On the gravitational redshift of cosmological objects

Kazuhiro Yamamoto (Hiroshima University)

Collaboration with

D. Sakuma(Hirohima), A. Terukina(Hiroshima), C. Hikage(IPMU)

Outline

- 1 Introduction gravitational redshift
- 2 Theoretical formulation
- 3 Satellite galaxy (virialized in a halo)
- 4 Intracluster gas
- 5 galaxies of void
- 6 Summary and conclusions

1. Introduction-gravitational redshift

Relativistic effect in large scale structures

Taruya-san's talk

Gravitational redshift in cluster of galaxies

2. Theoretical formulation

Newtonian gauge

$$ds^{2} = a(\eta)^{2} \left[-(1+2\psi)d\eta^{2} + (1+2\phi)d\vec{x}^{2} \right]$$

Geodesic equation: p is a physical energy for cosmological rest frame obs.

$$\frac{1}{p}\frac{dp}{d\eta} = -\mathcal{H} - \frac{\partial\phi}{\partial\eta} - \hat{p}^{i}\frac{\partial\psi}{\partial x^{i}}, \qquad \qquad \delta_{ij}\hat{p}^{i}\hat{p}^{j} = 1 \quad |\psi|, |\phi| \ll 1$$
$$\frac{d\psi(\eta, x^{i}(\eta))}{d\eta} = \frac{\partial\psi}{\partial\eta} + \frac{dx^{i}}{d\eta}\frac{\partial\psi}{\partial x^{i}} \qquad \qquad \frac{dx^{i}}{d\eta} = \hat{p}^{i}(1+\psi-\phi)$$

Solution up to the first order of the metric perturbation

 $\frac{1}{1+z_j} = \frac{p(\eta_0)}{p(\eta_j)} = \frac{a(\eta_j)}{a(\eta_0)} \exp\left\{-\int_{\eta_j}^{\eta_0} \left(\phi'(\eta) - \psi'(\eta)\right) d\eta - \psi(\eta_0, \vec{x}(\eta_0)) + \psi(\eta_j, \vec{x}(\eta_j))\right\}$

 η_j Time at the emission of photon from the j-th object η_0 Present epoch time $a(\eta_0) = 1$

We omit the ISW term because we consider objects of subhorizon scale and consider the relative gravitational redshift.

$$\int_{\eta_j}^{\eta_0} \left(\phi' - \psi'\right) d\eta \simeq \int_{\eta_1}^{\eta_0} \left(\phi' - \psi'\right) d\eta - \left(\phi'(\eta_1, \vec{x}(\eta_1)) - \psi'(\eta_1, \vec{x}(\eta_1))\right) \Delta \eta_j$$

 $\psi(\eta_0, \vec{x}(\eta_0))$ Gravitational redshift of a observer does not contribute to the relative gravitational redshift.

Effect of the light-cone coordinate Kaiser (2013) Expectation value integrated over the velocity space Distribution function on the light-cone coordinate

$$\begin{split} f(\vec{x}, \vec{v}) &= \left(1 + (\vec{\gamma} \cdot \vec{v})\right) f_{\rm RF}(\vec{x}, \vec{v}) \\ \delta z \supset (\vec{\gamma} \cdot \vec{v}) + \frac{1}{2} |\vec{v}|^2 \\ \langle \delta z \rangle &= \frac{\int d^3 x \int d^3 v \delta z f(\vec{x}, \vec{v})}{\int d^3 x \int d^3 v f(\vec{x}, \vec{v})} \supset \langle (\vec{\gamma} \cdot \vec{v})^2 \rangle + \frac{1}{2} \langle |\vec{v}|^2 \rangle \end{split}$$

Additional second order Doppler term

Statistical isotropy in velocity space

$$\langle (\vec{\gamma} \cdot \vec{v})^2 \rangle = \frac{1}{3} \langle |\vec{v}|^2 \rangle \longrightarrow \langle (\vec{\gamma} \cdot \vec{v})^2 \rangle + \frac{1}{2} \langle |\vec{v}|^2 \rangle = \frac{5}{2} \langle (\vec{\gamma} \cdot \vec{v})^2 \rangle$$

makes some contribution to the results

16

Finger of God effect

SDSS III LOWZ sample / multipole power spectrum

Redshift of satellites relative to central galaxy

$$\langle \delta z \rangle = \frac{\int d^3x \int d^3v_j \delta z_{jr} f(\vec{x}, \vec{v}_j)}{\int d^3x \int d^3v_j f(\vec{x}, \vec{v}_j)}$$

Assuming central galaxy's random velocity is zero

$$\langle (\vec{\gamma} \cdot \vec{v}_j)^2 \rangle = \frac{1}{3} \langle \vec{v}_j^2 \rangle$$

$$\langle \delta z \rangle = \psi(0) - \langle \psi_s \rangle + \frac{5}{2} \langle (\vec{\gamma} \cdot \vec{v}_j)^2 \rangle = \langle \delta z(M) \rangle$$

NFW density profile

$$\begin{split} \psi(0) &= -4\pi G\rho_s r_s^2 = -\frac{GM_{\rm vir}}{r_{\rm vir}} \frac{c}{m(c)} \qquad m(c) = \ln(1+c) - c/(1+c) \\ \langle \psi_s \rangle &= 4\pi \int_0^{r_{\rm vir}} dr r^2 \frac{\rho_{\rm NFW}(r)}{M_{\rm vir}} \psi(r) = -\frac{c}{m^2(c)} \frac{c - \log(1+c)}{1+c} \frac{GM_{\rm vir}}{r_{\rm vir}} \\ \langle (\vec{\gamma} \cdot \vec{v}_j)^2 \rangle &= \sigma_{\rm v,off}^2(M_{\rm vir}) = \frac{GM_{\rm vir}}{2R_{\rm vir}} \\ \langle \delta z(M) \rangle &= \frac{GM_{\rm vir}}{r_{\rm vir}} \left(-\frac{c}{m(c)} + \frac{c}{m^2(c)} \frac{(c - \log(1+c))}{1+c} + \frac{5}{4} \right) \\ \text{Integration over halo mass distribution function multiplied by$$

Result (general relativity)

	LRG (SDSS II)	LOWZ	CMASS
$\langle \delta z angle$	$-1.5 \times 10^{-5} (-4.6 \text{km/s})$	$-1.2 \times 10^{-5} (-3.5 \text{km/s})$	$-0.8 \times 10^{-5} (-2.5 \text{km/s})$
$\psi(0) - \langle \psi_s angle$	$-3.2 \times 10^{-5} (-9.7 \mathrm{km/s})$	$-2.3 \times 10^{-5} (-7.0 \mathrm{km/s})$	$-1.8 \times 10^{-5} (-5.4 \text{km/s})$
$\frac{5}{2}\langle (\vec{\gamma}\cdot\vec{v})^2 angle$	$+1.7 \times 10^{-5} (+5.1 \text{km/s})$	$+1.2 \times 10^{-5} (+3.5 \text{km/s})$	$+1.0 \times 10^{-5} (+3.0 \text{km/s})$
$\bar{r}_{ m vir}$	$1.0 \ h^{-1}{ m Mpc}$	$0.85 \ h^{-1}{ m Mpc}$	$0.79 \ h^{-1}{ m Mpc}$

✓ Amplitude of signal is $\delta z = 5 ~ 2 \text{ km/s}$, depending on the HOD

✓ Significant contribution from the 2nd order Doppler term

Consistent with the previous results Zhao et al (13) Jimeno et a l(15)

/ Modified gravity test ?
$$v^2 \propto G_{
m eff}$$

$$G_{\text{eff}} = \frac{4}{3}G$$

	LRG (SDSS II)	LOWZ	CMASS
$\langle \delta z angle$	$-0.9 \times 10^{-5} (-2.9 \text{km/s})$	$-0.7 \times 10^{-5} (-2.3 \text{km/s})$	$-0.5 \times 10^{-5} (-1.4 \text{km/s})$
$\psi(0) - \langle \psi_s \rangle$	$-3.2 \times 10^{-5} (-9.7 \mathrm{km/s})$	$-2.3 \times 10^{-5} (-7.0 \mathrm{km/s})$	$-1.8 \times 10^{-5} (-5.4 \text{km/s})$
$\frac{5}{2}\langle (\vec{\gamma}\cdot\vec{v})^2 \rangle$	$+2.3 \times 10^{-5} (+6.8 \text{km/s})$	$+1.6 \times 10^{-5} (+4.7 \text{km/s})$	$+1.3 \times 10^{-5} (+4.0 \text{km/s})$
$\bar{r}_{ m vir}$	$1.0 \ h^{-1}\mathrm{Mpc}$	$0.85 \ h^{-1}{ m Mpc}$	$0.79 \ h^{-1}{ m Mpc}$

potentially being an interesting test of modified gravity

4 Intracluster gas

Perseus cluster gas motions observed by Hitomi X-ray satellite

Km/s

60

25

75

The observation of the lines profile, the gas motions could be investigated with the accuracy of the order, $10 \sim 20$ km/s.

Non-thermal pressure (unsolved problem in cluster physics)

Cosmological hydrodynamical numerical simulations

✓ Intracluster gas motions can be generated in the structure formation process, non-thermal random motions (bulk motion or turbulence) contributes to the non-thermal pressure. \sim 10 % \sim 30 % of the total pressure

This might cause discrepancy between

Hydroequilibrium mass from X-ray, SZ effect v.s. Lensing mass

 \checkmark Small scale random motions of gas \rightarrow non-thermal pressure

Isotropy of the random motion of gas statistically

$$\begin{aligned} 3\langle (\vec{\gamma} \cdot \vec{V})^2 \rangle &= \langle |\vec{V}|^2 \rangle = \vec{\sigma}_{\rm rnd}^2 & \text{Variance of random} & n \propto \rho_{\rm gas} \\ 1 + \langle z(x_{\perp}) \rangle & \downarrow \\ &= 1 + z_1 + (1 + z_1) \frac{\int d\chi \rho_{\rm gas}(\vec{x}) \left(\frac{5}{6}\vec{\sigma}_{\rm rnd}^2(\vec{x}) + \frac{5}{2}\frac{T(\vec{x})}{m} - \psi(\vec{x})\right)}{\int d\chi \rho_{\rm gas}(\vec{x})} \end{aligned}$$

random motion of gas → non-thermal pressure Shi et al (2014) Fraction of the

Coma cluster

Gravitational redshift of intracluster gas

- \checkmark The relative amplitude of signal is 5 \sim 10 km/s
- Gravitational potential tem makes a dominant contribution to the gravitational redshift.
- Random motion of gas of non thermal pressure makes a slight contribution to the gravitational redshift.
- Measurements of lines of out skirt region is necessary.

Hawken et al. (2016) Stacked voids in VIPERS (VIMOS Public Extragalactic Redshift Survey)

34600 galaxies 0.55< z< 0.9 $1.6 \times 10^7 (h^{-1}Mpc)^3$ 822 voids

galaxies inside void
 possible signal of gravitational redshift ?

Simple void profile Hawken et al 2016

$$\Delta(r) = \frac{M(< r)}{4\pi r^3/3} = \frac{3}{r^3} \int_0^r dr' r'^2 \delta(r') = \Delta_c e^{-(r/r_v)^{(2)}}$$

$$\delta(r) = \frac{1}{r^2} \frac{d}{dr} \left(\frac{r^3 \Delta(r)}{3} \right) = \Delta_c \left(1 - \frac{\alpha}{3} \left(\frac{r}{r_v} \right)^{\alpha} \right) e^{-(r/r_v)^{\alpha}}$$

Gravitational potential

Gravitational redshift of galaxies of voids

The amplitude of signal is

$$\langle z(x_{\perp}) \rangle - \langle z(0) \rangle \sim -\mathcal{O}(10^{-6}) \times \left(\frac{r_v}{10h^{-1}\mathrm{Mpc}}\right)^2 (1+z_1)$$

The 2nd order Hubble term makes a large contribution, when the range of projection over the line of sight coordinate is wide.

Feasibility of the detection should be checked more carefully.

6. Conclusions

gravitational redshift, Simple theoretical model

✓ Satellite galaxy virialized in a halo with the HOD description

Amplitude of signal depends on the HOD, Doppler term makes significant contribution, test of gravity

Ingracluster gas

Gravitational potential tem makes a dominant contribution to the gravitational redshift, non-thermal pressure may make a contribution slightly.

Void Possible signal of the gravitational redshift

$$\langle z(x_{\perp}) \rangle - \langle z(0) \rangle \sim -\mathcal{O}(10^{-6}) \times \left(\frac{r_v}{10h^{-1}\mathrm{Mpc}}\right)^2 (1+z_1)$$

The 2nd order Hubble term can make a large contribution, when the range of projection over the line of sight direction is wide.

Thank you !