Marked correlation function for Modified gravity test

Yi ZHENG (郑逸)

Korea Institute of Advanced Study (KIAS)

CINY workshop, Sep. 07 2017, YITP

- Modified gravity to explain cosmic acceleration.
- Meet the stringent constrain of GR in solar system screening mechanism
- High density regions screened; low density regions unscreened MG signal
- Normal correlation function dominated by galaxy pairs in high density regions — modulate the density field, upweight low density regions to improve the S/N
- Low density regions higher shot noise where is the 'sweet' point?
- Linking observations to theory

- Modified gravity to explain cosmic acceleration.
- Meet the stringent constrain of GR in solar system screening mechanism
- High density regions screened; low density regions unscreened MG signal
- Normal correlation function dominated by galaxy pairs in high density regions — modulate the density field, upweight low density regions to improve the S/N
- Low density regions higher shot noise where is the 'sweet' point?
- Linking observations to theory

Ways modulating the density field

- 1. Logarithmic transformation
- 2. Clipped transformation

$$\begin{split} \delta' &= \ln \left(\delta + 1 \right) \\ \delta' &= \delta_c = \begin{cases} \delta & \text{if } \delta < \delta_0 \\ \delta_0 & \text{if } \delta > \delta_0. \end{cases} \end{split}$$

• 3. Marked transformation

$$\delta' = m(\delta) = \left(\frac{\rho_* + 1}{\rho_* + \rho_m}\right)^p = \left(\frac{\rho_* + 1}{\rho_* + \bar{\rho}_m(\delta + 1)}\right)^p$$

1708.05652, 1704.02960, 1107.5169, 1609.08632

Dark matter test, e.g. f(R)

Valogiannis&Rachel, 1708.05652

$$SNR = \sqrt{\sum_{i,j}^{N_{bins}} \bar{P}(k_i) C_{ij}^{-1} \bar{P}(k_j)},$$

FIG. 2: The variation of the signal-to-noise ratio (SNR) boost, defined in (17), for the clipped ACDM density transformation relative to the normal density distribution, as a function of the clipping threshold, shown as the % of the simulation volume that is clipped (i.e. has $\delta > \delta_0$).

FIG. 3: The variation of the signal-to-noise ratio (SNR) boost, defined in (17), for the marked transformation in a ACDM scenario, as a function of [left] ρ_* , with fixed p = 10, and [right] p, with fixed $\rho_* = 4$.

Valogiannis&Rachel, 1708.05652

Valogiannis&Rachel, 1708.05652

$$SNR = \sqrt{\sum_{i,j}^{N_{bins}} \bar{P}(k_i) C_{ij}^{-1} \bar{P}(k_j)},$$

SNR boost = $\frac{\text{SNR}(\delta')}{\text{SNR}(\delta)}$

Mock galaxy test, e.g. f(R) and normal-branch DGP

Models					
GR	LCDM w/o massive neutrinos in WMAP-9 cosmology (see below)				
F6	Hi-Sawicki f(R) with n=1 and f_R0=-1E-6	(weak	deviation	from	GR)
F5	Hi-Sawicki f(R) with n=1 and $f R0 = -1E - 5$	(medium	deviation	from	GR)
F4	Hi-Sawicki f(R) with n=1 and $f R0 = -1E - 4$	(strong	deviation	from	GR)
N5	normal-branch Dvali-Gabadadze-Poratti model with r c*H0=0.5	(medium	deviation	from	GR)
N1	normal-branch Dvali-Gabadadze-Poratti model with r_c*H0-0.1	(strong	deviation	from	GR)

HOD catalogues						
HOD Model taken from E with the following 5 H 1. M_min 2. sigma_logM 3. M_0 4. M_1 5. alpha	Q. (16) of Manera et al. OD parameters: (for GR 13.09) (for GR 0.596) (for GR 13.077) (for GR 14.00) (for GR 1.0127)	, 2013, MNRAS	428, 1036 (M13),			
	HOD catalogues HOD Model taken from E with the following 5 H 1. M_min 2. sigma_logM 3. M_0 4. M_1 5. alpha of which 1 & 2 control	HOD catalogues HOD Model taken from Eq.(16) of Manera et al. with the following 5 HOD parameters: 1. M_min (for GR 13.09) 2. sigma_logM (for GR 0.596) 3. M_0 (for GR 13.077) 4. M_1 (for GR 14.00) 5. alpha (for GR 1.0127)	HOD catalogues HOD Model taken from Eq. (16) of Manera et al., 2013, MNRAS with the following 5 HOD parameters: 1. M_min (for GR 13.09) 2. sigma_logM (for GR 0.596) 3. M_0 (for GR 13.077) 4. M_1 (for GR 14.00) 5. alpha (for GR 1.0127)			

Made by Baojiu Li

Adopted HOD paramter values for GR are given above; for modified gravity models the HOD parameters are tuned such that their predicted galaxy number density and galaxy 2-point correlation functions (in 3D real space and implicitly the projected 2-point correlatin functions) match the values in the corresponding GR HOD catalogue.

Made by Baojiu Li

Marked correlation function

Martin White, 1609.08632

We use spline kernel interpolation to calculate \rho_R, nearest 20 particles

$$\rho_R = \sum_{1}^{20} W(r_i, h), \qquad W(r, h) = \frac{8}{\pi h^3} \begin{cases} 1 - 6\left(\frac{r}{h}\right)^2 + 6\left(\frac{r}{h}\right)^3, & 0 \le \frac{r}{h} \le \frac{1}{2}, \\ 2\left(1 - \frac{r}{h}\right)^3, & \frac{1}{2} < \frac{r}{h} \le 1, \\ 0, & \frac{r}{h} > 1. \end{cases} \qquad m = \left(\frac{\rho_{\star} + 1}{\rho_{\star} + \rho_R}\right)^p$$

Very preliminary !

We use spline kernel interpolation to calculate \rho_R, nearest 20 particles

$$\rho_R = \sum_{1}^{20} W(r_i, h), \qquad W(r, h) = \frac{8}{\pi h^3} \begin{cases} 1 - 6\left(\frac{r}{h}\right)^2 + 6\left(\frac{r}{h}\right)^3, & 0 \le \frac{r}{h} \le \frac{1}{2}, \\ 2\left(1 - \frac{r}{h}\right)^3, & \frac{1}{2} < \frac{r}{h} \le 1, \\ 0, & \frac{r}{h} > 1. \end{cases} \qquad m = \left(\frac{\rho_{\star} + 1}{\rho_{\star} + \rho_R}\right)^p$$

Very preliminary !

We use spline kernel interpolation to calculate \rho_R, nearest 20 particles

$$\rho_R = \sum_{1}^{20} W(r_i, h), \qquad W(r, h) = \frac{8}{\pi h^3} \begin{cases} 1 - 6\left(\frac{r}{h}\right)^2 + 6\left(\frac{r}{h}\right)^3, & 0 \le \frac{r}{h} \le \frac{1}{2}, \\ 2\left(1 - \frac{r}{h}\right)^3, & \frac{1}{2} < \frac{r}{h} \le 1, \\ 0, & \frac{r}{h} > 1. \end{cases} \qquad m = \left(\frac{\rho_{\star} + 1}{\rho_{\star} + \rho_R}\right)^p$$

Very preliminary !

Discussions

- HOD galaxy mock? Sample variance.
- Fiber collision?
- Theoretical prediction? Degeneracy with halo bias?
- Multi-tracer?