Limits on Statistical Anisotropy from Large-scale structure of the Universe

arXiv:1612.02645 (Phys.Rev.D95, 063508) arXiv:1704.02868 (<mark>accepted</mark> by MNRAS last night!)

Naonori Sugiyama (Kavli IPMU) Collaborators: Maresuke Shiraishi and Teppei Okumura

Next generation cosmology with large-scale structure: CosKASI-ICG-NAOC-YITP joint workshop @ Kyoto Univ., Sep.7-8, 2017

The beginning of the Universe

The beginning of the Universe

Lagrangian

$$\mathcal{L} = -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - V(\varphi)$$

Energy and pressure

$$\bar{\rho} = \frac{1}{2}\dot{\bar{\varphi}}^2 + V(\bar{\varphi}),$$
$$\bar{p} = \frac{1}{2}\dot{\bar{\varphi}}^2 - V(\bar{\varphi}),$$

If potential is flat (constant):

$$\bar{\rho} = \frac{1}{2}\dot{\bar{\varphi}}^2 + V(\bar{\varphi}),$$
$$\bar{p} = \frac{1}{2}\dot{\bar{\varphi}}^2 - V(\bar{\varphi}),$$

$$\varphi$$

$$V(\varphi) = \mathrm{const.}$$

If potential is flat (constant):

$$\bar{\rho} = \frac{1}{2}\dot{\bar{\varphi}}^2 + V(\bar{\varphi}),$$
$$\bar{p} = \frac{1}{2}\dot{\bar{\varphi}}^2 - V(\bar{\varphi}),$$

Cosmological constant.

$$\rho = -p$$

$$\varphi$$

$$V(\varphi) = \mathrm{const.}$$

If potential is nearly flat (constant):

$$\bar{\rho} = \frac{1}{2}\dot{\bar{\varphi}}^2 + V(\bar{\varphi}),$$
$$\bar{p} = \frac{1}{2}\dot{\bar{\varphi}}^2 - V(\bar{\varphi}),$$

Nearly scale-free power spectrum

$$\frac{k^3}{2\pi^2} P_{\delta\varphi}(k) \propto k^{n_{\rm s}-1}$$

 The spectral index is characterized by the derivative of potential:

$$n_{\rm s} - 1 = 2\eta - 6\varepsilon$$
 $\eta = \frac{V''}{V}$ $\varepsilon = \frac{1}{2} \left(\frac{V'}{V}\right)^2$

Departure from the scale-free:

Detection! $n_{\rm s} = 0.9652 \pm 0.0047$ Planck 2015

Nearly Gaussian:

$$P(\delta\varphi) \sim e^{iS(\delta\varphi)}$$

$$S = S(\delta\varphi^2) + S(\delta\varphi^3) + \cdots$$

Linear Non-Linear

Departure from the Gaussian:

No detection $f_{\rm NL}^{\rm local} = 0.8 \pm 5.0$

Adiabatic condition

$$S_{m\gamma} = rac{1}{3}\delta_m - rac{1}{4}\delta_\gamma = 0$$

- Multi-field inflation scenarios can break this
- Departure from adiabatic condition (Existence of isogurvature modes):

Parity-symmetry

$$P_{\delta\varphi}(\vec{k}) = P_{\delta\varphi}(-\vec{k})$$

Departure from the parity-symmetry:

Translational invariance:

$$\langle \delta \varphi(\vec{k}) \delta \varphi(\vec{k}') \rangle = (2\pi)^3 \delta_{\rm D} \left(\vec{k} + \vec{k}' \right) P_{\delta \varphi}(\vec{k})$$

Departure from the translational invariance:

Rotational invariance:

$$P_{\delta\varphi}(\vec{k}) = P_{\delta\varphi}(|\vec{k}|)$$

- Vector field inflation theories can break this.
- Departure from the rotational invariance:

Quadrupolar anisotropy

$$P_{\zeta}(\vec{k}) = P_{\rm iso}(k) \left[1 + g_* \left(\hat{k} \cdot \hat{p} \right)^2 \right]$$

The simplest model breaking statistical isotropy with preserving party-symmetry and translational invariance.

CMB experiments

Planck provides

$g_* = 0.002 \ \pm \ 0.016 \ (68\% CL)$

(Kim and Komatsu 2014)

Simulated with the asymmetric beam

Foreground-cleaned and beam-corrected

Before Beam Correction After Beam Correction

1) Hirata 2009 2) Pullen and Hirata 2010

 $-0.4 < g_* < 0.39~(95\% CL)$

from 2D photometric data of SDSS

3D spectroscopic data of BOSS

- **1, Theory** (M. Shiraishi, NS and T.Okumura, 2017) — Bipolar spherical harmonics
- 2, Measurement (NS, M.Shiraishi and T.Okumura, 2017) — BOSS — Survey window corrections
- 3, Future surveys

Spectroscopic galaxy surveys

We observe: 1) Right ascension 2) Declination 3) Redshift

Redshift space distortions:

$$1 + z = \frac{E_{\rm e}}{E_{\rm o}}$$

$$\approx 1 + \bar{z} + \frac{\vec{v} \cdot \hat{n}}{c}$$

The observed radial distance of galaxies is distorted by peculiar velocities.

 $P_{\mathbf{g}}(\vec{k}, \hat{n})$

Under the assumption of statistical isotropy, Legendre polynomials decomposition:

$$P_{g}(\vec{k}, \, \hat{n}) = \sum_{\ell} P_{\ell}(k) \, \mathcal{L}_{\ell} \left(\hat{k} \cdot \hat{n} \right)$$

Preferred direction $P_{\rm g}(ec{k},\,\hat{n},\,\hat{p})$

Quadrupolar anisotropy Preferred direction

$P_{ m g}(ec{k},\hat{n},\hat{p}) = \left(b + f(\hat{k}\cdot\hat{n})^2 ight)^2 \left\{1 + g_{*}\left[\left(\hat{k}\cdot\hat{p} ight)^2 - rac{1}{3} ight] ight\}P_{ m m}(k)$

Kaiser factor

The Legendre decomposition is not sufficient any more.

Legendre decomposition

$$\int \frac{d^2 \hat{n}}{4\pi} \int \frac{d^2 \hat{k}}{4\pi} \mathcal{L}_{\ell}(\hat{k} \cdot \hat{n}) P_{\rm g}(\vec{k}, \hat{n}, \hat{p}) =$$

Linear theory:

$$\begin{split} P_0^s(k) &= \left(b^2 + \frac{2}{3}bf + \frac{1}{5}f^2\right)P_{\delta\delta}^{\rm lin}(k),\\ P_2^s(k) &= \left(\frac{4}{3}bf + \frac{4}{7}f^2\right)P_{\delta\delta}^{\rm lin}(k),\\ P_4^s(k) &= \frac{8}{35}f^2P_{\delta\delta}^{\rm lin}(k). \end{split}$$

No primordial anisotropic contributions!!

Spherical harmonic decomposition

$$P_{\rm g}(\vec{k},\,\hat{n},\,\hat{p}) = \sum_{\ell m} \sum_{\ell' m'} P_{\ell\ell'}^{mm'}(k,\,\hat{p}) \, Y_{\ell m}(\hat{k}) \, Y_{\ell' m'}(\hat{n})$$

Bipolar Spherical harmonic decomposition

$P_{g}(\vec{k}, \,\hat{n}, \,\hat{p}) = \sum_{LM} \sum_{\ell\ell'} P_{\ell\ell'}^{LM}(k, \hat{p}) \, (Y_{\ell}(\hat{k}) \otimes Y_{\ell'}(\hat{n}))_{LM}$

Angular momentum coupling

Bipolar Spherical harmonic decomposition

$P_{\ell\ell'}^{LM}(k) = \sum_{mm'} \begin{pmatrix} \ell & \ell' & L \\ m & m' & M \end{pmatrix} P_{\ell\ell'}^{mm'}(k)$

Wigner 3j symbol

Angular momentum coupling

Bipolar Spherical harmonic decomposition

 $P_{\ell\ell'}^{LM}(k) = \sum \left(\begin{array}{cc} \ell & \ell' & L \\ m & m' & M \end{array} \right) P_{\ell\ell'}^{mm'}(k)$ mm'

Total angular momentum L = 0 : Legendre polynomials L > 0 : Statistical anisotropy

Quadrupolar anisotropy No primordial anisotropic constributions

$$P_{\ell\ell'}^{L=0,M=0}(k) = \delta_{\ell\ell'} P_{\ell}(k)$$

 $P_{\ell\ell'}^{L=2,M}(k) \propto g_* Y_{2M}(\hat{p})$

Survey geometry

DRIZ

$P_{\rm obs} = Q * P_{\rm theory}$

Q: window function

$$\begin{split} \left\langle \widehat{\xi}_{20}^{2M}(r) \right|_{A} \right\rangle &= Q_{0}(r) \, \xi_{20}^{2M}(r) + Q_{20}^{2M}(r) \, \left[\xi_{0}(r) - \left\langle \overline{\delta}^{2} \right\rangle \right] \\ &+ \frac{1}{5} \, \left[Q_{02}^{2M}(r) + Q_{22}^{2M}(r) + Q_{42}^{2M}(r) \right] \, \xi_{2}(r) \\ &+ \frac{1}{9} \, \left[Q_{24}^{2M}(r) + Q_{44}^{2M}(r) \right] \, \xi_{4}(r) \\ &+ \cdots, \end{split}$$

Bipolar Spherical harmonic decomposition of the window function

×20°

Survey geometry
Mindow effects
Anisotropic signal

$$\langle \hat{\xi}_{20}^{2M}(r) |_{A} \rangle = Q_{0}(r) \xi_{20}^{2M}(r) + Q_{20}^{2M}(r) [\xi_{0}(r) - \langle \bar{\delta}^{2} \rangle] + \frac{1}{5} [Q_{02}^{2M}(r) + Q_{22}^{2M}(r) + Q_{42}^{2M}(r)] \xi_{2}(r) + \frac{1}{9} [Q_{22}^{2M}(r) + Q_{44}^{2M}(r)] \xi_{4}(r) + \frac{1}{9} [Q_{22}^{2M}(r) + Q_{44}^{2M}(r)] \xi_{4}(r) + \cdots,$$

Bipolar Spherical harmonic decomposition of the window function

Survey geometry

Power spectrum

2pt correlation function

L=2M = -2, 1, 0, 1, 2

Power spectrum 2pt function

L=2M = -2, 1, 0, 1, 2

Power spectrum 2pt function

(L, M) = (2, 2)

Shaded regions:

mocks without statistical anisotropic signal Solid lines:

theory without statistical anisotropic signal **Points:**

observed data

$\begin{array}{l} \textbf{3D spectroscopic data of BOSS} \\ -0.09 < g_* < 0.08 \; (95\% \text{CL}) \end{array}$

	CMASS NGC	CMASS SGC	LOWZ NGC	LOWZ SGC	All
Power Spectrum	$-0.14 < g_* < 0.09$	$-0.14 < g_* < 0.18$	$-0.12 < g_* < 0.11$	$-0.18 < g_* < 0.19$	$-0.093 < g_{\star} < 0.079$
Correlation function	$-0.14 < g_{*} < 0.10$	$-0.13 < g_{st} < 0.18$	$-0.16 < g_{*} < 0.13$	$-0.19 < g_{st} < 0.23$	$-0.088 < g_{*} < 0.085$

$$\label{eq:spectroscopic data of BOSS} \begin{split} -0.09 < g_* < 0.08 \; (95\% CL) \end{split}$$

2D photometric data of SDSS $-0.4 < g_* < 0.39 (95\% CL)$

Future surveys

Summary

- First limits on statistical anisotropy from BOSS
- Bipolar spherical harmonic decomposition
- Estimator of the bipolar coefficients
- Survey geometry

$\begin{array}{l} \textbf{3D spectroscopic data of BOSS} \\ -0.09 < g_* < 0.08 \; (95\% CL) \end{array}$

Extra slides

Non-linear information

