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OBJECTIVES
• To extract information from large-scale clustering signals, we need 

• an accurate theory/model 
➡ to meet the low statistical error level of big surveys 

• quick evaluation 
➡ to explore multi-D cosmological parameter space 

• Different approaches available 
• Perturbation theory (and its variant) 

• Accuracy: large scale good (?), small scale no 
• Speed: high loop order (2 or 3 loops) takes time 

• (N-body) simulations 
• Accuracy: good (w/ sufficient volume/realizations, only after a careful 

convergence study) 
• Speed: takes much more time  

• RESPRESSO ! 
• A possible integration of the 2 approaches
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The success of the next-to-next-to-
leading (2 loop) order calculation just 

an illusion?



WHY?
• Perturbation theory (PT) is fine only when the quantity of interest is 

small and the series expansion is convergent 

• Overdensity can reach >> 1 at present 

• The fluid is assumed to follow an irrotational single-streaming flow 

• Enters to multi-streaming phase after shell crossing (even if the 
initial condition is cold) 

• These 2 things happen together (small scale, late time) 

• The breakdown can propagate to large scales due to mode 
coupling 

• The way how PT breaks down is totally non-trivial —> simulations!



WHAT TO MEASURE?

{Fn(q1, . . . ,qn), Gn(q1, . . . ,qn)}

n

�(n)
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✓ (q1, . . . ,qn)

o

• Basic things that determine the nonlinear mode-coupling structure:

K(k, q) = q
�Pnl(k)

�Plin(q)



STANDARD PT KERNEL

{Fn(q1, . . . ,qn), Gn(q1, . . . ,qn)}
• Very, very basic things (not observable from sims, though…)

✔

✔

✔

continuity + Euler + Poisson eqs.
�(x) = ⇥(x)/⇥̄� 1

�(x) = � · v(x)



GAMMA EXPANSION (eg., RegPT)
n

�(n)
� (q1, . . . ,qn),�

(n)
✓ (q1, . . . ,qn)

o

Bernardeau, Taruya & TN ’14

final state (density or velocity)

initial state

multi-point propagator

Bernardeau + ‘09

• Can calibrate against sims 
• Good ansatz known 
• Simpler expression for the spectra 
• Clear physical interpretation (Crocce & 

Scoccimarro ’06 for the 2pt propagator)

Standard PT

Exp. asymptote



VIRTUE OF RESUMMATION

simply chosen at the center of the n-th radial bin, i.e., rn ¼
ðrmin þ rmaxÞ=2.

Equation (4.2) usually suffers from the ambiguity of the
zero-point normalization in the amplitude of two-point
correlation function, because of the lack of the low-k
powers due to the finite boxsize of the simulations. With
the 1; 0243 grids and the boxsize of Lbox ¼ 1h%1 Gpc;
however, we can safely evaluate the two-point correlation
function around the baryon acoustic peak. Comparison
between different computational methods, together with
convergence check of this method, is presented in
Appendix C.

Finally, similar to the estimation of power spectrum, the
finite-mode sampling also affects the calculation of the
two-point correlation function. We thus correct it by sub-
tracting and adding the extrapolated linear density field as
!̂ðrÞ % !̂linðrÞ þ !linðrÞ, where !̂lin is the correlation func-
tion estimated from the Gaussian density field, and !lin is
the linear-theory prediction of two-point correlation
function.

B. Results in real space

1. Power spectrum

Before addressing a quantitative comparison between
the N-body simulation and improved PT, we first discuss
the convergence properties of the improved PT, and con-
sider how well the calculation based on the improved PT
does improve the prediction compared to the standard PT.

Figure 4 plots the overall behaviors of the nonlinear
power spectrum of density fluctuation, Pðk; zÞ &
P11ðk; zÞ, given at z ¼ 0, adopting the WMAP3 cosmologi-
cal parameters. In the left panel, the results of standard PT
are shown, and the contributions to the total power spec-
trum up to the two-loop diagrams are separately plotted.
On the other hand, the right panel shows the results of the
improved PT. We plot the contributions up to the second-
order Born approximation labeled as MC1 and MC2.
In Fig. 4, there are clear distinctions between standard

and improved PTs. While the loop corrections in standard
PT change their signs depending on the scales and exhibit
an oscillatory feature, the corrections coming from the
Born approximation in the improved PT are all positive
and mostly the smooth function of k. Further, the higher-
order corrections in the improved PT have a remarkable
scale-dependent property compared to those in the stan-
dard PT; their contributions are well localized around some
characteristic wave numbers, and they are shifted to the
higher k modes as increasing the order of PT. These trends
clearly indicate that the improved PTwith closure approxi-
mation has a better convergence property. Qualitative be-
haviors of the higher-order corrections quite resemble the
predictions of RPT by Crocce and Scoccimarro [34].
Now, let us focus on the behavior of BAOs, and

discuss how the convergence properties seen in Fig. 4
affect the predictions of BAO features. In Fig. 5, adopting
the WMAP3 cosmological parameters, we plot the ratio
PðkÞ=Pno-wiggleðkÞ, where the function Pno-wiggleðkÞ is the

FIG. 4 (color online). Convergence properties of standard PT (left) and improved PT (right) expansions in the matter power
spectrum. In each panel, the higher-order contributions to the total power spectrum labeled as Pnl is separately plotted. In the left panel,

one-loop and two-loop corrections in the standard PT P1-loop
11 and P2-loop

11 , are plotted, while in the right panel, the mode-coupling

corrections PðMC1Þ
11 and PðMC2Þ

11 in the improved PT given at Eqs. (3.12) and (3.13), respectively, are shown (labeled as MC1 and MC2),
together with the first term in Eq. (3.11) [labeled as G2P0]. Note that the dashed lines indicate the negative values.

TARUYA et al. PHYSICAL REVIEW D 80, 123503 (2009)

123503-8

Standard PT

positive

positive

Improved PT Pnl(k)
[�(1)]2P0

1-loop
2-loop

(RegPT)

positive

negative

negative

Taruya, TN + ‘12

• Better convergence: everything is positive definite 
• BAO almost done at the lowest order
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MORE INTUITIVE QUANTITY? RESPONSE!

large scale structure gravitational evolution

Pnl(k)

Input

Output

Plin(k)

+�Plin(k)
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RESPONSE FUNCTION

I�want�to�study�this�mode�at�some�late�time�t

what�is�the�impact�from�wave�mode�q�at�the�initial�time�t0?

K(k, q) = q
�Pnl(k)

�Plin(q)

k

q1 q2 q3



RESPONSE FUNCTION: THE FIRST TRIAL
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linear power spectrum over a finite interval of wavenum-
ber q, evolve them to a late time, and take the difference
between the power spectra measured from the two. That
is

K̂i,jP
lin
j ≡

P nl
i [P lin

+,j ] − P nl
i [P lin

−,j ]
∆ ln P lin∆ ln q

, (3)

where the two perturbed linear spectra are given by

ln

[
P lin
±,j(q)

ln P lin(q)

]
=

{
±1

2
∆ ln P lin if q ∈ [qj , qj+1),

0 otherwise,
(4)

In the above, the index j runs over the wavenumber bins
for the linear power spectrum and we set a log-equal bin-
ning, ln qj+1 − ln qj = ∆ ln q. The other index i is used
for the wavenumber bin of the nonlinear power spectrum,
which we set identically to that of the linear counter-
part. It is straightforward to show that the estimator K̂
approaches to the kernel function K defined in Eq. (1)
when the bin width and the variation in the input linear
spectra are small. The definition (1) is advantageous in
that it allows the measurement in this way at the fully
nonlinear level [16].

Numerical analysis: We adopt a flat-ΛCDM cosmol-
ogy consistent with the 5yr observation by the WMAP
satellite [6] with parameters (Ωm, Ωb/Ωm, h, As, ns) =
(0.279, 0.165, 0.701, 2.49× 10−9, 0.96), which are the cur-
rent matter density parameter, baryon fraction, the Hub-
ble constant in units of 100km/s/Mpc, the scalar am-
plitude normalized at k0 = 0.002Mpc−1 and its index,
respectively. The matter transfer function is computed
with these parameters using the CAMB code [7].

We run three sets of simulations with different volume
and number of particles as listed in Table I. They are in-
tended to confirm the convergence of the measurements
of the kernel function. Initial conditions are created using
a parallel code developed in [8, 9] based on the second-
order Lagrangian PT (e.g., [10, 11]). The starting red-
shifts shown in the table are determined to minimize the
sum of the transient effect caused by the imperfect ini-
tial condition and the error in the tree-force calculation,
which is problematic when particles are very close to the
pre-initial grid points [12]. We follow the time evolu-
tion of the matter distribution using Gadget2 [13] with
the tree-PM calculation. We finally measure the power
spectrum by fast Fourier transform of the Cloud-in-Cell
(CIC) density estimates on 10243 grid points. We reduce
the smoothing effect by simply dividing the density field
by the CIC kernel in Fourier space.

For each set of simulations, we prepare multiple ini-
tial conditions with linear power spectra perturbed by
±1% (i.e., ∆ ln P lin = ln(1.01) − ln(0.99) ≃ 0.02) over
qj ≤ q < qj+1. The q-bin starts at q1 = 0.006h Mpc−1

(0.012h Mpc−1) for L10-N9 (L9-N9 and L9-N8) and we
set the bin width as ∆ ln q = ln(

√
2). We consider 15 or

13 bins depending on the simulation set as listed in“bins”
column of Table I. We run four random realizations for

the L9-N9 and L9-N8 to estimate the statistical scatter,
and the initial conditions with perturbed spectra at dif-
ferent bins are created with exactly the same random
phases for every realization of every set. The total num-
bers of runs used in this analysis are also shown in Ta-
ble I.

TABLE I: Simulation parameters. Box sizes are in unit of
h−1Mpc.

name box particles start-z bins runs total

L9-N9 512 5123 31 15 4 120

L9-N8 512 2563 15 13 4 104

L10-N9 1024 5123 31 15 1 30

Shape of the kernel function and comparison with PT
results.— We are now in position to present the kernel
function measured from N -body simulations. The com-
bination K(k, q)P lin(q) is plotted at three fixed k as a
function of q in Fig. 1. This combination is such that it
contributes with uniform weights per decade in integral
(2). We show by vertical arrows the position of the k-
bin (the bin center in log) for the kernel presented in each
panel. We show the three simulation results by filled sym-
bols (L9-N9), lines (L9-N8) and open symbols (L10-N9).
Positive (negative) values of K(k, q) are shown by upper
triangles or solid lines (lower triangles or dashed lines).
The vertical error bars of filled triangles depict the sta-
tistical error estimated from the scatter among different
realizations. The heavy overlap among three simulations
ensures that the result is converged against the resolution
and volume of the simulations. We hereafter discuss the
results of L9-N9, which has the best spatial resolution.

FIG. 1: Kernel function measured from simulations. We plot
|K(k, q)|Plin(q) as a function of initial wavenumber q for a
fixed value of final wavenumber k indicated by the vertical
arrow in the panels. Filled (open) symbols show the measure-
ment from L9-N9 (L10-N9), while lines depict L9-N8. Positive
values are shown by upper triangle or solid line, while lower
triangles and dashed line show negative contribution.

At low redshift, we can see a strong peak at k = q aris-
ing from the trivial linear calculation. Nonlinear coupling
then gradually grows with time and the peak feature gets

TN, Bernardeau, Taruya ’16 PLB
• From order-by-order to the full 

order discussion possible 
• Can estimate the derivative from a 

simulation ensemble

wave mode kno
nl

in
ea

r P
(k

) final state
wave mode q

lin
ea

r P
(k

) initial condition

K < 0

K > 0

final wave 
mode k

initial wave mode q [h/Mpc]



RESPONSE FUNCTION: SIM VS PT

initial wave mode [h/Mpc]

q ≧ 2k are shown

• SPT (2-loop) >> N-body @ high q 
• This is exactly where PT breaks 

down 
• What N-body tells us is: 

“Physics at strongly nonlinear regime 
does not propagate to large scales” 

Rescaled quantity:



HIGH RES RESPONSE FUNCTION
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FIG. 2. Response function as a function of wavenumber q for various fixed k values and at di↵erent redshifts as indicated in the
panels. Simulation data are shown by triangles with error bars (upward triangles for positive values, and downward triangles
for negative values of K(k, q)). Di↵erent analytical predictions are also shown: standard perturbation theory (dotted), RegPT
(dashed) and a new hybrid model (25) proposed in this paper (solid). Data points are sparse on q > 0.5hMpc�1 simply because
of our simulation design.

III. RESPONSE FUNCTION FROM
PERTURBATION THEORY

In this section, we present analytical calculations of the
response function based on perturbation theory (PT).
The results are confronted with the response function
measured from N -body simulations. As we will see be-

low, the predictions made with the standard and re-
summed PT treatments do not perfectly match the simu-
lation results, but in several di↵erent regimes, they quan-
titatively explain the measured results of response func-
tion. We discuss the reasons for these, and then propose
a simple PT model that incorporates all the necessary
ingredients to quantitatively explain the overall trends

• 1400 N=512^3 simulations to study 
fine structures of the response 
function 

• Vs 2-loop calculation based on 
different schemes (SPT and RegPT) 

• New phenomenological model 
introduced

TN, Bernardeau, Taruya ’17 
(arXiv:1708.08946)



RESPONSE FUNCTION AT q << k

• Response function goes to zero 
from simulations 

• Extended galilean invariance 

• This is nicely explained by SPT 

• Not the case for RegPT



• Peaky structure decay as time goes by  

• SPT behaves weirdly at late time  

• RegPT has its strength in this regime 

• Efficiently captures mode transfer 
between nearby modes

RESPONSE FUNCTION AT q~k



• We need phenomenology here anyway!

RESPONSE FUNCTION AT k << q



• Well-behaved over all q 

• Eventually fails at high k

OUR MODEL

Regularize both in k and q



PRACTICAL USAGE? RECONSTRUCTION

• From the definition of a functional derivative

• Use this to predict Pnl for cosmological model p1 given Pnl for 
another model p0



STARTING POINT: SIMULATION DATABASE

• Pnl database for the fiducial Planck 2015 cosmology from 10 x 2048^3 sims 
• Cosmic variance suppressed with Angulo-Pontzen technique 
• Fractional error < 0.1% 

• Can smoothly interpolate over k and time



A SIMPLE IMPLEMENTATION

• Double the reliable k range from the pure RegPT prediction



MORE EXTREME MODELS
• Employ multi-steps



MORE EXTREME MODELS
• Employ multi-steps
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pn and p
0

, on the same plane with a constant interval
in ⌦

m

. Note that the scale factor ai (i = 0, ..., n) are
all determined to give the same integral (28) of the lin-
ear power spectrum as the target model pn+1

up to the
wavenumber q

mat

.
After we fix the path, we then evaluate the response

function at the models between the step, pi+1/2, at which
⌦

m

equals to the average of those at pi and pi+1

when we
make a step from pi to pi+1

except for i = n. Since we
have the kernel template only on a plane shown in Fig. 17,
we simply use the response function evaluated at pn for
the last step from pn to pn+1

. The whole procedure can
be summarized as

P

nl

(k;pi+1

) = P

nl

(k;pi) +

Z

d ln q K(k, q;pi+1/2)

⇥ [P
lin

(q;pi+1

)� P

lin

(q;pi)] ,

(for i = 0, . . . , n� 1) (30)

P

nl

(k;pn+1

) = P

nl

(k;pn) +

Z

d ln q K(k, q;pn)

⇥ [P
lin

(q;pn+1

)� P

lin

(q;pn)] . (31)

An example three-step reconstruction can be found in
Fig. 16, where the linear and the nonlinear spectra are at
each step are shown on the left and right panel, respec-
tively. Here the target model (EXT015, see Table I) and
the fiducial model (PL15) are plotted by the solid lines,
and the two intermediate steps are by the dotted lines.
On the left panel, we show by the horizontal arrow the
location of the wavenumber k

mat

below which we adjust
the amplitude of the linear spectra. On the other hand,
we show the expected maximum wavenumber k

max

with
↵

max

= 1 on the right panel (see later discussion on how
we determine k

max

in the multi-step reconstruction in
more detail).

We compare the reconstructed power spectra with dif-
ferent number of steps in Fig. 18. We consider a recon-
struction from the PL15 model to the EXT015 model in
this example, which are quite apart in the linear power
spectra. In the top panel, the simplest single-step re-
construction described in the previous section is plotted
by the dashed line, which should be compared to the red
symbols obtained directly from simulations performed for
the target cosmology. We also show in the top panel the
results based on Eq. (30) with di↵erent number of steps
(solid, almost on top of each other). Note that we do
not have to perform the last step from pn to pn+1

in
Eq. (31), since this particular target model is located on
the plane where the precomputed kernel template is avail-
able. Thus, we use only Eq. (30) to obtain the curves in
this figure. The ratio of the reconstructed spectra and
the direct simulation result are shown in the lower three
panels with the corresponding line types.

Unlike the previous example, the ratio exhibit an oscil-
latory feature around unity with the amplitude reaching
to ⇠ 5%. With the response function evaluated at the
intermediate cosmological model, even the single-step re-
construction works better than the previous procedure

FIG. 18. Multi-step reconstruction from PL15 to EXT015 at
z = 2 (�

8

scaled to this redshift is 0.51 for this model). We
show the fiducial and the target nonlinear power spectra by
symbols in the top panel. The results of the reconstruction
with di↵erent number of steps are also shown by lines. These
are almost on top of each other (i.e., solid curves), except
the one with a single step and the response is evaluated at
the fiducial model (dashed). We show in the lower panels the
ratio of the simulated and reconstructed power spectra at the
target cosmology. The horizontal dotted lines mark the ±1%
accuracy interval.

(compare the solid and the dashed curves in the second
panel of Fig. 18). The oscillatory feature in the ratio
in the bottom panels is significantly suppressed already
by choosing a more appropriate cosmological model at
which the response function is evaluated. The result gets
improved with two steps but is almost the same when
we further increase the number of steps, suggesting the
stability of our procedure against number of steps.

We evaluate the analytical response function multi-
ple times in this procedure, and the estimated maximum
wavenumber k

max

for an accurate prediction of the func-
tion can vary at di↵erent steps. To be conservative, we
identify the final estimate of k

max

for a successful recon-
struction to the smallest one among those evaluated at
every reconstruction step. In the example of Fig. 18,

Ωm = 0.3156

Ωm = 0.15



RESPRESSO PYTHON PACKAGE AVAILABLE!

http://www-utap.phys.s.u-tokyo.ac.jp/~nishimichi/public_codes/respresso/

(Rapid and Efficient SPectrum calculation based on RESponSe functiOn)

http://www-utap.phys.s.u-tokyo.ac.jp/~nishimichi/public_codes/respresso


SUMMARY

http://www-utap.phys.s.u-tokyo.ac.jp/~nishimichi/public_codes/respresso/

• P(k) to a 2D quantity K(k,q): more physical insight 
• Difficulty in perturbative approaches 

• Suppress small to large scale mode transfer! 
• SPT and RegPT have good and bad behavior in different 

regimes  
• RESPRESSO package available 

• Response function is a natural interpolator over the 
cosmological parameter space 

• Can go to k ~ 0.44 (0.35) h/Mpc at z=1 (0.5) within 1% 
• You can put your own simulation data if you do not like mine ;)

http://www-utap.phys.s.u-tokyo.ac.jp/~nishimichi/public_codes/respresso

