

Overview of the Telescope Array Experiment

Yana Zhezher, ICRR, UTokyo and INR RAS 7 December 2020

Connecting high-energy astroparticle physics for origins of cosmic rays and future perspectives, Yukawa Institute for Theoretical Physics, Kyoto University

Introduction

Telescope Array collaboration

R.U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, E. Barcikowski, J.W. Belz, D.R. Bergman, S.A. Blake, R. Cady, B.G. Cheon, J. Chiba, M. Chikawa, T. Fujii, K. Fujisue, K. Fujita, R. Fujiwara, M. Fukushima, R. Fukushima, G. Furlich, W. Hanlon, M. Hayashi, N. Hayashida, K. Hibino, R. Higuchi, K. Honda, D. Ikeda, T. Inadomi, N. Inoue, T. Ishii, H. Ito, D. Ivanov, H. Iwakura, H.M. Jeong, S. Jeong, C.C.H. Jui, K. Kadota, F. Kakimoto, O. Kalashev, K. Kasahara, S. Kasami, H. Kawai, S. Kawakami, S. Kawana, K. Kawata, E. Kido, H.B. Kim, J.H. Kim, J.H. Kim, M.H. Kim, S.W. Kim, Y. Kimura, S. Kishigami, M. Kuznetsov, Y.J. Kwon, K.H. Lee, B. Lubsandorzhiev, J.P. Lundquist, K. Machida, H. Matsumiya, T. Matsuyama, J.N. Matthews, R. Mayta, M. Minamino, K. Mukai, I. Myers, S. Nagataki, K. Nakai, R. Nakamura, T. Nakamura, Y. Nakamura, T. Nonaka, H. Oda, S. Ogio, M. Ohnishi, H. Ohoka, Y. Oku, T. Okuda, Y. Omura, M. Ono, R. Onogi, A. Oshima, S. Ozawa, I.H. Park, M.S. Pshirkov, J. Remington, D.C. Rodriguez, G.I. Rubtsov, D. Ryu, H. Sagawa, R. Sahara, Y. Saito, N. Sakaki, T. Sako, N. Sakurai, K. Sano, K. Sato, T. Seki, K. Sekino, P.D. Shah, F. Shibata, N. Shibata, T. Shibata, H. Shimodaira, B.K. Shin, H.S. Shin, D. Shinto, J.D. Smith, P. Sokolsky, N. Sone, B.T. Stokes, T.A. Stroman, T. Suzawa, Y. Takagi, Y. Takahashi, M. Takamura, M. Takeda, R. Takeishi, A. Taketa, M. Takita, Y. Tameda, H. Tanaka, K. Tanaka, M. Tanaka, Y. Tanoue, S.B. Thomas, G.B. Thomson, P. Tinyakov, I. Tkachev, H. Tokuno, T. Tomida, S. Troitsky, R. Tsuda, Y. Tsunesada, Y. Uchihori, S. Udo, T. Uehama, F. Urban, T. Wong, K. Yada, M. Yamamoto,

K. Yamazaki, J. Yang, K. Yashiro, F. Yoshida, Y. Zhezher, and Z. Zundel

Belgium, Czech Republic, Japan, Korea, Russia, USA

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

- Largest cosmic ray detector in the Northern Hemisphere
- Located in Utah, USA, at altitude of 1400 m
- 507 surface detectors, $S = 3 \text{ m}^2$, distance 1.2 km, 700 km² total area
- 3 fluorescense stations, 38 telescopes, $3^{\circ} 21^{\circ}$ altitude coverage
- > 12 years of constant data acquisition

Detection of UHECR

- Fluorescence light: air molecules exitation by a propagating EAS.
- Registration of particle distribution on the ground.
- Radio-emission from the electromagnetic component of a cascade.

TA Fluorescence Detectors

Telescope Array surface detector

TA hybrid event example

TA Low Energy Extension (TALE) Galactic to Extra-Galactic Transition

Selected experimental results

- 1. Energy spectrum
- 2. Anisotropy
- 3. Mass composition
- 4. Search for UHE photons

TA SD spectrum from 11 years of data

Energy spectrum from 11 years of TA SD data, from May 11, 2008 to May 11, 2019

 $v = -3.28 \pm 0.02$

ankle @ logE = 18.69 ± 0.01

 $\gamma = -2.68 \pm 0.02$

cutoff @ logE = 19.81 ± 0.03

 $\gamma = -4.84 \pm 0.48$

 $\log E1/2 = 19.79 \pm 0.04$

Significance of suppression is 8.4 σ

Energy resolution = 18 % logE > 19.0 Energy scale systematic uncertainty = 21 % Expanding the zenith angle range for logE > 18.8 (100 % efficiency)

 $\gamma = -2.67 \pm 0.02$

cutoff @ $logE = 19.81 \pm 0.03$

$$\gamma = -5.3 \pm 0.5$$

 $logE1/2 = 19.97 \pm 0.04$ Significance of suppression is 12.0 σ

TA SD spectrum from 11 years of data

"Hotspot" update from 11 years of data

Hotspot from 11 years of TA SD data, from May 11, 2008 to May 11, 2019

E > 57 EeV, in total 168 events

38 events fall in Hotspot (α =144.3°, δ =40.3°, 25° radius, 22° from SGP), expected=14.2 events local significance = 5.1 σ , chance probability \rightarrow 2.9 σ

25° over-sampling radius shows the highest local significance (scanned 15° to 35° with 5° step)

"Hotspot" update from 11 years of data

Hotspot from 11 years of TA SD data, from May 11, 2008 to May 11, 2019

E > 57 EeV, in total 168 events 38 events fall in Hotspot (α=144.3°, δ=40.3°, 25° radius, 22° from SGP), expected=14.2 events local significance = 5.1 σ, chance probability → 2.9σ 25° over-sampling radius shows the highest local significance (scanned 15° to 35° with 5° step)

Large-scale anisotropy search

- 11-year TA SD data set 2008–2019
- E > 8.8 EeV
- 6032 events
- Dipole fit: amplitude of 3.3 ± 1.9 % with a phase of $131^{\circ} \pm 33^{\circ}$
- Compatible with an isotropic distribution at a 2σ significance level

TA, ApJL, 898, L28 (2020)

Large-scale anisotropy search

The residual-intensity sky map of UHECRs measured by TA with energies above 8.8 EeV in equatorial and galactic coordinates.

A dipole structure is seen in the common declination $\delta < 24.8^\circ$ band shared with Auger.

TA, ApJL, 898, L28 (2020)

TA BRM+LR+SD hybrid: <Xmax> and σ_{Xmax}

< Xmax > along with predictions of QGSJET II-04 p, He, N and Fe

10 years data 10^{18.2} to 10^{19.1} eV 3560 events after the quality cuts

Systematic uncertainty on <Xmax> is 17 g/cm² Xmax bias < 1 g/cm² Xmax resolution = 17.2 g/cm² Energy resolution = 5.7 %

$$\label{eq:state} \begin{split} &\sigma_{xmax} \text{ along with predictions of } \\ &QGSJET II\text{-}04 \text{ p, He, N and Fe} \\ &The measured data are compatible with the } \\ &protons below 10^{19} \text{ eV.} \end{split}$$

TA BRM+LR+SD hybrid: single element model

Ap. J., 858, 76(2018) arXiv: 1801.09784

> Test the agreement of data and single element models by comparing data and MC Xmax distributions including a systematic shift of data.

> Proton and He agree with the data especially in the tail of distributions, whereas N and Fe do not resemble the data.

(Xmax systematic uncertainty = 17 g/cm²)

Data is compatible with QGSJET II-04 proton from 10^{18.2} to 10^{19.9} eV with systematic shifting about 20 g/cm².

Other components are not compatible in E < 10¹⁹eV All 4 single components are compatible in the highest energy bin. ← low statistics (19 events)

Fe requires a shift of ~ 50 g/cm²

Mass composition study with the TA SD

Boosted Decision Trees: ROOT::TMVA

 $(a, AoP, \ldots) \rightarrow \xi$

SD detector array: >90 % duty cycle, larger data statistics compared to FD

Comparison of ξ distributions for data with Monte-Carlo modelling $\langle \ln A \rangle$ (E)

TA, Phys. Rev. D 99, 022002 (2019)₁₇

Mass composition study with the TA SD

 $\langle \ln A \rangle = 2.0 \pm 0.1 (stat.) \pm 0.44 (syst.)$

TA, Phys. Rev. D 99, 022002 (2019)₁₈

Search for point sources of UHE photons

Diffuse photon search with the TA SD: [TA], Astropart.Phys. 110 (2019) 8-14 Hadron background is highly isotropic

∜

Assume that photons are emitted by point source

∜

In angular vicinity of the source the photon/hadron ratio would be larger than in full TA field of view

∜

Easier to separate photons from hadrons!

Results: point-source photon flux upper-limits

Pierre Auger: $\langle F_{\gamma} \rangle \le 0.035 \text{ km}^{-2} \text{yr}^{-1}$ (1° ang.res., $10^{17.3} \le E \le 10^{18.5} \text{ eV}$)

TA, MNRAS 492 (2020), 3984

Results: point-source photon flux upper-limits

TA, MNRAS 492 (2020), 3984

Future prospects

TALE hybrid

TALE hybrid =

low energy extension of TA hybrid

sensitivity down to 1016 eV, with

FDs observing higher elevation,

Densely-arrayed SDs

Precise measurement of the composition :

FD + SD hybrid measurement

TALE-FD : 10 telescopes are in operation

since Sep. 2013

→ Installed 80 SDs with 400m, 600m spacing TALE-SD array in operation since Feb. 2018 TALE-hybrid started running at Sep. 2018

Expected specifications of TALE hybrid Threshold energy E : logE=16.0 Event rate : ~5,000 events/year $\Delta \theta = 1.0^{\circ}$ (FD mono : 5.3°) $\Delta Xmax = 20 \text{ g/cm}^2$ (FD mono : 44 g/cm²)

In order to increase the event statistics@UHE ↓ To increase the coverage from TA = 700 km² ↓ TAx4 = 3,000km²

SD array of ~3000 km²

by **500** SDs with **2 km** spacing

╀

2 FD stations (12 HiRes-II telescopes)

4 FDs at the northern station 8 FDs at the southern station

Expectation of the performance of SD Array

SD array: square grid with 2.08 km spacing Trigger condition: adjacent 3 SDs within 14 usec E > 57 EeV:

- Reconstruction efficiency > 95%
- Angular resolution: 2.2°
- Energy resolution: ~25%

Deployment of Assembled SDs

Construction of North FD Station

16th Feb. 2018

First light was observed.

(camera 28: Xe Flasher)

Stable operation was started from 8th June 2018.

TA site: Platform for next generation

FAST

EUSO-TA (connect to POEMMA)

CRAFFT

What's your targeted physics in next decades?

• Physics beyond the Standard model in it's connection with multimessenger astrophysics as a probe tool.

What we need to accomplish?

• Enlarge the statistics of current experiments as well as understand the EAS physics better to be able to accurately interpret the observations.

Supported by Russian Science Foundation

Thank you for your attention!

Global anisotropy

supergalactic coordinates

Kolmogorov-Smirnov p-value = 0.01 for SG latitude, E>57 EeV other thresholds/coordinates = isotropic

Large-Scale Structure

C: Centaurus SCI (60 Mpc); Co: Coma CI (90 Mpc); E: Eridanus CI (30 Mpc); F: Fornax CI (20 Mpc); Hy: Hydra SCI (50 Mpc); N: Norma SCI (65 Mpc); PI: Pavo-Indus SCI (70 Mpc); PP: Perseus-Pisces SCI (70 Mpc); UM: Ursa Major CI (20 Mpc); and V: Virgo CI (20 Mpc).

- Sky map of expected flux at E > 57 EeV (Galactic coordinates);
- smearing angle is 6°.

Large-Scale Structure

E>5.7×10¹⁹ eV Consistent with LSS Inconsistent with isotropy Observables, sensitive to the primary composition

Shower front

- Linsley curvature parameter
- Area-over-peak
- Area-over-peak slope
- Number of detectors, excluded from the shower front approximation during event reconstruction

• *s*_b

• Sum of signals from all detectors of the event

LDF

- Number of detectors hit
- χ²/d.o.f. for LDF approximations

Muons

- Full number of peaks in all FADC traces of the event
- Number of peaks in the detector with the largest signal
- Assymmetry between upper and lower layers of the detector
- Number of peaks, present only in the upper layer of the detectors
- Number of peaks, present only in the lower layer of the detectors

+ zenith angle, energy of the event

BDT-based procedure, analogous to the SD mass composition and photon search. 0 candidets in the data. Upper limit on the number of neutrino events of all flavors: $\bar{n}_{\nu} = 2.44$ (90% C.L.).

Upper limit on the diffuse flux of neutrino of one flavor with $E > 10^{18}$ eV:

$$EF_{\nu} < 1.58 \times 10^{-6} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} (90\% \text{ C.L.}).$$

TA, arXiv:1905.03738 (2019)

TA SD neutrino search

TA, arXiv:1905.03738 (2019)