

VHE amma-ray astronomy using the prototype array of a new extensive air-shower experiment ALPACA in the southern hemisphere

Kato Sei (ICRR, Univ. of Tokyo) for the ALPACA collaboration

The ALPACA Experiment (Air Shower Array)

- Chacaltaya plateau (16° 23′ S, 68° 08′ W, Bolivia)
- Elevation : 4,740 m (572.4 g/cm^2)
- A surface air shower array (AS array : $83,000 \text{ m}^2$) + an u/grd. muon detector array \rightarrow BGCR rejection
- Main motivation: Southern VHE γ-ray astronomy beyond 100 TeV

2 m

The ALPAQUITA Experiment

The prototype experiment of ALPACA

- Surface air-shower array: 18,450 m²
 - $(\sim 1/4 \text{ of the ALPACA surface array})$
- MD: 900 m² (56 m²×16 cells)

Can ALPAQUITA explore southern 100 TeV γ-ray astronomy ?

Air Shower Generation (Corsika7.6400)

Simulation condition

D. Heck, J. Knapp, J. N. Capdevielle, G. Schats, T. Thouw, Report FZKA (1998) 6019

Simulation condition	γ rays	BGCR (FLUKA & EPOS-LHC)
Energy range	$300{\rm GeV} \le E < 10{\rm PeV}$	1. 300 ${\rm GeV} \leq E < 10 {\rm PeV}$
		& 2. 10 TeV $\leq E < 10 {\rm PeV}$
Total number of events	3.7×10 ⁷	1.1×10^8 & 7.7×10^7
Spectrum	$\propto E^{-2}$ *	Lower-left figure
Orbit	RX J1713.7-3946 (minimum zenith angle $= 23.4^{\circ}$)	
Simulated area	Lower-right figure	

* The index is changed with an appropriate weighting procedure depending on analyses

Detector Responses (Geant4 v10.04.p02)

Analysis Conditions

Event selection criterion

For surface array performance

(1) 0.8 ptcl any 4

② "IN" event : 3 out of 4 hottest detectors locate in the inner area

③ Residual error < 1 m (indicator of the quality of direction reconstruction)

For the sensitivity to gamma rays (1 + 2 + 3) &

(4) Reconstructed zenith angle $\theta < 40^{\circ}$

5 Inside the analysis window of radius

r

=
$$1.5^{\circ}$$
 ($\Sigma \rho < 15$)
 $5.8^{\circ} / \sqrt{(\Sigma \rho / m^{-2})}$ ($15 \le \Sigma \rho \le 135$)
 0.5° ($135 < \Sigma \rho$)

($\Sigma
ho$: sum of the density of detected ptcl)

ALPAQUITA AS Array Performance for Gamma Rays

Target events: Gamma rays w/ $\Gamma = -2.5 \& \theta_{true} < 40^{\circ}$

Trigger efficiency* Energy resolution Angular resolution 100% ≥20 TeV +27% - 21% @ 100 TeV $\approx 0.3^{\circ}$ @ 100 TeV

*Efficiency for the events w/ the true cores inside the AS array

Muon Cut Line

To maximize the detection significance of signal γ rays ΣN_{μ} : Total number of muons detected with the muon detector

Survival ratio of gamma rays Rejection power for BGCRs $\simeq 79 \%$ @100 TeV $\simeq 99.9\%$ @100 TeV γ . eq.

Sensitivity to VHE Gamma-ray Sources

Sensitivity curves in 1yr5o

Summary

- The ALPACA experiment: A new air-shower array experiment Researchers from Bolivia, Mexico, and Japan Main motivation: Southern VHE γ-ray astronomy beyond 100TeV
- The prototype exp. ALPAQUITA: The array is under construction
 Size: ~1/4 of the ALPACA arrays
 Starting DAQ: expect in 2021
- ALPAQUITA performance (MC simulation)

Trigger efficiency Energy resolution

Angular resolution

Survival ratio of gamma rays Rejection power of BGCRs TeV source detectability 100% *@* ≥20 TeV

- +27% -21% @100 TeV
- $\simeq 0.3^{\circ}$ @100 TeV
- $\simeq 79\%$ @100 TeV
- \simeq 99.9% @100 TeV γ eq.
- ~4 sources in 1-yr obs. \geq 100 TeV

Origin of Cosmic Rays at the knee

A motivation for very high-energy (VHE) gamma-ray astronomy

Gamma-Ray Sky

NASA/DOE/Fermi LAT Collaboration H. Abdalla et al., Astronomy & Astrohysics 612, A1, 2018

IIF, UMSA C. A. H. Condori P. Miranda C. Nina M. Raljevich H. Rivera M. Subieta R. Ticona

Univ. de Guadalajara

ថ

E. de la Fuente J. Lozoya F. Orozco I. Toledano-Juarez H. Torres

ICRR, Univ. of Tokyo

S. Kato K. Kawata Y. Nakamura M. Ohnishi T. Sako T. K. Sako M. Takita Y. Yokoe

Fac. of Engn., Kanagawa Univ.

K. Hibino W. Takano S. Udo Fac. of Engn., Yokohama Natl. Univ. A. Gomi Y. Katayose D. Kurashige H. Nakada T. Ohura S. Okukawa

Utsunomiya Univ.

N. Hotta

Dept. of Phys., Shinshu Univ.

C. Kato W. Kihara Y. Ko

K. Munakata

Coll. of Engn., Chubu Univ.

T. Koi A. Oshima S. Shibata K. Yamazaki

Fac. of Engn., Aichi Inst. of Tech. H. Kojima

Grad. Sch. of Sci., Osaka City Univ.

R. Mayta S. Ogio Y. Tsunesada

IHEP, CAS Y. Nakamura

NII M. Nishizawa

Tokyo Metro. Coll. of Ind. Tech. T. Saito

Coll. of Ind. Tech., Nihon Univ. A. Shiomi

RIKEN

N. Tajima

Fac. of Engn., Osaka Electro-Comm. Univ. Y. Tameda

> Fac. of Info. Sci., Hiroshima City Univ. K. Tanaka

> > JAEA H. Tsuchiya

13

ALPATQUITA Construction (the Current Status)

Position of ALPAQUITA

Take the expansion to ALPACA into account

θ_{\min} & Exposure to Several Objects

Not corrected by zenith angle

16

Other Parameters in MD Simulation

Input parameters to Geant 4 simulation

Radial Distribution of Events After Selection Cuts

18

Reconstruction Methods

For events w/ 0.8 ptcl any 4

Core estimation:

$$\left(\frac{\sum_{i} \rho_{i}^{w} x_{i}}{\sum_{i} \rho_{i}^{w}}, \frac{\sum_{i} \rho_{i}^{w} y_{i}}{\sum_{i} \rho_{i}^{w}}\right) \quad \text{(w=2)}$$

Direction estimation:

Energy resolution & relation b/w energy & $\Sigma \rho$

 $\Sigma
ho~$: Total number density of ptcls detected with the AS array

$$\log_{10}\left(\frac{E}{\text{TeV}}\right) = 4.4 \times 10^{-2} \left(\log_{10}\left(\frac{\Sigma\rho}{\text{m}^{-2}}\right)\right)^2 + 0.7 \left(\log_{10}\left(\frac{\Sigma\rho}{\text{m}^{-2}}\right)\right) + 7.6 \times 10^{-3}$$

Trigger efficiency

Target events

Gamma rays w/ $\Gamma=-2.5,~\theta_{\rm sim}<40^\circ$ & true core inside the AS array

Reconstruction methods

For events w/ 0.8 ptcl any 4

Core estimation:

$$\left(\frac{\sum_{i} \rho_{i}^{w} x_{i}}{\sum_{i} \rho_{i}^{w}}, \frac{\sum_{i} \rho_{i}^{w} y_{i}}{\sum_{i} \rho_{i}^{w}}\right) \quad \text{(w=2)}$$

Direction estimation:

Definition of 1 Muon

 $\textit{Photoelectron} \rightarrow \textit{muon}$

<u> $1muon \equiv 24$ photoelectron</u> for in all MD cells

Survival ratio of gamma rays & Rejection power of BGCRs

HESS J1702-420: Dark Accelerator

T. Fujinaga, et al., Astrophysical Society of Japan 63, S857–S864, 2011 F. Aharonian et al., Astronomy & Astrophysics 477, 353, 2008 E. Giacani et al., Astronomy & Astrophysics 531, A138, 2011 A. J. Green et al., The Astrophysical Journal Supplement Series, 122, 207, 1999