Neutrino astrophysics prospects at Super-Kamiokande and Hyper-Kamiokande

Takatomi Yano, ICRR, U-Tokyo.

YITP workshop, 8th Dec. 2020 Kyoto, Japan and Online

Outline

- Overview of Super-Kamiokande
 - Current status toward Super-K Gd
- Supernova neutrino detection and prospects
 - Supernova burst neutrinos
 - Supernova relic neutrinos
- Overview of Hyper-Kamiokande
 - Prospects of Hyper-K
- Other astrophysical neutrinos
- Summary

Super-Kamiokande

Features of SK detector

- Large water Cherenkov detector with 50kt ultra pure water, providing 22.5 kt fiducial volume.
- **1 km** under the Ikenoyama mountain in Japan (**2700 mwe**).
- ~11,000 of 20" PMT for inner detector (ID).
 - 40% photocathode coverage
 - SK-II: Half PMT and coverage
- 1885 of 8" PMT for outer detector (OD).
- Studying neutrinos from wide variety of sources.
 - Solar neutrino
 - Supernova neutrinos
 - Atmospheric/Accelerator neutrinos O(100) MeV to TeVs

O(1) to O(10) MeV

Super-Kamiokande history

Start of Super-

threshold 4.5 Me

experiment

- From April of 1996, the Super-K accumulated **atm./solar** ν **events**, searched for **nucleon decay**, cooperated with ν **beam exp.** and made improvement over 20 years.
- After tank refurbishment work at 2019, Gadolinium sulfate is dissolved into SK tank water in the middle of 2020.
 - Aiming for first observation of **diffused supernova neutrino background (supernova relic neutrino)**.

Event Reconstruction -1-

Event Reconstruction -2-

charged

particles

erenkov

D: 39.3m

e/ μ neutrino CC interactions can be separated at higher energy events (>O(100)MeV).

• >99 % efficiency for e/μ separation.

Super-Kamiokande IV

T2K Beam Run 420076 Spill 2670320 Run 69641 Sub 958 Event 221184849 12-04-15:04:34:01 T2K beam dt = 1919.1 ns Inner: 2441 hits, 8460 pe Outer: 0 hits, 0 pe Trigger: be8000007 D_wall: 828.0 cm Evin: 1.0 GeV mulike, p = 1041.6 MeV/c **Charge (pe)**

Figures are taken from: Laura Munteanu, ICHEP2020

1000

Times (ns)

Super-Kamiokande Gadolinium Project (SK-Gd)

SK-Gd

- Dissolving Gd to Super-Kamiokande to significantly enhance detection capability of neutrons from v interactions
 - J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93 (2004) 17110
- By coincidence method, low-energy anti-electron-neutrino interaction can be identified.

Physics target and status of SK-Gd

Physic targets

- Precursor of nearby supernova by Si-burning neutrinos
- Improve pointing accuracy for galactic supernova
- First observation of Supernova Relic Neutrinos
- Others
 - Reduce proton decay background
 - Neutrino/anti-neutrino discrimination (for accelerator/atmospheric neutrinos)
 - Reactor neutrinos

Current status

- Gd loading towards 0.02% Gd₂(SO₄)₃ concentration was performed from July to August 2020.
 - About 50% of neutron would be captured by Gd, enhancing neutron tagging efficiency by 2-3 times.
 - Final target: 90% of neutron tagging
- Now, SK-Gd is in commissioning phase.

Schematic view of Gd loading to Super-K

Figures are taken from: http://www-sk.icrr.utokyo.ac.jp/sk/news/2020/08/sk-gd-detail-e.html

Amount of dissolved Gd

Supernova neutrinos from 1987A

• The only detected SN neutrinos are from LMC(50kpc)

- The obtained binding energy is almost as expected, but large error in neutrino mean energy. No detailed information of burst process.
- We need energy, flavor and time structure.
- Supernova will be most interested target for Multi-messenger measurement with SK. 9

Many models today. Need data!

- Recent multi-dimensional supernova simulations successfully reproduce SN explosion.
 - Several explosion mechanism (SASI, Rotation, Convection), EOS (soft/hard SN core)
- Difficulty: Neutrino oscillation in high density
 - MSW effect in much much higher density than that in SUN!, Collective effect (oscillation)

What if SN happens now? @Super-K

- SK's directional information is important for optical telescopes in the multi-messenger astronomy era.
- SNwatch: Real-time supernova neutrino burst monitor Astropart. Phys. 81(2016)39
 - In several minutes plots are generated automatically and auto-emails+ auto-phone calls follow

SN simulation @10kpc, Wilson (Totani1998) model

- Golden Alarm (Definition):
 - 60 events in 20sec
- The process time depends on the events
 - It takes about 10 minutes for the process of 10k events
 - Alarm will sent to SNEWS, IAU CBAT, ATEL, GCN. (< 1hour)
 - Quicker alert system is needed for covering type lb/lc stars.

Pointing accuracy

- Advantage of WC detectors
 - Inverse beta events are useless
 - Excess of elastic scattering events

30 Water detectors 20 ve+r $e^- \rightarrow \nu + e$ v_e 0.25 60 vents/bln Totani1998 50 $\overline{v}_e p \rightarrow e^+ n$ 7300 40 $v + e^{-} \rightarrow v + e^{-}$ 30 320 20 ¹⁶O CC 110

 BG reduction by neutron tagging $\circ \rightarrow SK-Gd$

Pointing accuracy ~5° @10kpc SN

SK-Gd pointing accuracy

• $\overline{v_e}$ events can be tagged and rejected, and directional events $(v_e + e \text{ scattering events})$ are enhanced.

Impact of SK-Gd

Nakamura, Horiuchi et al., MNRAS, 461, 3296 (2016)

Pre-supernova signals

- Precursor signal from Si-burning is detectable with SK-Gd
 - Pre-SN's $\boldsymbol{\nu}$ energy is lower than SN's
 - Gd loading is essential.

Odrzywolek & Heger, 2010

Diffused Supernova Neutrino Backgrounds Supernova Relic Neutrino

- Neutrinos produced from the past SN bursts and diffused in the current universe.
 - ~ a few SN explosions every second $\rightarrow O(10^{18})$ SNe so far in this universe
 - Can study history of SN bursts with neutrinos

Physics of DSNB (SRN)

- Test of star formation rate
 - Factor ~2 discrepancy between rates of formations and SNe.
- Energy spectrum of SN burst neutrinos
 - Temperature inside the SN
- Extraordinary SN
 - BH formation, dim supernova

16

DSNB signal in SK

- Inverse beta decay channel is the probe for DSNB.
- Super-K holds the current best limits for the DSNB flux.
- Sensitivity limited by backgrounds
 - However, only one order magnitude above theoretical predictions.
 - \rightarrow (High efficiency and low background) Neutron tagging with Gd!

Inverse beta decay channel

D

 $\overline{\nu}_e$

DSNB sensitivity

• Assuming neutron tagging efficiency increased to >70% in 2022

Next generation large water Cherenkov detector

- 2020 Feb: Hyper-Kamiokande is officially approved by Japanese Diet.
- 2027: Observation with Hyper-Kamiokande will be started.

Hyper-Kamiokande

Expected events in HK

• SK 32kt \rightarrow HK 220kt

• 54000-90000 events are expected for SN at galactic center (10 kpc).

Supernova model discrimination

Model discrimination between five supernova models are recently studied.

J. Migenda, Neutrino 2020. With 300 events, corresponds supernovae at 60-100 kpc, >97% identification was realized.

Identified as			J.Migenda Neutrino 2020, Poster			
	NMO/IMO	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	982/999	2/1	16/0	0/0	0/0
	Nakazato	1/0	999/1000	0/0	0/0	0/0
	Tamborra	16/0	0/0	980/974	2/1	2/25
	Totani	0/0	0/0	0/0	1000/1000	0/0
	Vartanyan	0/0	0/0	0/8	0/0	1000/992

Table shows how many data sets for a given model were identified as which model for normal/inverted mass ordering.

SN at 10 kpc

Power of the statistics

• Direct observation of key features of SN mechanism

Neutronization burst

When shockwave pass through the neutrino sphere

SASI? Convection?

Shock revival by neutrino heating? Key phenomenon of the burst!

Pointing accuracy of HK

• Further help for Multi-messenger observation

DSNB (SRN) with HK

DSNB(SRN) with Hyper-K

- DSNB(SRN) can be observed by HK in 10y with ~70±17 events.
- It is > 4σ for SRN signal.
- We will go beyond the discovery and aim to measurement of SRN.

What is not covered here…

Indirect DM search

- Search for WIMPs annihilation in galactic center or halo.
- Recently SK 2016 preliminary is published as :
 - Phys. Rev. D 102, 072002 (2020)
- DM annihilation in the Sun or the Earth is also target.

Neutrino follow-up with GW, Blazer

- Very (or Ultra) high energy neutrinos are detected by IceCube detector, corresponding to GW and Blazer.
- Super-K is also preforming follow-up analysis, but have not found important event excess.
 - GW: <u>Astrophys. J. Lett. 857, L4 (2018)</u>, <u>Astrophys. J. L., 830, 1</u> (2016), M. Laumoureux at Neutrino 2020 (poster)
 - Blazer: <u>Astrophys. J. Lett. 887, L6 (2019)</u>
- Hyper-K will improve sensitivity with the detector area and volume.

What is not covered here...

Solar neutrinos

- Importance of solar nu meas. in particle physics and astrophysics
 - Precision measurement, Δm^2_{21}
 - Day/Night asymmetry
 - Solar nu spectrum up-turn
 - Discovery of Hep neutrino
 - Variation of solar v flux

Hep process neutrino

- Undiscovered solar neutrino in pp-chain, with small branching ratio.
- With Hyper-K 10 years, there is chance to discover.
- \rightarrow To test the solar models.
 - 1.8 ~ 3 σ ,10y

Summary

- Super-K is starting new experimental phase, Super-K Gd.
 - Neutrino/Anti-neutrino separation of high efficiency neutron tagging.
 - Gd loading is started at July 2020.
- Super-K Gd will provides more pointing accuracy and a new early warning system for supernova burst neutrinos.
 - Aiming for the first observation of Diffuse Supernova Neutrino Background in 10 years.
- Hyper-K has been funded and started to construct.
 - The observation will be started in 2027.
 - Supernova neutrino detections are important target for SK/HK.
- Other astrophysical source, solar neutrino, indirect DM, GW and Blazer follow-up will be also continued with SK/HK.