RESPONSE FUNCTION OF THE COSMIC DENSITY POWER SPECTRUM AND

Takahiro Nishimichi (Kavli IPMU)

w/ Francis Bernardeau (IAP) Atsushi Taruya (YITP)
Based on PLB 762 (2016) 247 and arXiv: 1708.08946 See also RESPRESSO webpage:

OBJECTIVES

- To extract information from large-scale clustering signals, we need
- an accurate theory/model
\Rightarrow to meet the low statistical error level of big surveys
- quick evaluation
\Rightarrow to explore multi-D cosmological parameter space
- Different approaches available
- Perturbation theory (and its variant)
- Accuracy: large scale good (?), small scale no
- Speed: high loop order (2 or 3 loops) takes time
- (N -body) simulations
- Accuracy: good (w/ sufficient volume/realizations, only after a careful convergence study)
- Speed: takes much more time
- RESPRESSO!
- A possible integration of the 2 approaches

PERTURBATION THEORY IS IN CRISIS

$$
z=0.375
$$

PERTURBATION THEORY IS IN CRISIS

$$
z=0.375
$$

PERTURBATION THEORY IS IN CRISIS

$$
z=0.375
$$

Blas, Garny, Konstandin '14 k [$\mathrm{h} / \mathrm{Mpc}$]

PERTURBATION THEORY IS IN CRISIS

$$
z=0.375
$$

Blas, Garny, Konstandin '14 k [h/Mpc]

PERTURBATION THEORY IS IN CRISIS

$$
z=0.375
$$

N -body

The success of the next-to-next-toleading (2 loop) order calculation just an illusion?

Blas, Garny, Konstandin '14 k [h/Mpc]

WHY?

- Perturbation theory (PT) is fine only when the quantity of interest is small and the series expansion is convergent
- Overdensity can reach >> 1 at present
- The fluid is assumed to follow an irrotational single-streaming flow
- Enters to multi-streaming phase after shell crossing (even if the initial condition is cold)
- These 2 things happen together (small scale, late time)
- The breakdown can propagate to large scales due to mode coupling
- The way how PT breaks down is totally non-trivial —> simulations!

WHAT TO MEASURE?

- Basic things that determine the nonlinear mode-coupling structure:

$$
\left\{F_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right), G_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right)\right\}
$$

$$
\left\{\Gamma_{\delta}^{(n)}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right), \Gamma_{\theta}^{(n)}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right)\right\}
$$

$$
K(k, q)=q \frac{\delta P_{n l}(k)}{\delta P_{l i n}(q)}
$$

STANDARD PT KERNEL

- Very, very basic things (not observable from sims, though...)

$$
\left\{F_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right), G_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right)\right\}
$$

continuity + Euler + Poisson eqs.
$\boldsymbol{V} \frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot[(1+\delta) \boldsymbol{v}]=0$,
$\boldsymbol{V} \frac{\partial \boldsymbol{v}}{\partial t}+H \boldsymbol{v}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\frac{1}{a} \nabla \phi$,

$$
\nabla^{2} \phi=4 \pi \mathcal{G} \bar{\rho} a^{2} \delta .
$$

$$
\begin{aligned}
& \tilde{\delta}(\mathbf{k}, \tau)-\sum_{n}^{\infty} a^{n}(\tau) \delta_{n}(\mathbf{k}), \quad \tilde{\partial}(\mathbf{k}, \tau)-\mathcal{H}(\tau) \sum_{n}^{\infty} a^{n}(\tau) \theta_{n}(\mathbf{k}) \\
& \delta_{n n}(\mathbf{k})-\int \mathrm{d}^{3} \mathbf{q}_{1} \ldots \int \mathrm{~d}^{3} \mathbf{q}_{n} \delta_{D}\left(\mathbf{k}-\mathbf{q}_{1 \ldots n}\right) F_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right) \delta_{1}\left(\mathbf{q}_{1}\right) \ldots \delta_{1}\left(\mathbf{q}_{n}\right), \\
& \theta_{n}(\mathbf{k})=\int \mathrm{d}^{3} \mathbf{q}_{1} \ldots \int \mathrm{~d}^{3} \mathbf{q}_{n} \delta_{D}\left(\mathbf{k}-\mathbf{q}_{1 \ldots n}\right) G_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right) \delta_{1}\left(\mathbf{q}_{1}\right) \ldots \delta_{1}\left(\mathbf{q}_{n}\right)
\end{aligned}
$$

GAMMA EXPANSION (eg., RegPT)

Bernardeau + ‘09
$\left\{\Gamma_{\delta}^{(n)}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right), \Gamma_{\theta}^{(n)}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right)\right\}$

$$
\begin{aligned}
& \text { final state (density or velocity) multi-point propagator } \\
& \frac{1}{p!}\left\langle\frac{\delta^{p} \Psi_{a}(\mathbf{k}, \eta)}{\delta \phi_{b_{1}}\left(\mathbf{k}_{1}\right) \ldots \delta \phi_{b_{p}}\left(\mathbf{k}_{p}\right)}\right\rangle=\delta_{\mathrm{D}}\left(\mathbf{k}-\mathbf{k}_{1}-\cdots-\mathbf{k}_{p}\right) \Gamma_{a b_{1} \ldots b_{p}}^{(p)}\left(\mathbf{k}_{1}, \ldots, \mathrm{k}_{p} ; \eta\right)
\end{aligned}
$$

initial state

- Can calibrate against sims
- Good ansatz known
- Simpler expression for the spectra
- Clear physical interpretation (Crocce \& Scoccimarro '06 for the 2 pt propagator)

Bernardeau, Taruya \& TN '14

VIRTUE OF RESUMMATION

- Better convergence: everything is positive definite
- BAO almost done at the lowest order

MORE INTUITIVE QUANTITY? RESPONSE!

large scale structure gravitational evolution
Input
$\left(\Omega_{m}, h, \ldots ; z\right)$

$P_{n l}(k)$
Output

MORE INTUITIVE QUANTITY? RESPONSE!

large scale structure gravitational evolution
Input
$\left(\Omega_{m}, h, \ldots ; z\right)$
$P_{l i n}(k)$

To a very good approximation
Output

MORE INTUITIVE QUANTITY? RESPONSE!

large scale structure gravitational evolution
Input
$P_{\text {lin }}(k)$

$$
K(k, q)=q \frac{\delta P_{n l}(k)}{\delta P_{l i n}(q)}
$$

Output

MORE INTUITIVE QUANTITY? RESPONSE!

large scale structure gravitational evolution
Input
$P_{\text {lin }}(k)$
$+\delta P_{\text {lin }}(k)$

$$
K(k, q)=q \frac{\delta P_{n l}(k)}{\delta P_{l i n}(q)}
$$

Output

MORE INTUITIVE QUANTITY? RESPONSE!

large scale structure gravitational evolution
Input
$P_{\text {lin }}(k)$
$+\delta P_{\text {lin }}(k)$

$$
P_{n l}(k)
$$

$$
K(k, q)=q \frac{\delta P_{n l}(k)}{\delta P_{l i n}(q)}
$$

Output $+\delta P_{n l}(k)$

RESPONSE FUNCTION

$$
K(k, q)=q \frac{\delta P_{n l}(k)}{\delta P_{l i n}(q)}
$$

RESPONSE FUNCTION: THE FIRST TRIAL

- From order-by-order to the full order discussion possible
- Can estimate the derivative from a simulation ensemble

$$
\hat{K}_{i, j} P_{j}^{\operatorname{lin}} \equiv \frac{P_{i}^{\mathrm{nl}}\left[P_{+, j}^{\operatorname{lin}}\right]-P_{i}^{\mathrm{nl}}\left[P_{-, j}^{\operatorname{lin}}\right]}{\Delta \ln P^{\operatorname{lin}} \Delta \ln q}
$$

TN, Bernardeau, Taruya '16 PLB

RESPONSE FUNCTION: SIM VS PT

Rescaled quantity:

$$
T(k, q) \equiv\left[K(k, q)-K^{\operatorname{lin}}(k, q)\right] /\left[q P^{\operatorname{lin}}(k)\right]
$$

initial wave mode $[\mathrm{h} / \mathrm{Mpc}]$

HIGH RES RESPONSE FUNCTION

- $1400 \mathrm{~N}=512^{\wedge} 3$ simulations to study fine structures of the response function
- Vs 2-loop calculation based on different schemes (SPT and RegPT)
- New phenomenological model introduced

TN, Bernardeau, Taruya '17
(arXiv:1708.08946)

RESPONSE FUNCTION AT $q \ll k$

- Response function goes to zero from simulations
- Extended galilean invariance
- This is nicely explained by SPT
- Not the case for RegPT

RESPONSE FUNCTION AT q~k

- Peaky structure decay as time goes by
- SPT behaves weirdly at late time
- RegPT has its strength in this regime
- Efficiently captures mode transfer between nearby modes

RESPONSE FUNCTION AT $\mathrm{k} \ll \mathrm{q}$

- We need phenomenology here anyway!

OUR MODEL

$$
\begin{aligned}
& K_{\text {model }}(k, q)=\left[\left(1+\beta_{k, q}+\frac{1}{2} \beta_{k, q}^{2}\right) K_{\text {tree }}^{\mathrm{SPT}}(k, q)\right. \\
& \left.\quad+\left(1+\beta_{k, q}\right) K_{1-\mathrm{loop}}^{\mathrm{SPT}}(k, q)+K_{2-\mathrm{loop}}^{\mathrm{SPT}}(k, q)\right] D\left(\beta_{k, q}\right)
\end{aligned}
$$

$D(x)= \begin{cases}\exp (-x), & \text { if } K_{\text {model }}(k, q)>0, \\ \frac{1}{1+x}, & \text { if } K_{\text {model }}(k, q)<0 .\end{cases}$
$\beta_{k, q}=\alpha_{k}+\alpha_{q}$ Regularize both in k and q
$\alpha_{k}=\frac{1}{2} k^{2} \sigma_{\mathrm{d}}^{2} ; \quad \sigma_{\mathrm{d}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\text {lin }}(q)$,

- Well-behaved over all q
- Eventually fails at high k

PRACTICAL USAGE? RECONSTRUCTION

- From the definition of a functional derivative

$$
\begin{gathered}
P_{\mathrm{nl} 1}\left(k ; \boldsymbol{p}_{1}\right) \approx P_{\mathrm{nl}}\left(k ; \boldsymbol{p}_{0}\right)+\int \mathrm{d} \ln q K(k, q) \\
\times\left[P_{\mathrm{lin}}\left(q ; \boldsymbol{p}_{1}\right)-P_{\mathrm{lin}}\left(q ; \boldsymbol{p}_{0}\right)\right],
\end{gathered}
$$

- Use this to predict $P_{n l}$ for cosmological model p_{1} given $P_{n l}$ for another model p_{0}

STARTING POINT: SIMULATION DATABASE

- P_{nl} database for the fiducial Planck 2015 cosmology from $10 \times 2048 \wedge 3$ sims
- Cosmic variance suppressed with Angulo-Pontzen technique
- Fractional error < 0.1\%
- Can smoothly interpolate over k and time

A SIMPLE IMPLEMENTATION

- Double the reliable k range from the pure RegPT prediction

MORE EXTREME MODELS

- Employ multi-steps
time (scale factor)

RESPRESSO PYTHON PACKAGE AVAILABLE!

(Rapid and Efficient SPectrum calculation based on RESponSe functiOn)

In [1]: \%pylab inline

 import respressoIn [3]: respresso_obj = respresso. respresso_core()
Hello. This is RESPRESSO. Load precomputed data files... RESPRESSO ready.

In [6]: respresso_obj.set_target(plin_target_spl)

In [7]: respresso_obj.find_path()

In [9]: kwave = respresso_obj.get_kinternal()

http://www-utap.phys.s.u-tokyo.ac.jp/~ nishimichi/public_codes/respresso/

SUMMARY

- $P(k)$ to a 2D quantity $K(k, q)$: more physical insight
- Difficulty in perturbative approaches
- Suppress small to large scale mode transfer!
- SPT and RegPT have good and bad behavior in different regimes
- RESPRESSO package available
- Response function is a natural interpolator over the cosmological parameter space
- Can go to k ~ 0.44 (0.35) h/Mpc at $\mathrm{z}=1$ (0.5) within 1%
- You can put your own simulation data if you do not like mine ;) http://www-utap.phys.s.u-tokyo.ac.jp/~nishimichi/public_codes/respresso/

