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Implication of cosmic acceleration
• Breaking down our knowledge of particle physics: we have limited 

knowledge of particle physics bounded by testable high energy, and 
our efforts to explain the cosmic acceleration turn out in vain: 

Alternative mechanism to generate fine tuned vacuum energy 

New unknown energy component 

Unification or coupling between dark sectors 

• Breaking down our knowledge of gravitational physics: gravitational 
physics has been tested in solar system scales, and it is yet 
confirmed at horizon size: 

Presence of extra dimension 

Non-linear interaction to Einstein equation 

• Failure of standard cosmology model: our understanding of the 
universe is still standing on assumption: 

Inhomogeneous models: LTB, back reaction
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G𝛍𝝼 = 4πGN T𝛍𝝼 + 𝚫T𝛍𝝼

G𝛍𝝼 + 𝚫G𝛍𝝼 = 4πGN T𝛍𝝼

Dynamical Dark Energy: modifying matter

Geometrical Dark Energy: modifying gravity



Two windows on acceleration and gravitation
Their simultaneous determination allows for a consistency test and 

provides sensitivity to physics beyond the standard dark energy paradigm



Galaxy clustering seen in redshift space
• Spectroscopy wide surveys 

have provided the key 
observables of distance 
measures and growth 
functions, such as 2dF, SDSS, 
WiggleZ, BOSS 

• Most unknowns in the universe 
will be revealed through LSS 

Metric Perturbations Energy-Momentum
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Poisson equation

Euler equation

Continuity eq.Anisotropy

WL measures ! - " Galaxy-Galaxy correlation

Future wide deep field survey
Photometric wide-deep survey Spectroscopic wide-deep survey

G#$ = 4πGN T#$
YSS 2006, YSS, Kazuya 2009

Modified by mass screening effect

Coherent motions

YSS, Sawicki, Hu 2007

YSS, Koyama 2009



Two windows on acceleration and gravitation
Their simultaneous determination allows for a consistency test and 

provides sensitivity to physics beyond the standard dark energy paradigm



Standard ruler

Ds = (1+z) DA(z) 𝝷 

Ds ∼150 Mpc 

Ds = 𝝙z/H(z) 

DA

1/H



Cosmological probe of coherent motion
The first measured fσ8

DR7 VVDS



Cosmological probe of coherent motion



Motivation

We answer to it by providing theoretical prediction within 1% 
accuracy

High precision experiments planned to be launched



Cosmological probe of coherent motion

YSS, Taruya, Akira 2015

\

CMASS (YSS et.al. 2015)

Precision is matter!

CMASS (Chuan et.al. 2015)
CMASS (YSS et.al. 2015)



Power spectrum in redshift space

Squeezing effect at 
large scales

(Kaiser 1987)

Ps(k,𝝻) = Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k)



Anisotropy correlation without corrections
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Power spectrum in redshift space

Squeezing effect at 
large scales

(Kaiser 1987)

Ps(k,𝝻) = Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k)

Ps(k,μ) = [Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k) + Corrections … ]

Non-linear 
corrections 

Higher order 
polynomials

Finger of God 
effect

Fisher 1995; Scoccimarro 2004; Reid, White 2009; Taruya, Nishimichi, Saito 2010; Okumura, 
Seljak et.al 2010, 2011; Zhang et.al. 2011; Zheng, Song 2016



\

Ps(k,𝝻) = Pgg(k) + 2𝝻2Pg𝝷(k) + 𝝻4P𝝷𝝷(k)

Anisotropy correlation without corrections



Ps(k,μ) = [Pgg(k) + 2𝝻2PgΘ(k) + 𝝻4P𝛉𝛉(k) 
                   + 𝝻2A(k) + 𝝻4B(k)] exp[-(k𝝻σp)2]

Anisotropy correlation with corrections



Cosmological probe of coherent motion

YSS, Taruya, Akira 2015

\

CMASS (YSS et.al. 2015)

Precision is matter!
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Mapping of clustering from real to redshift spaces
Ps(k,𝝻) = ∫d3x eikx ⟨𝛅𝛅⟩

Ps(k,μ) = ∫d3x eikx ⟨ejv (𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩
= ∫d3x eikx exp{⟨ejv⟩c} [⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c]

• We understand RSD as a mapping from real to redshift space 
including stochastic quantity of peculiar velocity

• The mapping contains the contribution from two point correlation 
functions depending on separation distance, such as the cross 
correlation of density and velocity and the velocity auto correlation.

• The mapping also contains the contribution from one point 
correlation function of peculiar velocity which can be given by a 
functional form in terms of velocity dispersion σp.

Taruya, Nishimichi, Saito 2010



Non linear corrections

• We compare the theoretical predictions from RegPT and the 
measured spectrum of density fluctuations. Both are consistent up 
to quasi linear scale.

• As this correction is not relevant to RSD mapping, we will discuss it 
at later part of this talk when we need to explain the growth function 
projection.
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The contribution from two point correlations

Ps = ∫d3x eikx exp{⟨ejv⟩c} [⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c]

• The contribution from the cross correlation between density and 
velocity fields

⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c 

= j0 ⟨(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c  

+ j1⟨v(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c

+ j2⟨v(𝛅+𝝻2ϴ)⟩c⟨v(𝛅+𝝻2ϴ)⟩c

+ j2⟨vv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c

+ j2⟨vv⟩c⟨(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c 

+ O(> j3)



The contribution from two point correlations

Ps = ∫d3x eikx exp{⟨ejv⟩c} [⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c]

• We truncate the infinite polynomials above j2 order, then the 
following terms are defined as;

A(k,𝝻) = j1 ∫d3x eikx ⟨v(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c

B(k,𝝻) = j2 ∫d3x eikx ⟨v(𝛅+𝝻2ϴ)⟩c⟨v(𝛅+𝝻2ϴ)⟩c 

T(k,𝝻) = j2 ∫d3x eikx ⟨vv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c



The contribution from two point correlations
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• The theoretical predictions of A and B are acceptable, while the 
measured A and B are better to be exploited;
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Yi’s plot
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The contribution from two point correlations

Ps = ∫d3x eikx exp{⟨ejv⟩c} [⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c]

• The term contains both one and two point correlation contributions, 
and we are going to separate those

F(k,𝝻) = j2 ∫d3x eikx ⟨vv⟩c⟨(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c 



The contribution from two point correlations

Ps = ∫d3x eikx exp{⟨ejv⟩c} [⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c]

Ps = D1pt(k𝝻σp) ∫d3x eikx[Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k) + A(k,𝝻) + B(k,𝝻) + T(k,𝝻) + F(k,𝝻)]

• We would like to test whether higher order contributions of jn (n>2) 
is no longer contaminating mapping above threshold scale or not, 
by using the following residual test;

D1pt(k𝝻σp) = Ps / ∫d3x eikx[Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k) + A(k,𝝻) + B(k,𝝻) + T(k,𝝻) + F(k,𝝻)]

• If the truncation of correlated parts of perturbations is complete, 
then the measured residual would not show the explicit k 
dependence, but it will depend on kμ



D1pt = Ps(k,μ)/[Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k)+ A(k,𝝻) + B(k,𝝻) + T(k,𝝻) + F(k,𝝻)] 

• The residual term which is the subtraction of the measured spectrum by 
the perturbed terms including halo density fluctuations is well fitting to 
Gaussian FoG function as well

The contribution from two point correlations

kμ

Re
si

du
al

Yi Zheng, YSS 2016
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Issue of Accuracy
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The contribution from one point correlations

• The residual one point correlation function contribution can be 
identified as FoG effect, and it is also expanded into the infinite loop 
in terms of σp

Ps = ∫d3x eikx exp{⟨ejv⟩c} [⟨ejv(𝛅+𝝻2ϴ)(𝛅+𝝻2ϴ)⟩c+⟨ejv(𝛅+𝝻2ϴ)⟩c⟨ejv(𝛅+𝝻2ϴ)⟩c]

Ps = D1pt(k𝝻σp) ∫d3x eikx[Pδδ(k) + 2𝝻2PδΘ(k) + 𝝻4PΘΘ(k) + A(k,𝝻) + B(k,𝝻) + T(k,𝝻) + F(k,𝝻)]



The contribution from one point correlations

Well 
approximated to 

Gaussian

Issue of Precision



The contribution from one point correlations

Well 
approximated to 

Gaussian

Consistency in the threshold scale



The threshold scale
The measured growth functions are consistent with the residual test



The contribution from all higher order polynomials

The differences between the best fit and observed spectra are presented



The contribution from all higher order polynomials

The differences between the best fit and observed spectra are presented

A+B
A+B+T



Open new window to test cosmological models

Standard model New physics

Λ
Cold dark matter Quintessence dark energy

Phantom dark energyMassless neutrino

(DA, H-1, G𝛅, Gϴ, FoG)



Open new window to test cosmological models

Standard model New physics

Λ
Cold dark matter Quintessence dark energy

Phantom dark energyMassless neutrino

Hot or warm dark matter

Massive neutrino

Interacting dark matter

Unified dark matter

Decaying vacuum

Chameleon type gravity

 Dilaton or Symmetron

Vainstein type gravity

Inhomogeneity of universe

non-Friedman universe

(DA, H-1, G𝛅, Gϴ, FoG, New, New, …)



Precise determination on Ω𝝠

Standard model

Λ
Cold dark matter

Massless neutrino

(DA, H-1, G𝛅, Gϴ, FoG)

Quintessence dark energy

Phantom dark energy



The measured spectra with different Ω𝝠 
We vary Ω𝝠 coherently with BAO statistics, i.e. the observed sound 

horizon is fixed



Non linear corrections

• We compare the theoretical predictions from RegPT and the 
measured spectrum of density fluctuations. Both are consistent up 
to quasi linear scale.

• As this correction is not relevant to RSD mapping, we will discuss it 
at later part of this talk when we need to explain the growth function 
projection.



The growth function dependence of non-linearity 

• Non-linear spectrum: we use the perturbative theory and the simulation 
measurement, in order to classify the different growth function 
dependences

YSS, Yi, Oh, Taruya 2017 prepared
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The accurate measurement of growth functions

Ω𝝠

0.69 0.73 0.760.640.58

We achieve the 1% accuracy measurement after a long journey 
through perturbation theory and simulation template

YSS, Yi, Oh, Taruya 2017 prepared



The accurate measurement of growth functions

Ω𝝠

0.69 0.73 0.760.640.58

We achieve the 1% accuracy measurement after a long journey 
through perturbation theory and simulation template

YSS, Yi, Oh and Taruya prepared in 2017 YSS, Yi, Oh, Taruya 2017 prepared



The accurate measurement of growth functions

Ω𝝠

0.69 0.73 0.760.640.58

We achieve the 1% accuracy measurement after a long journey 
through perturbation theory and simulation template

YSS, Yi, Oh and Taruya prepared in 2017 YSS, Yi, Oh, Taruya 2017 prepared
0.73 0.76



The accurate measurement of growth functions

Ω𝝠

0.69 0.73 0.760.640.58

We achieve the 1% accuracy measurement after a long journey 
through perturbation theory and simulation template

YSS, Yi, Oh and Taruya prepared in 2017 YSS, Yi, Oh, Taruya 2017 prepared



The accurate measurement of growth functions

Ω𝝠

0.69 0.73 0.760.640.58

We achieve the 1% accuracy measurement after a long journey 
through perturbation theory and simulation template

YSS, Yi, Oh and Taruya prepared in 2017 YSS, Yi, Oh, Taruya 2017 prepared
0.640.58



The accurate measurement of growth functions

Ω𝝠

0.69 0.73 0.760.640.58
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Precise determination on Ω𝝠

Standard model

Λ
Cold dark matter

Massless neutrino

(DA, H-1, G𝛅, Gϴ, FoG)

Quintessence dark energy

Phantom dark energy



Plan for RSD emulator
• We provide RSD emulator based upon dark matter simulation 

measurements



Open new window to test cosmological models

New physics

? Chameleon type gravity

(DA, H-1, G𝛅, Gϴ, FoG, New, New, …)

Standard model

Massive neutrino



Accurate measurement of growth function

• The template should be made independent of the types of biased 
tracers, and it is prepared using dark matter particle simulations

• The structure formation grows coherently from the last scattering surface 
to the present epoch in most dark energy models. We test whether we 
can exploit the fiducial template to generate different cosmological 
models which is different by growth functions

• Non-linear spectrum: we use the perturbative theory and the simulation 
measurement, in order to classify the different growth function 
dependences

• Higher order polynomials: we split different growth function dependent 
terms in pieces, and apply zeroth order growth function multiplication

• We keep the same Gaussian FoG with one single parameter σp


