbol{x},t) = \int d^3 \boldsymbol{v} f(\boldsymbol{x},\boldsymbol{v},t) \longrightarrow \rho(\boldsymbol{x},t) = \overline{\rho}(t) \left[1 + \delta(\boldsymbol{x},t)\right]$$
$$\boldsymbol{v}(\boldsymbol{x},t) = \frac{1}{\rho(\boldsymbol{x},t)} \int d^3 \boldsymbol{v} \frac{\boldsymbol{v}}{a} f(\boldsymbol{x},\boldsymbol{v},t)$$
$$\sigma_{ij}(\boldsymbol{x},t) + v_i(\boldsymbol{x},t) v_j(\boldsymbol{x},t) = \frac{1}{\rho(\boldsymbol{x},t)} \int d^3 \boldsymbol{v} \frac{v_i v_j}{a^2} f(\boldsymbol{x},\boldsymbol{v},t)$$

<u>Fluid equations in spherical coordinates</u>

$$\begin{cases} \frac{\partial \delta}{\partial t} + \frac{1}{ar^2} \frac{\partial}{\partial r} \left[r^2 (1+\delta) v_r \right] = 0 \\ \frac{\partial v_r}{\partial t} + H v_r + \frac{1}{a} v_r \frac{\partial v_r}{\partial r} \\ = -\frac{1}{a} \frac{\partial \phi}{\partial r} - \frac{1}{a} \frac{1}{1+\delta} \frac{\partial}{\partial r} \left[(1+\delta) \sigma_r^2 \right] - 2 \frac{\beta \sigma_r^2}{r} \end{cases}$$

$$\sigma_i^2 = \sigma_{ii}$$

$$\frac{\partial v_r}{\partial t} + Hv_r + \frac{1}{a}v_r\frac{\partial v_r}{\partial r} = -\frac{1}{a}\frac{\partial\phi}{\partial r} - \frac{1}{a}\frac{1}{1+\delta}\frac{\partial}{\partial r}\left[(1+\delta)\sigma_r^2\right] - 2\frac{\beta\sigma_r^2}{\sqrt{r}}$$
1) determined from FD dist.

$$\beta = 1 - \frac{\sigma_t^2}{2\sigma_r^2}$$

$$\sigma_r^2 = \frac{\sigma_{\nu}^2}{3} \qquad \sigma_{\nu}^2 = \frac{15\zeta(5)}{\zeta(3)} \left(\frac{k_B T_{\nu,0}}{m_{\nu} a}\right)^2$$

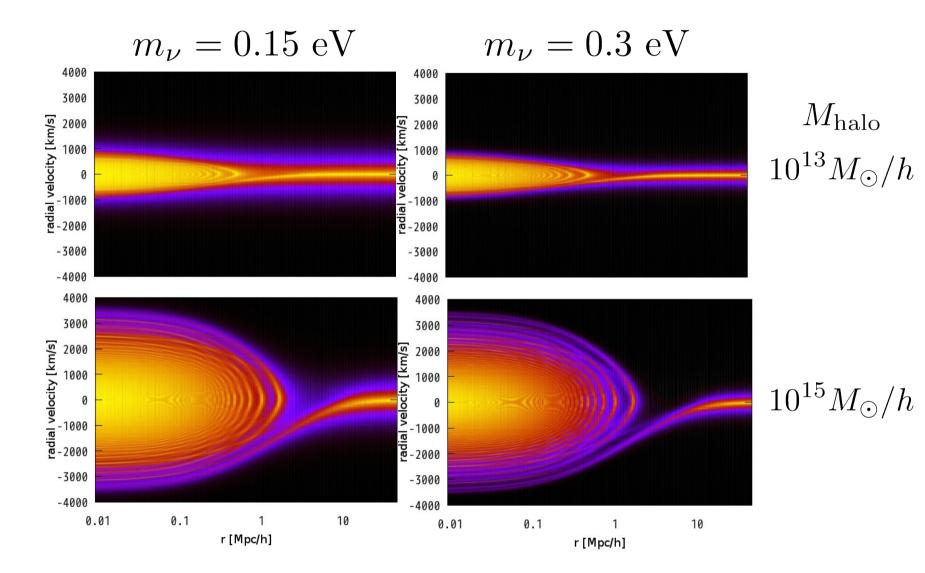
2) given by N-one-body simulations

$$\begin{aligned} \sigma_r^2(r,t) &= \frac{1}{\rho(r,t)} \int d^3 \boldsymbol{v} \left\{ \boldsymbol{v} \cdot \hat{\boldsymbol{r}} - v_r \right\}^2 f(\boldsymbol{r},\boldsymbol{v},t) \\ \sigma_t^2(r,t) &= \frac{1}{\rho(r,t)} \int d^3 \boldsymbol{v} \left\{ \boldsymbol{v} - (\boldsymbol{v} \cdot \hat{\boldsymbol{r}}) \hat{\boldsymbol{r}} \right\}^2 f(\boldsymbol{r},\boldsymbol{v},t) \\ v_r(r,t) &= \frac{1}{\rho(r,t)} \int d^3 \boldsymbol{v} \left(\boldsymbol{v} \cdot \hat{\boldsymbol{r}} \right) f(\boldsymbol{r},\boldsymbol{v},t) \end{aligned}$$

<u>Results</u>

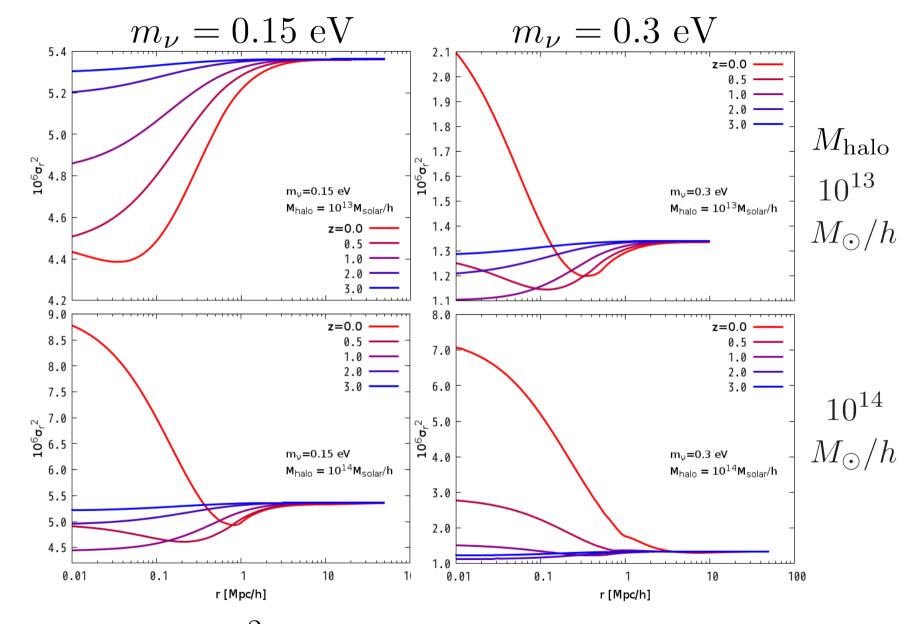
Gravitational clustering of massive neutrinos

Result : phase space distribution



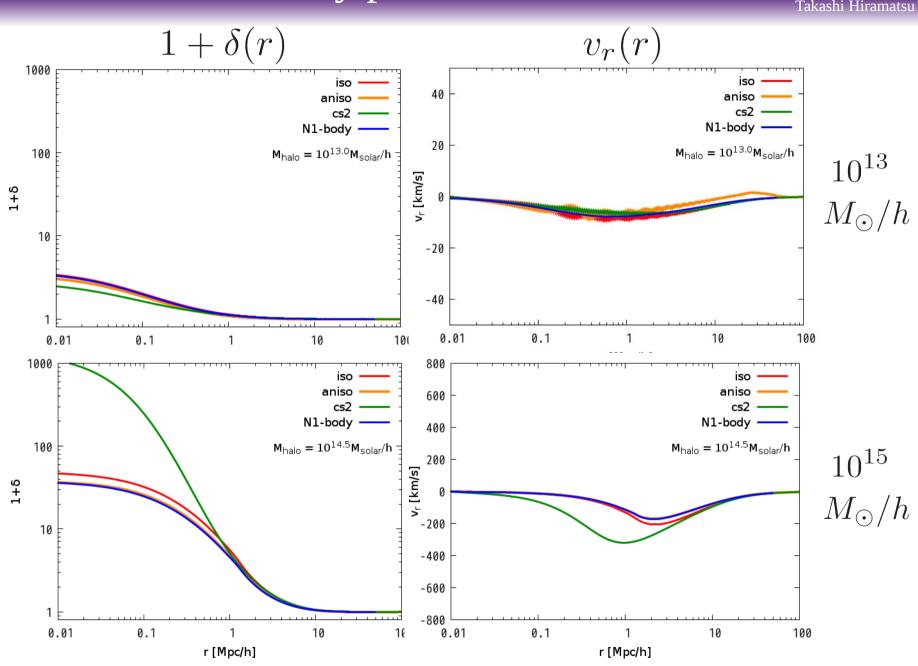
Multi-stream develops in the CDM halo's potential.

Result : velocity dispersion



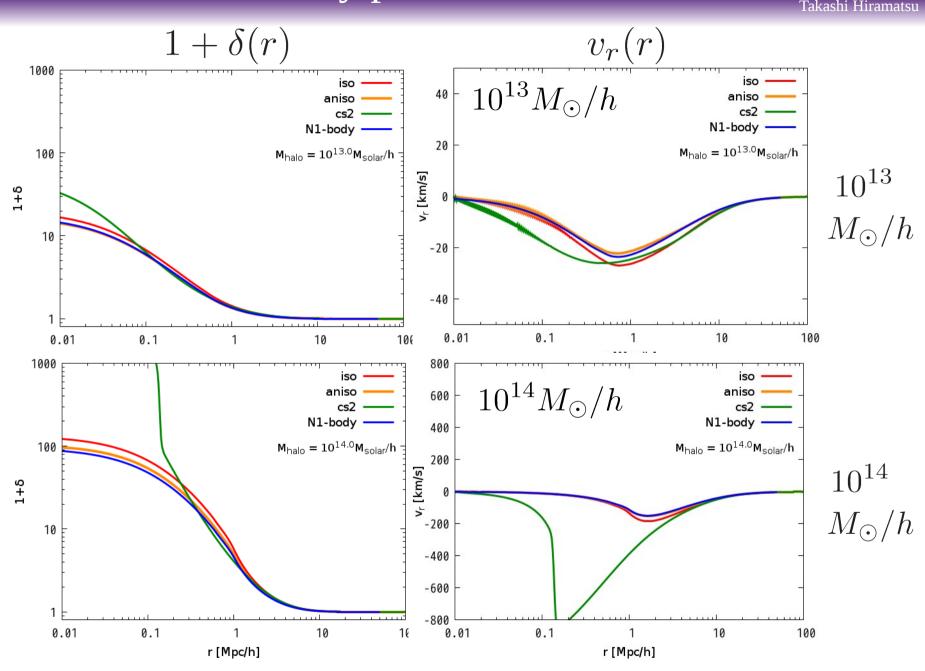
Velocity dispersion σ_r^2 depends on time as well as spatial coordinate.

Result : neutrino density profile $(m_{\nu} = 0.15 \text{ eV})$



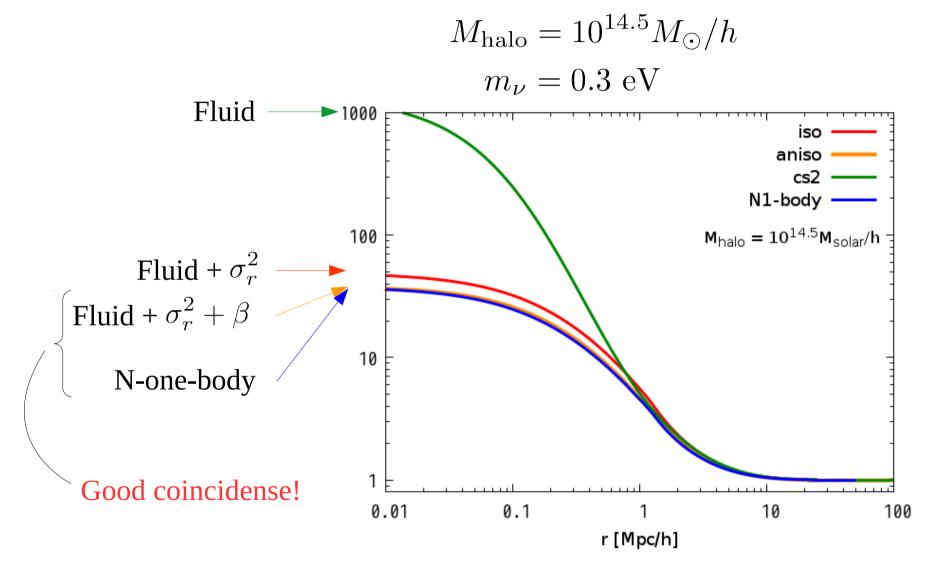
Fluid description over-estimates the density at centre of halo

Result : neutrino density profile $(m_{\nu} = 0.3 \text{ eV})$



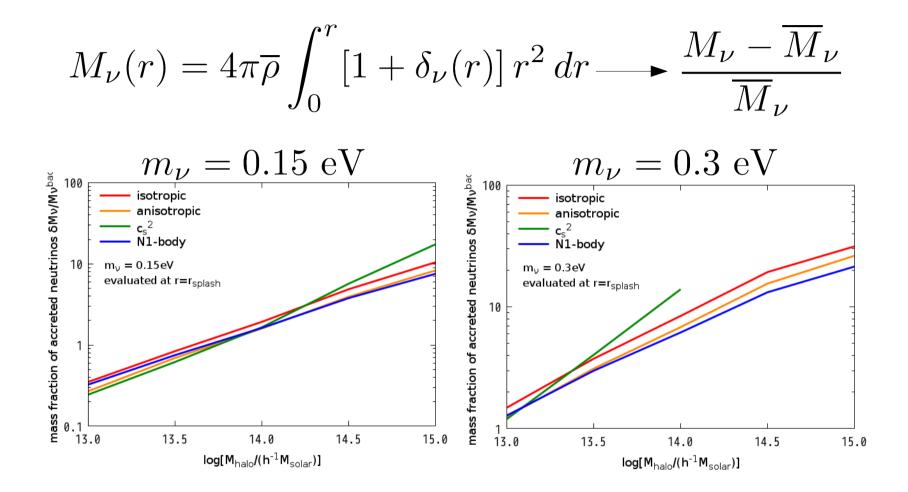
Infall velocity becomes supersonic, and then fluid description breaks down.

Result : improvement of fluid description



Fluid desctription is highly improved if we take into account σ_r^2 and $\beta = 1 - \sigma_t^2 / (2\sigma_r^2)$ computed from N-one-body simulations.

Result : total mass of clustering neutrinos



Breakdown of fluid description leads to quite large deviation from N-one-body results. But it can be improved.

How well does the fluid approximation work for massive neutrinos clustered in a CDM halo ?

<u>N-one-body vs. Fluid</u>

- Density profile of clustering neutrinos highly deviates from that obtained by N-one-body approach.
- Naive fluid description leads to the supersonic flow for large $M_{\rm halo}$ or m_{ν} , and thus breaks down.
- Fluid description can be improved by calibrating σ_r^2 and β from N-one-body simulations.