

100 TeV Gamma-Ray Observation with Extensive Air Shower Arrays

Kazumasa KAWATA (ICRR, Univ. of Tokyo)

7th Dec., 2020 YITP Workshop @Kyoto University

Outline

- Introduction
- Recent results:
 - Tibet results
 - HAWC results
- How to identify PeVatron?
- Projects in southern hemisphere

Galactic Cosmic-Ray Origin

Gaisser et al. Front. Phys. (Beijing) 8 (2013) 748

AS v

✓ Cosmic-ray origins of Knee SNR?? Galactic Center?

 \rightarrow PeVatrons

✓ Gamma-Ray Observation PeV protons produces

- ~100 TeV γ rays via π^0 decay $(p + ISM \rightarrow \pi^0 \rightarrow 2\gamma)$
- \rightarrow Hard spectral index (-2) beyond 100 TeV (+ Molecular Cloud)

Different features from Inverse Compton γ rays by HE electrons

100 TeV energy window is a key to identify Galactic CR origins!

Basic idea: T. K. Sako et al., Astropart. Phys. 32, 177 (2009)

Measurement of # of μ in AS $\rightarrow \gamma$ / CR discrimination

DATA: February, 2014 - May, 2017 Live time: 719 days

After N_μ cut,~99.9% CR rejection & ~90% γ efficiency @100 TeV 7

Gamma-like Event from the Crab

ASY

Amenomori et al., PRL (2019)

Kawata et al, Exp. Astro., 44, 1 (2017)

S50 improves *E* resolutions (10 - 1000 TeV) → ~40%@10 TeV , ~20%@100 TeV

Gamma-ray Emission from Crab

Amenomori et al., PRL Supplemental Material (2019)

Energy spectrum of the Crab

Comparison with HAWC

Extended Sources (>10 TeV)

SNR G106.3+2.7 Coincident with MC

Geminga

Very extended $> \sim 2^{\circ}$

Spectra are under analysis

High-Altitude Water Cherenkov Gamma-Ray Observatory

Pico de Orizaba Puebla, Mexico (19°N)

5m tall, 7.3 m diameter ~200,000 L of water

22,000 m²

4 PMTs facing upwards collect Cherenkov light produced by secondary particles

4,100 m.a.s.l.

Energy range: ~100 GeV - 100TeV

Field of view: **45° from zenith**

Observing time: >95% of the time

Angular resolution: ~0.1° - 1°

Site: Sierra Negra, Mexico, 19° N, 4,100 m altitude.

From Slides made by S. Casanova 2020

300 ×

-rex for scale -

Discrimination γ/CRs in HAWC

From Slides made by S. Casanova 2020

Galactic Diana with HAM/C (_Ta\/)

2nd HWC Catalc

From Slides made by S. Casanova 2020

40 sources of which ¹/₄ are new

100 TeV Observation with HAWC

Pushing to the highest energies (>100 TeV)

Abeysekara et al., PRL, 124, 021102 (2020) From Slides made by S. Casanova 2020

Energy Spectra up to100 TeV

<u>eHWC J1825-134 (PWN?)</u> PSR J1826-1334 PSR J1826-1256 A few SNRs ...

<u>eHWC J1907+063 (PWN?)</u> PSR J1907+0602 SNR G40.5-0.5

eHWC J2019+368 (PWN?)

\checkmark	Hard	spectral	l inde	x (~ -2)
1	Destau	. 1 . 1		_

Extended morphology

Source name	RA (°)	Dec (°)	Extension > 56 TeV (°)	$F (10^{-14} \text{ ph cm}^{-2} \text{ s}^{-1})$	\sqrt{TS} > 56 TeV	Nearest 2HWC source	Distance to 2HWC source(°)	√TS > 100 TeV
eHWC J0534 + 220	83.61 ± 0.02	22.00 ± 0.03	PS	1.2 ± 0.2	12.0	J0534 + 220	0.02	4.44
eHWC J1809 - 193	272.46 ± 0.13	-19.34 ± 0.14	0.34 ± 0.13	$2.4^{+0.6}_{-0.5}$	6.97	J1809 - 190	0.30	4.82
eHWC J1825 – 134	276.40 ± 0.06	-13.37 ± 0.06	0.36 ± 0.05	4.6 ± 0.5	14.5	J1825 – 134	0.07	7.33
eHWC J1839 - 057	279.77 ± 0.12	-5.71 ± 0.10	0.34 ± 0.08	1.5 ± 0.3	7.03	J1837 – 065	0.96	3.06
eHWC J1842 - 035	280.72 ± 0.15	-3.51 ± 0.11	0.39 ± 0.09	1.5 ± 0.3	6.63	J1844 - 032	0.44	2.70
eHWC J1850 + 001	282.59 ± 0.21	0.14 ± 0.12	0.37 ± 0.16	$1.1^{+0.3}_{-0.2}$	5.31	J1849 + 001	0.20	3.04
eHWC J1907 + 063	286.91 ± 0.10	6.32 ± 0.09	0.52 ± 0.09	2.8 ± 0.4	10.4	J1908 + 063	0.16	7.30
eHWC J2019 + 368	304.95 ± 0.07	36.78 ± 0.04	0.20 ± 0.05	$1.6^{+0.3}_{-0.2}$	10.2	J2019 + 367	0.02	4.85
eHWC J2030 + 412	307.74 ± 0.09	41.23 ± 0.07	0.18 ± 0.06	0.9 ± 0.2	6.43	J2031 + 415	0.34	3.07

Abeysekara et al., PRL, 124, 021102 (2020)

100 TeV Sources Resolved by IACTs

H.E.S.S., A&A, in press (2020) eHWC J1825-134 *Aliu+, ApJ, 787, 166 (2014)* eHWC J1907+063

- ✓ Separated into two or more sources by IACTs
- ✓ Bright region around a pulsar → PWN?
- ✓ SNR is situated near source
- ✓ Molecular clouds (CO) are located near the source
- ✓ Hard spectral index $\alpha = \sim -2$

100 TeV Sources Resolved by IACTs

eHWC J2019+368 (Cygnus region) Aliu+, ApJ, 788, 78 (2014)

FIG. 3.— Differential energy spectrum of VER J2016+371/CTB 87 and VER J2019+368 as measured by VERITAS. The event excess in each bin have a statistical significance of at least 2σ .

- ✓ Separated into two or more sources by IACTs
- ✓ Bright region around a pulsar →
- ✓ SNR is situated near source
- ✓ Molecular clouds (CO) are locate
- ✓ Hard spectral index $\alpha = \sim -2$

PeVatron Candidate: SNR G106.3+2.7

✓ Shell-type SNR near the pulsar
✓ γ-ray excess is coincident with MC
✓ Spectrum extends up to 100 TeV

VERITAS (>TeV) Acciari+, ApJ (2019)

How to Identify PeVatron

21

How to Identify PeVatron

- γ -ray beyond 100 TeV by Tibet, HAWC etc. in North, ALPACA, SWGO in south will come soon
- Spectral index $\alpha \sim -2$ in TeV by IACTs
- Coincident with molecular cloud observed by radio
- π^0 cutoff around 70 MeV by γ -ray satellites
- Dark in X-ray observation
- Deep observation by IACTs to resolve sources
- Coincident with HE neutrino by IceCube

Multi-wavelength Multi-particle Observations

ALPACA Experiment in Bolivia

✓ International collaboration
(Japan + Bolivia + Mexico)

12-1-1

Galactic Center Diffuse Emission

24

Dark Accelerators

Status of Prototype Array: ALPAQUITA

For details, please see the next talk

www.swgo.org

- ✓ Southern Wide FoV Gamma-ray Observatory
- ✓ New collaboration formed in July 2019
- ✓ Based on Water Cherenkov technique
- ✓ Site survey and simulation studies are ongoing

e.g.

 ● Detailed characterisa tion work started
→ Shortlist

by end

2020

300⊢

200

100

y[m]

-100

-200

-300

20 000 m²

57%

-300 -200 -100

221 000 m² 8%

80 000 m²

>70%

0

x[m]

- Ground-particle detection based high altitude (>4.4 km) γ-ray observatory latitude -15° to -30°
- ✓ Wide energy range: 100 GeV to 100 TeV

200

100

300

15

Summary

- The Tibet AS γ experiment first detected 100 TeV γ rays from an astrophysical source.
- HAWC found a few additional 100 TeV γ -ray sources with hard spectral index.
- Multi-wavelength, multi-particle observations will be important to identify PeVatrons in our Galaxy.
- In the southern hemisphere, ALPACA started the construction of a prototype detectors, and SWGO collaboration formed, and site survey is ongoing.

Personal Opinions

What's your targeted physics in next decades?

- Identify/understand cosmic-ray origin in our Galaxy (PeVatron)
- Heavy DM search in our Galaxy

What we need to accomplish?

- Wide FoV sky survey > 100 TeV in northern and southern hemispheres
- Multi-wavelength multi-particle observations