Evaluating cosmological
tensions using posterior
oredictions
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Quotes about statistics

* “There are lies, damned lies and statistics.”

* Mark Twain

e “Statistics are used much like a drunk uses a lamppost: for support, not
Illumination.”

. Vic Scully

e “There are two ways of lying. One, not telling the truth and the other,
making up statistics.”




What is Probability?

® In 1812 Laplace published Analytic
Theory of Probabilities

® He suggested the computation of
'the probability of causes and future
events, derived from past events”

® “Every event being determined by
the general laws of the universe,
there is only probability relative to
us.”

N iommd A ‘ SN il

hd da’




Comparing datasets

As there is only one Universe 2k KiDS-450
: . . o \N CFHTLenS (MID J16)
(setting aside the Multiverse), we L \N WMAPY+ACT+SPT

make observations of un- MR\ Planckl5
repeatable ‘experiments’ |

Therefore we have to proceed by
inference

Furthermore we cannot check or
probe for biases by repeating the
experiment - we cannot ‘restart the

Universe’ (however much we may - osuming Dlanck AU cosmology
Want tO) — Planck ACDM

If there is a tension (i.e. if two data
sets don't agree), can't take the
data again. Need to instead make
inferences with the data we have

§ 6dFGS
7 SDSS MGS

Alam et al 2016



Types of questions

® [here are three types of questions we can
use statistics to answer

1. The probability of data, given some
causes.

2. The probability of parameter values, given
- some model, which can be updated




Rules of Probability

® \We define Probability to have
numerical value

® \Ve define the lower bound, of
logical absurdities, to be zero,
P(2)=0

® \We normalize it so the sum of the

probabilities over all options is
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Bayes [heorem

® Bayes theorem is easily derived from the product
L P(B|A)P(A)
’(B)
® \We have some model M, with some unknown
parameters 6, and want to test it with some data D
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Model Selection

® |f we marginalize over the parameter uncertainties,
we are left with the marginal likelihood, or evidence

evidence Iikeli¢hood _ prior
E=P(D|M)=| P(D|8,M)P(®]M)dO

® |f we compare the evidences of two different models,
~we find the Bayes factor
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Occam S Razor

Best fit likelihood l

Occam factor

® Occam factor rewards the
model with the least
amount of wasted
parameter space (“most
predictive”)
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Bayesian Model

Comparison
® Jeffrey's (1961) scale:
Difference Jeffrey Trotta Odds
AlIn(E)<1 |No evidence NO 3:1
1<AIn(E)<2.5| substantial weak 12:1
2.5<AIn(E)<5 strong moderate | 150:1
AIn(E)>5 decisive strong >150:

® |f model priors are equal, evidence ratio and

Bayes tactor are the same




INnformation Criteria

® [nstead of using the Evidence (which is difficult
to calculate accurately) we can approximate it
using an Information Criteria statistic

® Ability to fit the data (chi-squared) penalised by
(lack of) predictivity

® Smaller the value of the IC, the better the model

® Bayesian Information Criterion (Schwarz, 19/78)
- point estimate approximation to the evidence

BIC = x?() + kIn N

® Kk is the number of free parameters and N is the number of data points




Complexity

® The DIC penalises models based
on the Bayesian complexity, the

complexily — 2.20¢

ﬂumber Of We”-meaSUFGd sigma = 10.0, complaxity = 0.003 ’
— gigma 1.0, complexity  0.232

parameters ] — sigmra = 0.1, tumk)luxuiv =1.4000 /

® [his can be computed through
the information gain (KL
divergence) between the prior
and posterior, minus a point
estimate

Cb — 9 (DKL [P((9|D7M)P(9|M)] — fKL) '-—10-3 -0/5 —USD —0.25 (..,J 025  0S) Db LOU
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® For the simple gaussian
likelihood, this is given by

Cy = x2(0) — x*(0)

® Average is over posterior




lensions

® [ensions occur when

KiDS-450
tWO datasets have | CFHTLenS (MID J16)
different preterred WMAPOLACTLSPT

values (posterior | Planck15
distributions) for some
common parameters

® [his can arise due to
® random chance

® systematic errors

® undiscovered physics



Forward modelling

® The goal of the game is to
‘extract’ the plastic teeth from a
crocodile toy's mouth by
pushing them down into the
gum. If the "sore tooth" is
pushed, the mouth will snap shut
on the player’s finger

® Bayes theorem allows for
forward modelling of the data

® Based on our previous
experience (how many teeth
have been pushed down), and
model (how many teeth remain),
we update our probability of a
new outcome




Data valigation

® How can we use Bayesian
statistics to make inferences
about the data itself?

® Prior predictive distribution
PUD}IM) = [ P({D}I6. M)P(8]M)as

® Posterior predictive
distribution

P({D2}| Dy, M) = / P({D2}[6, M)P(6]Dy, M)d6

® \We can compare predictive
data to actual repetitions or
further observations to
validate data




Posterior predictive p-
value

® Consider some test statistic 7(D), which we use
for checking for discrepancy

® For the next observation or repetition, the
posterior predictive distribution for 7(D»)is given

Vb (1(Ds1D1)) = [ P(T(D2l6)) POID1 )0

® [he posterior predictive p-value is the cumulative
probability for which the predicted value of the
test statistic exceeds the actual measured value
(using the new data)

" (T(Dg) > T(D2)|D1, 9)




Procedure

1.Make predictions for data using prior, and current data
2.Take new data
3.Validate data against prior

a.lf bad match, either check analysis pipeline, or
reconsider prior (and return to step 1)

4.Validate data against previous data

wl 4
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Diagnostic statistics

® Simple test y° per degree of freedom

® [Cquivalent to frequentist p-value test on data, but

wel

ghted by posterior predictions

® Raveri (2015): the evidence ratio

C

P(D1 U Dy| M)
(D1|M)P(D2| M)

(D17D27M) = J2

® Posterior predicted p-value of the normalised likelihood

of t

ne second dataset Dy, tested with respect to Dy.

® Jouo
ADIC

aki et al (2016): change in DIC
— DIC(D; U Dy) — DIC(D;) — DIC(D5)



Simple linear model

® Frequentist p-value - evaluate

Actual universe: y=2z° : m b

X° at best fit, and compare odel testedymmaxb | A7 e 0T ol

~0.9+/- 0.2

with cumulative density
function

® Bayesian p-value - average
new x° over while range,
weighted by previous o
pOS’[eriOI' Combined: 4.1

® |n simple linear case, with
wide (and flat) priors, reduces Image credit: Tamara Davis
to difference in x* between
first dataset and second,
averaged over prior range



Diagnostics |l: The

SUrprise

® Seehars et al (2016): the ‘Surprise’ statistic,
based on cross entropy of two distributions

® Cross entropy given by KL divergence

Dict, (P(61D2)[POIDY) = [ P(61D2) log

® Surprise is difference of observed KL
divergence relative to expected

® where expected assumes consistency

S = Dk, (P(6|Dy)||P(6|Dy)) — (D)

P

| P(0

® Not a posterior prediction test - average Is over

new posterior




Pros and Cons




® Simple 5th order polynomial )
model, with second data set el

—  secord set

offset from the first =

® Complexity of each individual
data, and also combined data,
IS the same

® Both measure the 5 free
parameters well

® DIC only changes due to
worsening of ;(2

® The ADIC goes from negative
(agreement) to positive
(tension) as the offset increases

® Odds ratio of agreement
I(Dl, D2) — exp{—ADIC(Dl, D2)/2}




KIDS vs Planck

® All tensions
considered here are In
light of a particular
model

® [f the model is
changed, the tension
may be alleviated

® [his IS not the same
as model selection




Application to lensing
- data

(2016) they Model T(Ss) | ADIC

compared the

, ACDM

cosmological

constraints from — fiducial systematics 210 1.26 Small tension

P|.aI’]CK CMB data — extended systematics 1.80 1.4 Small tension

with KiDS-450

weak |ensing data — large scales 1.90 1.24 Small tension
O Including curvature Neutrino mass 2.40 0.022 Marginal case

worseneo tension, Curvature 850 3.4 Large tension

but allowing for

dynamical dark Dark Energy (constantw) | 0.890 -1.98 Agreement

energy |mproved Curvature + dark energy 210 -1.18 Agreement

agreement



Curvature

KiDS-450 (A\CDM+Q,) 1l
Planck 2015 (A\CDM+Q,) s
KiDS (ACDM)
Planck (ACDM)

KiDS-450
Planck 2015




summary

® \\e can estimate the probability of a new dataset given the prior
predictive distribution, or posterior predictive distribution from a previous
dataset

® The posterior predictive p-value gives us the probability of some
discrepancy statistic evaluated relative to some posterior prediction

® A number of tension statistics exist, including the simple likelihood,
surprise, and DIC

® \We can also estimate the relative probability of tensions between data
sets using ratios of model likelihood (evidence)

® The Deviance Information Criteria is a simple method to evaluate
tensions, being sensitive to likelihood ratio, but calibrated against
parameter confidence regions (of individual and combined posteriors)

® Tension between the CMB and weak lensing shear tomography data
exists, but seems to be alleviated through changing the model to include
some dynamical dark energy



