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Quotes about statistics
• “There are lies, damned lies and statistics.” 

• Mark Twain 

• “Statistics are used much like a drunk uses a lamppost: for support, not 
illumination.” 

• Vic Scully 

• “There are two ways of lying. One, not telling the truth and the other, 
making up statistics.” 

• Josefina Vazquez Mota 

• “Definition of Statistics: The science of producing unreliable facts from 
reliable figures.” 

• Evan Esar 

• “Statistics are no substitute for judgment” 
• Henry Clay



What is Probability?
• In 1812 Laplace published Analytic 

Theory of Probabilities 

• He suggested the computation of 
"the probability of causes and future 
events, derived from past events” 

• “Every event being determined by 
the general laws of the universe, 
there is only probability relative to 
us.” 

• “Probability is relative, in part to [our] 
ignorance, in part to our knowledge.” 

• So to Laplace, probability theory is 
applied to our level of knowledge Pierre-Simon Laplace



Comparing datasets
• As there is only one Universe 

(setting aside the Multiverse), we 
make observations of un-
repeatable ‘experiments’  

• Therefore we have to proceed by 
inference 

• Furthermore we cannot check or 
probe for biases by repeating the 
experiment - we cannot ‘restart the 
Universe’ (however much we may 
want to) 

• If there is a tension (i.e. if two data 
sets don’t agree), can’t take the 
data again. Need to instead make 
inferences with the data we have
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Types of questions
• There are three types of questions we can 

use statistics to answer 
1. The probability of data, given some 

causes. 
2. The probability of parameter values, given 

some model, which can be updated 
through observations. 

3. The probability of the model, which can 
also be updated by observation.



Rules of Probability
• We define Probability to have 

numerical value 
• We define the lower bound, of 

logical absurdities, to be zero, 
P(∅)=0 

• We normalize it so the sum of the 
probabilities over all options is 
unity, ∑P(Ai)≡1

A

B

Sum Rule: P(A∪B)=P(A)+P(B)-P(A∩B) 

Product Rule: P(A∩B)=P(A)P(B|A)=P(B)P(A|B)



Bayes Theorem
• Bayes theorem is easily derived from the product 

rule 

• We have some model M, with some unknown 
parameters θ, and want to test it with some data D 

• Here we apply probability to models and 
parameters, as well as data

P(A|B) =
P(B|A)P(A)

P(B)

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

priorposterior
likelihood

evidence



Model Selection
• If we marginalize over the parameter uncertainties, 

we are left with the marginal likelihood, or evidence 

• If we compare the evidences of two different models, 
we find the Bayes factor 

• Bayes theorem provides a consistent framework for 
choosing between different models

E=P(D|M)=⌠⌡P(D|θ,M)P(θ|M)dθ

P(M1|D)

P(M2|D)
=

P(D|M1)P(M1)

P(D|M2)P(M2)

Model prior

likelihoodevidence

evidence

prior

Model posterior



Occam’s Razor

• Occam factor rewards the 
model with the least 
amount of wasted 
parameter space (“most 
predictive”)

Best fit likelihood
Occam factor

E =

Z
d✓P (D|✓,M)P (✓|M)

⇡ P (D|✓̂,M)⇥ �✓

�✓



Bayesian Model 
Comparison

• Jeffrey’s (1961) scale:      

• If model priors are equal, evidence ratio and 
Bayes factor are the same

Difference Jeffrey 
(1961)

Trotta 
(2006)

Odds
Δln(E)<1 No evidence No 

evidence
3:1

1<Δln(E)<2.5 substantial weak 12:1
2.5<Δln(E)<5 strong moderate 150:1

Δln(E)>5 decisive strong >150:
1



Information Criteria
• Instead of using the Evidence (which is difficult 

to calculate accurately) we can approximate it 
using an Information Criteria statistic 

• Ability to fit the data (chi-squared) penalised by 
(lack of) predictivity 

• Smaller the value of the IC, the better the model 
• Bayesian Information Criterion (Schwarz, 1978) 

- point estimate approximation to the evidence 

• k is the number of free parameters and N is the number of data points

BIC = �2(✓̂) + k lnN



Complexity
• The DIC penalises models based 

on the Bayesian complexity, the 
number of well-measured 
parameters 

• This can be computed through 
the information gain (KL 
divergence) between the prior 
and posterior, minus a point 
estimate 

• For the simple gaussian 
likelihood, this is given by 

• Average is over posterior

Cb = �2
⇣
DKL [P (✓|D,M)P (✓|M)]� dDKL

⌘

Cb = �2(✓)� �2(✓̄)



Tensions
• Tensions occur when 

two datasets have 
different preferred 
values (posterior 
distributions) for some 
common parameters 

• This can arise due to 

• random chance 

• systematic errors 

• undiscovered physics
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Forward modelling
• The goal of the game is to 

"extract" the plastic teeth from a 
crocodile toy's mouth by 
pushing them down into the 
gum. If the "sore tooth" is 
pushed, the mouth will snap shut 
on the player’s finger  

• Bayes theorem allows for 
forward modelling of the data 

• Based on our previous 
experience (how many teeth 
have been pushed down), and 
model (how many teeth remain), 
we update our probability of a 
new outcome



Data validation
• How can we use Bayesian 

statistics to make inferences 
about the data itself? 

• Prior predictive distribution 

• Posterior predictive 
distribution 

• We can compare predictive 
data to actual repetitions or 
further observations to 
validate data

P ({D̃}|M) =

Z
P ({D̃}|✓,M)P (✓|M)d✓

P ({D̃2}|D1,M) =

Z
P ({D̃2}|✓,M)P (✓|D1,M)d✓



Posterior predictive p-
value

• Consider some test statistic T(D), which we use 
for checking for discrepancy 

• For the next observation or repetition, the 
posterior predictive distribution for T(D2) is given 
by 

• The posterior predictive p-value is the cumulative 
probability for which the predicted value of the 
test statistic exceeds the actual measured value 
(using the new data) 

P
⇣
T (D̃2|D1)

⌘
=

Z
P
⇣
T (D̃2|✓)

⌘
P (✓|D1)d✓

p = P
⇣
T (D̃2) > T (D2)

���D1, ✓
⌘



Procedure
1.Make predictions for data using prior, and current data 
2.Take new data 
3.Validate data against prior 

a.If bad match, either check analysis pipeline, or 
reconsider prior (and return to step 1) 

4.Validate data against previous data 
a.If tension exists, either check analysis pipeline for 
both datasets or reconsider prior (and return to step 1) 

5.If current and new data are in good agreement, then 
make posterior inferences and model selection



Diagnostic statistics
• Simple test 𝜒2 per degree of freedom 

• Equivalent to frequentist p-value test on data, but 
weighted by posterior predictions 

• Raveri (2015): the evidence ratio 

• Posterior predicted p-value of the normalised likelihood 
of the second dataset D2, tested with respect to D1. 

• Joudaki et al (2016): change in DIC

C(D1, D2,M) =
P (D1 [D2|M)

P (D1|M)P (D2|M)

�DIC = DIC(D1 [D2)�DIC(D1)�DIC(D2)



Simple linear model
• Frequentist p-value - evaluate 
χ2 at best fit, and compare 
with cumulative density 
function 

• Bayesian p-value - average 
new χ2 over while range, 
weighted by previous 
posterior 

• In simple linear case, with 
wide (and flat) priors, reduces 
to difference in χ2 between 
first dataset and second, 
averaged over prior range

Image credit: Tamara Davis



Diagnostics II: The 
Surprise

• Seehars et al (2016): the ‘Surprise’ statistic, 
based on cross entropy of two distributions 

• Cross entropy given by KL divergence 

• Surprise is difference of observed KL 
divergence relative to expected 
• where expected assumes consistency 

• Not a posterior prediction test - average is over  
new posterior

S ⌘ DKL (P (✓|D2)||P (✓|D1))� hDi

DKL (P (✓|D2)||P (✓|D1)) =

Z
P (✓|D2) log


P (✓|D2)

P (✓|D1)

�



Pros and Cons
Approach Like ratio Evidence DIC Surprise

Average over 
parameters (Yes) Yes Yes Yes

From MCMC 
chain Yes No Yes Yes

Probabalistic Yes Yes Yes No

Symmetric Yes Yes Yes No



DIC
• Simple 5th order polynomial 

model, with second data set 
offset from the first 

• Complexity of each individual 
data, and also combined data, 
is the same 

• Both measure the 5 free 
parameters well 

• DIC only changes due to 
worsening of 𝜒2 

• The ΔDIC goes from negative 
(agreement) to positive 
(tension) as the offset increases 

• Odds ratio of agreement
I(D1, D2) ⌘ exp{��DIC(D1, D2)/2}



KiDS vs Planck
• All tensions 

considered here are in 
light of a particular 
model 

• If the model is 
changed, the tension 
may be alleviated 

• This is not the same 
as model selection



Application to lensing 
data

• In Joudaki et al 
(2016) they 
compared the 
cosmological 
constraints from 
Planck CMB data 
with KiDS-450 
weak lensing data 

• Including curvature 
worsened tension, 
but allowing for 
dynamical dark 
energy improved 
agreement

Model T(S8) ΔDIC

ΛCDM

— fiducial systematics 2.1σ 1.26 Small tension

— extended systematics 1.8σ 1.4 Small tension

 — large scales 1.9σ 1.24 Small tension

Neutrino mass 2.4σ 0.022 Marginal case

Curvature 3.5σ 3.4 Large tension

Dark Energy (constant w) 0.89σ -1.98 Agreement

Curvature + dark energy 2.1σ -1.18 Agreement



Curvature
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Summary
• We can estimate the probability of a new dataset given the prior 

predictive distribution, or posterior predictive distribution from a previous 
dataset 

• The posterior predictive p-value gives us the probability of some 
discrepancy statistic evaluated relative to some posterior prediction 

• A number of tension statistics exist, including the simple likelihood, 
surprise, and DIC 

• We can also estimate the relative probability of tensions between data 
sets using ratios of model likelihood (evidence) 

• The Deviance Information Criteria is a simple method to evaluate 
tensions, being sensitive to likelihood ratio, but calibrated against 
parameter confidence regions (of individual and combined posteriors) 

• Tension between the CMB and weak lensing shear tomography data 
exists, but seems to be alleviated through changing the model to include 
some dynamical dark energy


