Constraining the early Universe with the large-scale structure

Benjamin L'HUILLIER (루이리예, 벤자민) (ルイリエ, ベンジャミン)

Korea Astronomy & Space Science Institute

3rd CosKASI-ICG-NAOC-YITP Workshop 2017-09-08, YITP

1 Introduction

- 2 Models and simulations
- 3 Results
- 4 Halo alignment in ΛCDM and modified gravity
- 5 Summary

1 Introduction

- 2 Models and simulations
- 3 Results
- 4 Halo alignment in ACDM and modified gravity
- 5 Summary

Concordance model of cosmology

Hypotheses

- Gravity described by General Relativity
- Isotropy and homogeneity
- Inflation in the early Universe, power-law primordial power spectrum

The concordance ΛCDM model

- Solution of the Einstein equations: FLRW metric
- The Universe is flat
- $\,\circ\,$ Universe dominated by dark energy (A) and cold dark matter (CDM)
- Big bang theory observationally supported:
 - Cosmological Microwave Background
 - Expansion of the Universe
 - Large-scale structures

0 . . .

Concordance model of cosmology

Hypotheses

- Gravity described by General Relativity
- Isotropy and homogeneity
- Inflation in the early Universe, power-law primordial power spectrum

The concordance ACDM model

- Solution of the Einstein equations: FLRW metric
- The Universe is flat
- $\,\circ\,$ Universe dominated by dark energy (A) and cold dark matter (CDM)
- Big bang theory observationally supported:
 - Cosmological Microwave Background
 - Expansion of the Universe
 - Large-scale structures

0 . . .

Planck 2015 cosmology

Parameter	TT+lowP	TT+lowP+lensing	TT+lowP+BAO	TT,TE,EE+lowP
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02226 ± 0.00020	0.02225 ± 0.00016
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1190 ± 0.0013	0.1198 ± 0.0015
$100\theta_{MC}$	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04095 ± 0.00041	1.04077 ± 0.00032
au	0.078 ± 0.019	0.066 ± 0.016	0.080 ± 0.017	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.062 ± 0.029	3.093 ± 0.034	3.094 ± 0.034
ns	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9673 ± 0.0045	0.9645 ± 0.0049
H_0	67.31 ± 0.96	67.81 ± 0.92	67.63 ± 0.57	67.27 ± 0.66
$\Omega_{\rm m}$	0.315 ± 0.013	0.308 ± 0.012	0.3104 ± 0.0076	0.3156 ± 0.0091

• Precision cosmology

Planck 2015 cosmology

Parameter	TT+lowP	TT+lowP+lensing	TT+lowP+BAO	TT,TE,EE+lowP
$\Omega_{\rm b} h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02226 ± 0.00020	0.02225 ± 0.00016
$\Omega_{ m c}h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1190 ± 0.0013	0.1198 ± 0.0015
$100\theta_{MC}$	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04095 ± 0.00041	1.04077 ± 0.00032
au	0.078 ± 0.019	0.066 ± 0.016	0.080 ± 0.017	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.062 ± 0.029	3.093 ± 0.034	3.094 ± 0.034
ns	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9673 ± 0.0045	0.9645 ± 0.0049
H_0	67.31 ± 0.96	67.81 ± 0.92	67.63 ± 0.57	67.27 ± 0.66
$\Omega_{\rm m}$	0.315 ± 0.013	0.308 ± 0.012	0.3104 ± 0.0076	0.3156 ± 0.0091

Precision cosmology

• *But this is model-dependent*: What if the primordial power spectrum is *not* a power law?

Wiggly-whipped inflation

Hazra, Shafieloo, Smoot & Starobinsky (2014ab, 2016)

- Step in the potential → wiggles in the power spectrum
- Better fit than power law
- at the expense of (a few) extra parameters

- CMB alone cannot distinguish the model
- 2D (CMB) \rightarrow 3D (LSS)
- Can we use the LSS to distinguish these models?

Wiggly-whipped inflation

Hazra, Shafieloo, Smoot & Starobinsky (2014ab, 2016)

- Step in the potential → wiggles in the power spectrum
- Better fit than power law
- at the expense of (a few) extra parameters

- CMB alone cannot distinguish the model
- 2D (CMB) \rightarrow 3D (LSS)
- Can we use the LSS to distinguish these models?

1 Introduction

2 Models and simulations

- Models
- The Simulations
- 3 Results
- (4) Halo alignment in ACDM and modified gravity

5 Summary

Primordial power spectrum

- Reference model: Planck 2015 TTTEEE (P15)
- Wiggly-whipped inflation (Hazra et al. 2014ab, 2016): WWIA, WWID, WWI
- Planck 2015 TTTEEE+HFI (P15+HFI)
- The WWI models give better fit to the CMB data than power law: indistinguishable
- Can we use the LSS to distinguish these models?

Benjamin L'HUILLIER (KASI)

Primordial power spectrum

- Reference model: Planck 2015 TTTEEE (P15)
- Wiggly-whipped inflation (Hazra et al. 2014ab, 2016): WWIA, WWID, WWI
- Planck 2015 TTTEEE+HFI (P15+HFI)
- The WWI models give better fit to the CMB data than power law: indistinguishable

• Can we use the LSS to distinguish these models?

Benjamin L'HUILLIER (KASI)

The simulations

- $\circ~\ensuremath{\textit{N}}\xspace$ N-body simulations with $GADGET\mathchar`-2$ Springel 2005
- 5 models \times 15 random realizations
- Volume: $L = 1.89 h^{-1}$ Gpc, $N = 1024^3$ (DESI survey)

Model	Ω_{m}	$H_0 ({\rm kms^{-1}Mpc^{-1}})$	σ_8	n _s
P15	0.317	67.05	0.836	0.9625
WWIA	0.320	66.86	0.834	42 - 53
WWID	0.318	67.01	0.842	-
WWI'	0.317	67.04	0.834	-
P15+HFI	0.319	66.93	0.816	0.9619

1 Introduction

2 Models and simulations

3 Results

4 Halo alignment in ACDM and modified gravity

5 Summary

Matter power spectrum

L'Huillier et al. (2017, in prep.)

Relative difference $P(k)/\langle P_{P15}(k) \rangle - 1$

$$\begin{split} \delta(\mathbf{x}) &= (\rho(\mathbf{x}) - \bar{\rho})/\bar{\rho}, \\ P(k) &= \frac{1}{V} \left\langle |\delta(\mathbf{k})|^2 \right\rangle_{|\mathbf{k}|=k}. \end{split}$$

- Power spectrum calculated by COMPUTEPK (L'Huillier 2014)
- Features seem to vanish in the non-linear regime. effect of binning?
- WWID and P15+HFI can be distinguished, but not WWIA, WWID and P15

Haloes: mass and correlation functions

L'Huillier et al. (2017, in prep.)

No extra information

Matter density

L'Huillier et al. (2017, in prep.)

Halo mass density

L'Huillier et al. (2017, in prep.)

1 Introduction

- 2 Models and simulations
- 3 Results

4 Halo alignment in ΛCDM and modified gravity

- Halo alignment in ACDM
- Halo alignment in modified gravity and dark energy

5 Summary

Tidal Torque Theory (White 1984)

- Initial angular momentum: misalignment between inertia tensor of the proto-galaxy and the tidal field
- Subsequent evolution: non-linear (mergers). Does it still stand? Not so much (Porciani et al. 2002)
- Studying galaxy orientation is important for understanding their formation
- Intrinsic alignment is a systematic for lensing surveys (EUCLID)
- 2 types of alignments:
 - Large-scale (with the LSS)
 - Small-scale: central-satellite, satellite-satellite

Shape alignment

 $\gamma = (\mathbf{a}_T, \mathbf{r})$: angle between major axis (target) and direction neighbour $\varepsilon = (\mathbf{a}_N, \mathbf{r})$: angle major between the major axis of the neighbour and the direction of the target

Alignment major axis - neighbour

L'Huillier et al. (2017a) MNRAS 466, 4875

•
$$\gamma = (\mathbf{a}_{\mathsf{T}}, \mathbf{r})$$

- Position of the neighbour aligned with the major axis of the target
- Alignment increases with mass
- Little dependence on the large-scale density

DM haloes in modified gravity

L'Huillier et al. (2017b) MNRAS 468, 3174

Studing DM Haloes in MG

- GR or modified gravity (MG)?
- How do haloes form in MG?
- Can the alignment tell us somehting about MG?

Simulations

- f(R) (10⁻⁴, 10⁻⁵, 10⁻⁶): 256 h^{-1} Mpc, 512³, and 1 h^{-1} Gpc, 1024³
- DGP (r = 1.2): 250 h^{-1} Mpc, 512³
- Dynamical DE Baldi et al 2012: $1 h^{-1}$ Gpc, 1024³

Alignment of interacting pairs

- ϕ : angle between the spins of interacting pairs
- f(R): weaker alignment in low-density
- DGP: too little statistics?
- Benjamin L'HUILLIER (KASI)

Alignment with the large-scale structures (LSS)

How to characterize the LSS?

- Overdensity $\delta(\mathbf{x}) = \rho(\mathbf{x},t)/\bar{\rho}(t) 1$ (x: comoving coordinates)
- calculate the tidal field $T_{ij} = \partial_i \partial_j \phi$, where $\nabla^2 \phi = \delta$,
- Eigenvectors \hat{e}_i of **T**: direction of contractions ($\lambda_i > 0$) or expansion ($\lambda_i < 0$)
- Sort eigenvalues $\lambda_1 \leq \lambda_2 \leq \lambda_3$
- Voids, filaments, walls, knots have 0,1,2, or 3 eigenvalues $> \lambda_{thresh}$. we chose $\lambda_{thresh} = 0.4$ (visually ok)
- \hat{e}_3 normal to walls; \hat{e}_1 direction of the filaments

10 *

10

102

101

100

2011

103

10.7

10.4

 10^{-5}

10*

10 1

Alignment with the LSS

L'Huillier et al. (2017b) MNRAS 468, 3174

 Alignment of the major axis of haloes witht the directions of the walls (dash-dotted) and filaments (dashed)

- f512 and DGP: box too small, no difference
- EXP001 and ACDM agree, EXP003: weaker alignment

1 Introduction

- 2 Models and simulations
- 3 Results
- 4 Halo alignment in ACDM and modified gravity

Summary

- Degeneracy in the CMB: non-power law models can exist
- Can the LSS break the degeneracy?
 - Power spectrum normalization: still degeneracy (WWIA, WWI')
 - Halo mass and correlation functions: not helpful
 - Count-in-cell: the difference in the density PDF (large number of pixels)
 - Still holds for biased tracers at $z \simeq 0.7$
 - DESI, Euclid, LSST will probe these scales
- Halo alignment: stronger for massive haloes, independent of the density
- MG: little effect on the alignment
 - Assuming GR to model intrinsic alignment seems fine
- Baryons?

Summary

- Degeneracy in the CMB: non-power law models can exist
- Can the LSS break the degeneracy?
 - Power spectrum normalization: still degeneracy (WWIA, WWI')
 - Halo mass and correlation functions: not helpful
 - Count-in-cell: the difference in the density PDF (large number of pixels)
 - Still holds for biased tracers at $z \simeq 0.7$
 - DESI, Euclid, LSST will probe these scales
- Halo alignment: stronger for massive haloes, independent of the density
- MG: little effect on the alignment
 - Assuming GR to model intrinsic alignment seems fine
- Baryons?

감사합니다! ありがとうございました!