Cosmic Ray Anisotropy

Markus Ahlers

Niels Bohr Institute, Copenhagen

YITP Workshop

"Connecting high-energy astroparticle physics for origins of cosmic rays and future perspectives"

December 7-10, 2020

VILLUM FONDEN

Galactic Cosmic Rays

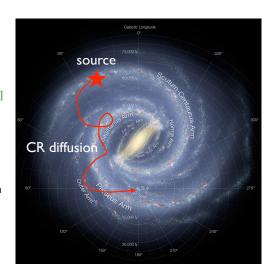
- Standard paradigm: Galactic CRs accelerated in supernova remnants
- \checkmark sufficient power: $\sim 10^{-3} \times M_{\odot}$ with a rate of ~ 3 SNe per century [Baade & Zwicky'34]
 - galactic CRs via diffusive shock acceleration?

$$n_{\rm CR} \propto E^{-\gamma}$$
 (at source)

 energy-dependent diffusion through Galaxy

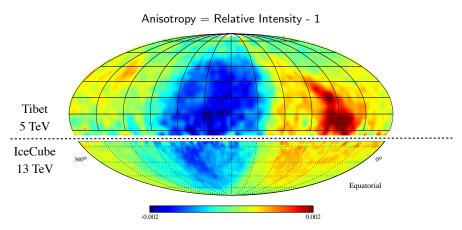
$$n_{\rm CR} \propto E^{-\gamma - \delta}$$
 (observed)

• arrival direction mostly isotropic



Galactic Cosmic Ray Anisotropy

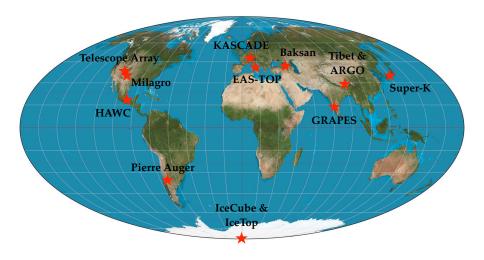
Cosmic ray anisotropies up to the level of **one-per-mille** at various energies (Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS- γ ; IceCube; HAWC)

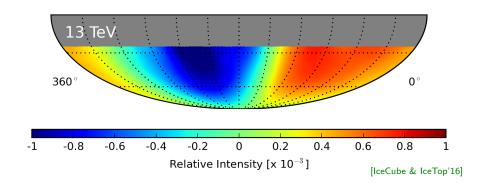


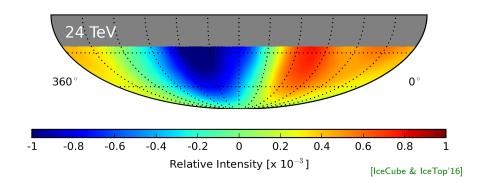
[e.g. review by MA & Mertsch'16]

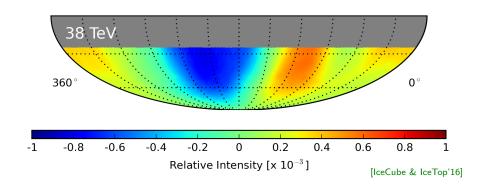
Galactic Cosmic Ray Anisotropy

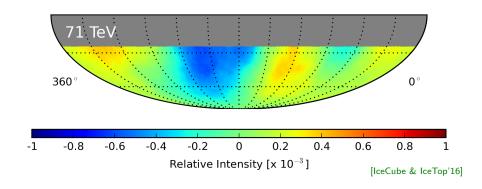
Cosmic ray anisotropies up to the level of **one-per-mille** at various energies (Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS- γ ; IceCube; HAWC)

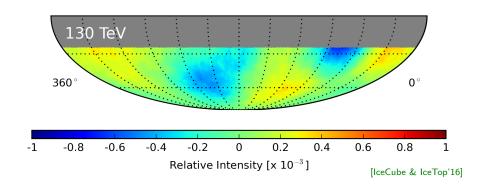


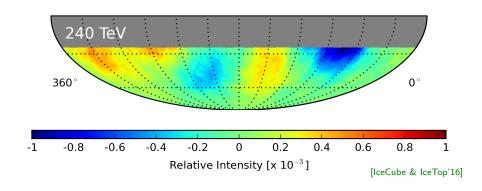


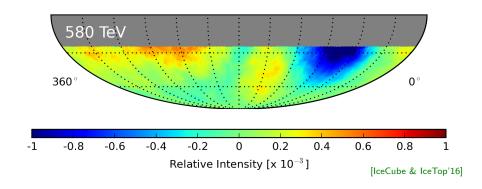


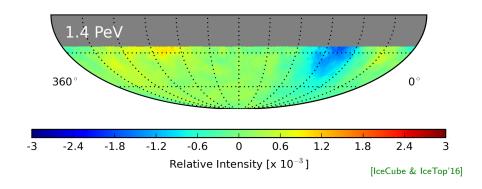


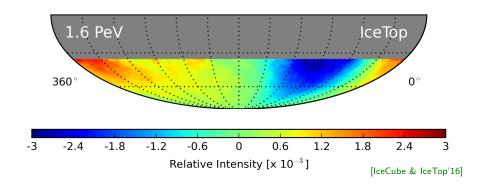


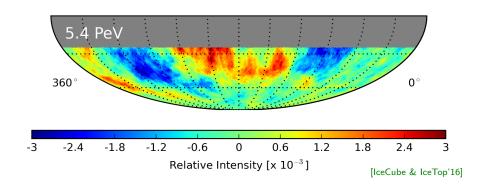






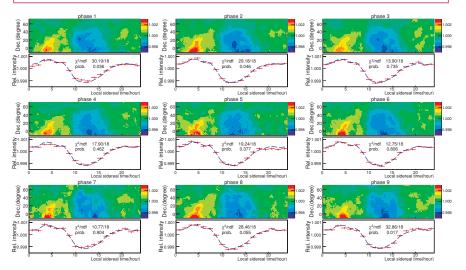






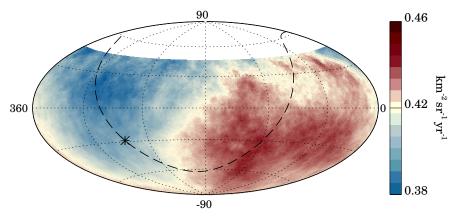
Time-Dependence

No significant variation of TeV-PeV anisotropy over time scales of $\mathcal{O}(10)$ years.



[Tibet-AS γ '10]

Recent Highlight: Auger Dipole Anisotropy



Energy [EeV]	$\begin{array}{c} \textbf{Dipole} \\ \textbf{component} \ d_z \end{array}$	$\begin{array}{c} \textbf{Dipole} \\ \textbf{component} \ d_{\perp} \end{array}$	Dipole amplitude d	Dipole declination δ_{d} [°]	Dipole right ascension α_d [°]
4 to 8	-0.024 ± 0.009	$0.006^{+0.007}_{-0.003}$	$0.025^{+0.010}_{-0.007}$	-75^{+17}_{-8}	80 ± 60
8	-0.026 ± 0.015	$0.060^{+0.011}_{-0.010}$	$0.065^{+0.013}_{-0.009}$	-24_{-13}^{+12}	100 ± 10

[Auger, Science'17]

Anisotropy Reconstruction

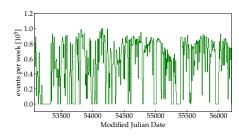
Reconstruction Methods

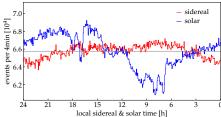
data is strongly time-dependent:

- detector deployment/maintenance
- atmospheric conditions (day/night, seasons)
- power outages,...

X local anisotropies of detector:

- detector geometry
- mountains
- geo-magnetic fields,...
- two analysis strategies:
 - Monte-Carlo & monitoring (limited by systematic uncertainties)
 - data-driven likelihood methods (limited by statistical uncertainties)





example: KASCADE-Grande data

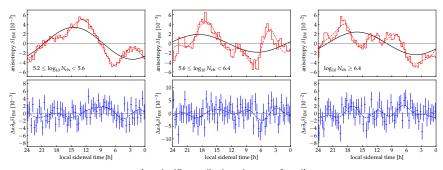
[MA'19]

Data-Driven: East-West Method

- Strong time variation of cosmic ray background level can be compensated by differential methods.
 [e.g. Bonino et al.'11]
- East-West asymmetry:

$$A_{\rm EW}(t) \equiv \frac{N_{\rm E}(t) - N_{\rm W}(t)}{N_{\rm E}(t) + N_{\rm W}(t)} \simeq \underbrace{\Delta \alpha \frac{\partial}{\partial \alpha} \delta I(\alpha, 0)}_{\mbox{if dipole!}} + \underbrace{\rm const}_{\mbox{local asym.}} \label{eq:AEW}$$

For instance, binned KASCADE-Grande data (2.7 PeV, 6.1 PeV & 33 PeV): [MA'19]



(no significant dipole anisotropy found)

Data-Driven: Likelihood Reconstructions

- East-West method introduces cross-talk between higher multipoles, regardless of field of view.
- → Alternatively, data can be analyzed to *simultaneously* reconstruct:
 - relative acceptance $A(\varphi, \theta)$ (in local coordinates)
 - relative intensity $I(\alpha, \delta)$ (in equatorial coordinates)
 - background rate $\mathcal{N}(t)$ (in sidereal time)
 - expected number of CRs observed in sidereal time bin τ and local coordinate i:

$$\mu_{\tau i} = \mu(\mathcal{I}_{\tau i}, \mathcal{N}_{\tau}, \mathcal{A}_i)$$

reconstruction via maximum likelihood:

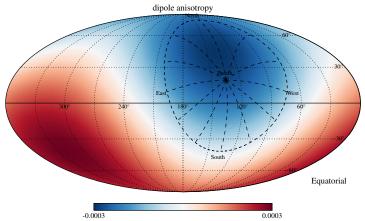
$$\mathcal{L}(n|I,\mathcal{N},\mathcal{A}) = \prod_{\tau i} \frac{(\mu_{\tau i})^{n_{\tau i}} e^{-\mu_{\tau i}}}{n_{\tau i}!}$$

• Maximum can be reconstructed by iterative methods.

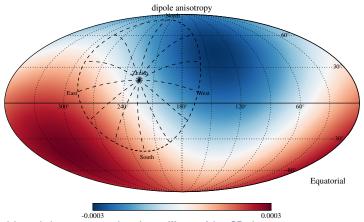
[MA et al.'15]

→ used in joint IceCube & HAWC analysis

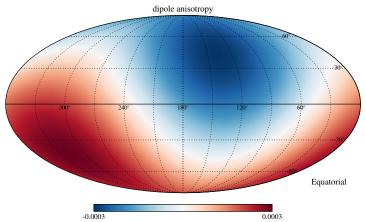
[IceCube & HAWC'18]



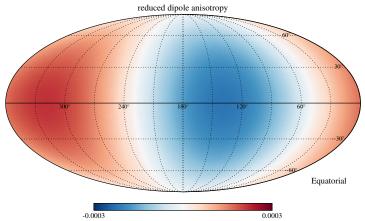
- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_1 , and orientation (RA,DEC) = (α_1, δ_1)
- $m{x}$ observable: **projected dipole** with amplitude $A_1' = A_1 \cos \delta_1$ and orientation $(\alpha_1, 0)$ [luppa & Di Sciascio'13; MA *et al.*'15]



- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_1 , and orientation (RA,DEC) = (α_1, δ_1)
- $m{x}$ observable: **projected dipole** with amplitude $A_1' = A_1 \cos \delta_1$ and orientation $(\alpha_1, 0)$ [luppa & Di Sciascio'13; MA *et al.*'15]



- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_1 , and orientation (RA,DEC) = (α_1, δ_1)
- $m{x}$ observable: **projected dipole** with amplitude $A_1' = A_1 \cos \delta_1$ and orientation $(\alpha_1, 0)$ [luppa & Di Sciascio'13; MA *et al.*'15]



- ground-based detectors need to be calibrated by CR data
- true CR dipole defined by amplitude A_1 , and orientation (RA,DEC) = (α_1, δ_1)
- \star observable: **projected dipole** with amplitude $A_1' = A_1 \cos \delta_1$ and orientation $(\alpha_1, 0)$ [luppa & Di Sciascio'13; MA *et al.*'15]

Large-Scale Anisotropy

Cosmic Ray Dipole Anisotropy

• Spherical harmonics expansion of relative intensity yields:

$$I(\Omega) = 1 + \underbrace{\delta \cdot \widehat{\mathbf{n}}(\Omega)}_{\text{dipole}} + \sum_{\ell \geq 2} \sum_{m} a_{\ell m} Y^{\ell m}(\Omega)$$

• cosmic ray density $n_{\rm CR} \propto E^{-\Gamma_{\rm CR}}$ and dipole vector δ from **diffusion theory**:

$$\underbrace{\partial_t n_{\rm CR} \simeq \nabla(\mathbf{K} \nabla n_{\rm CR}) + Q_{\rm CR}}_{\text{diffusion equation}} \quad \text{and} \quad \underbrace{\boldsymbol{\delta} \simeq 3\mathbf{K} \nabla n_{\rm CR} / n_{\rm CR}}_{\text{from Fick's law}}$$

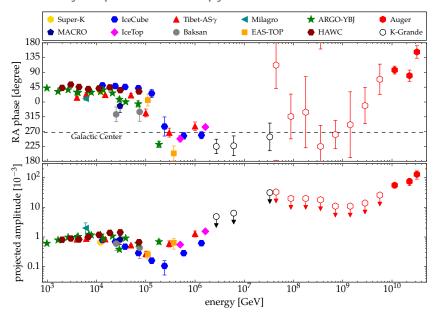
• diffusion tensor **K** in general anisotropic (background field **B**):

$$K_{ij} = \kappa_{\parallel} \widehat{B}_i \widehat{B}_j + \kappa_{\perp} (\delta_{ij} - \widehat{B}_i \widehat{B}_j) + \kappa_A \epsilon_{ijk} \widehat{B}_k$$

• relative motion v of the observer in plasma rest frame (\star): [Compton & Getting'35]

$$\frac{\delta}{\delta} = \delta^{\star} + \underbrace{(2 + \Gamma_{\rm CR}) v/c}_{\rm Compton-Getting~effect}$$

Cosmic Ray Dipole Anisotropy



TeV-PeV Dipole Anisotropy

reconstructed diffuse dipole:

$$\delta^{\star} = \delta - \underbrace{(2 + \Gamma_{\mathrm{CR}}) \beta}_{\mathsf{Compton-Getting}} = 3 \mathbf{K} \cdot \nabla n^{\star} \big/ n^{\star}$$

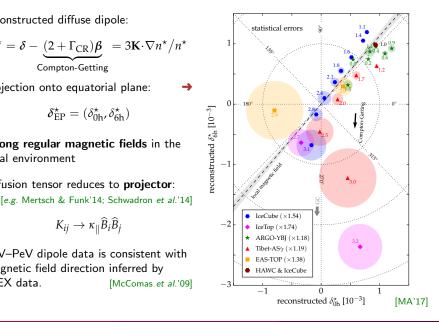
projection onto equatorial plane:

$$\delta_{\rm EP}^{\star} = (\delta_{0\rm h}^{\star}, \delta_{6\rm h}^{\star})$$

- strong regular magnetic fields in the local environment
- diffusion tensor reduces to **projector**:

$$K_{ij} \to \kappa_{\parallel} \widehat{B}_i \widehat{B}_j$$

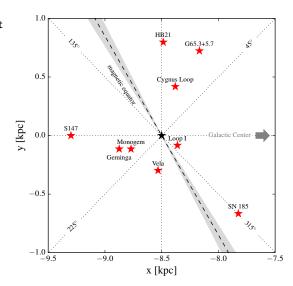
TeV-PeV dipole data is consistent with magnetic field direction inferred by IBEX data. [McComas et al.'09]



Known Local Supernova Remnants

- projection maps source gradient onto $\widehat{\boldsymbol{B}}$ or $-\widehat{\boldsymbol{B}}$
- dipole phase α₁ depends on orientation of magnetic hemispheres
 - intersection of magnetic equator with Galactic plane defines two source groups:

$$\begin{split} &120^{\circ} \lesssim l \lesssim 300^{\circ} \rightarrow \alpha_{1} \simeq 49^{\circ} \\ &-60^{\circ} \lesssim l \lesssim 120^{\circ} \rightarrow \alpha_{1} \simeq 229^{\circ} \end{split}$$



Phase-Flip by Vela SNR?

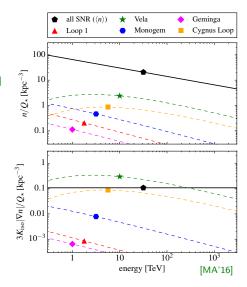
 1–100 TeV phase indicates dominance of a local source within longitudes:

$$120^{\circ} \lesssim l \lesssim 300^{\circ}$$

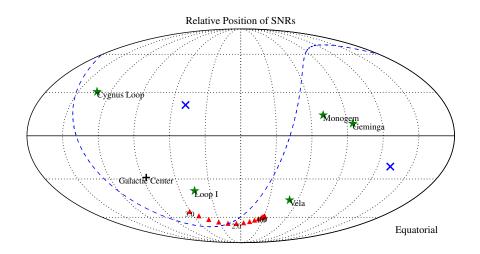
- plausible scenario: Vela SNR [MA'16]
 - $age: \simeq 11,000 \text{ yrs}$
 - distance : $\simeq 1,000$ lyrs
 - *SNR* rate : $R_{SNR} = 1/30 \, yr^{-1}$
 - (effective) isotropic diffusion:

$$K_{\rm iso} \simeq 4 \times 10^{28} (E/3 {\rm GeV})^{1/3} {\rm cm}^2/{\rm s}$$

- Galactic half height : $H \simeq 3 \text{ kpc}$
- instantaneous CR emission (Q_*)



Position of Local SNR



Relative position of the five closest known SNRs. The magnetic field direction (IBEX) is indicated by blue \times and the **magnetic horizon** by a dashed line.

Phase-Flip by Vela SNR

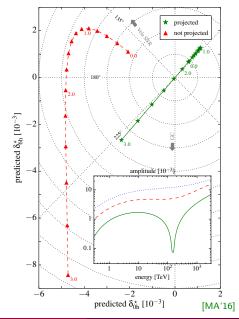
 1–100 TeV phase indicates dominance of a local source within longitudes:

$$120^{\circ} \lesssim l \lesssim 300^{\circ}$$

- plausible scenario: Vela SNR [MA'16]
 - $age: \simeq 11,000 \text{ yrs}$
 - distance : $\simeq 1,000$ lyrs
 - *SNR* rate : $\mathcal{R}_{SNR} = 1/30 \, \text{yr}^{-1}$
 - (effective) isotropic diffusion:

$$K_{\rm iso} \simeq 4 \times 10^{28} (E/3 {\rm GeV})^{1/3} {\rm cm}^2/{\rm s}$$

- Galactic half height : $H \simeq 3 \text{ kpc}$
- instantaneous CR emission (Q_*)



Small-Scale Anisotropy

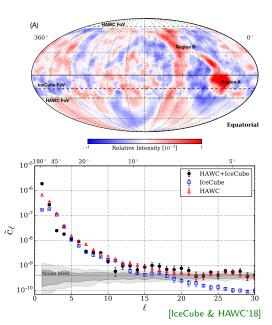
Small-Scale Anisotropy

- Significant TeV small-scale anisotropies down to angular scales of $\mathcal{O}(10)$ degrees.
- Strong local excess ("region A") observed by Northern observatories.

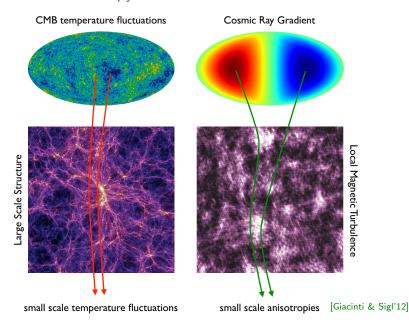
[Tibet-AS γ '06; Milagro'08] [ARGO-YBJ'13; HAWC'14]

 Angular power spectra of IceCube and HAWC data show excess compared to isotropic arrival directions. [IceCube'11; HAWC'14]

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2$$



Small-Scale Anisotropy from Local Turbulence



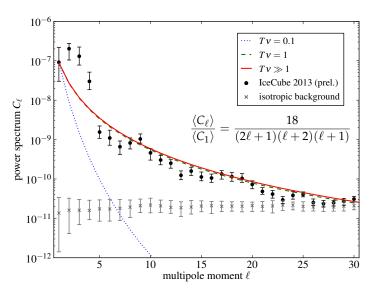
Small-Scale "Theorem"

- Assumptions:
 - absences of cosmic ray sources and sinks
 - isotropic and static magnetic turbulence
 - initially, homogeneous phase space distribution
- Theorem: The sum over the ensemble-averaged angular power spectrum is constant:

$$\sum_{\ell} (2\ell+1) \langle C_{\ell}(t)
angle = \mathsf{const}$$

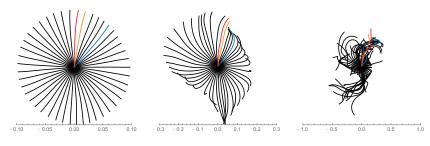
- Proof via Liouville's theorem and angular auto-correlation function. [MA'14]
- \rightarrow Wash-out of individual moments by diffusion (rate $\nu_{\ell} \propto \ell(\ell+1)$) has to be compensated by generation of small-scale anisotropy.
- → Theorem implies small-scale angular features from large-scale average dipole anisotropy. [Giacinti & Sigl'12: MA'14: MA & Mertsch'15]

Comparison to CR Data



[MA'14]

Simulation via Backtracking



Consider a local (quasi-)stationary solution of the diffusion approximation:

$$4\pi \langle f \rangle \simeq n_{\mathrm{CR}} + \underbrace{(\mathbf{r} - 3\,\widehat{\mathbf{p}}\,\mathbf{K}) \nabla n_{\mathrm{CR}}}_{\mathrm{1st \ order \ correction}}$$

• Ensemble-averaged C_{ℓ} 's $(\ell \geq 1)$:

[MA & Mertsch'15]

$$\frac{\langle C_\ell \rangle}{4\pi} \simeq \int \frac{\mathrm{d} \hat{\mathbf{p}}_1}{4\pi} \int \frac{\mathrm{d} \hat{\mathbf{p}}_2}{4\pi} P_\ell(\hat{\mathbf{p}}_1 \hat{\mathbf{p}}_2) \lim_{T \to \infty} \underbrace{\langle \mathbf{r}_{1i}(-T) \mathbf{r}_{2j}(-T) \rangle}_{\textit{relative diffusion}} \frac{\partial_i n_{\mathrm{CR}} \partial_j n_{\mathrm{CR}}}{n_{\mathrm{CR}}^2}$$

Simulation via Backtracking

simulation in isotropic & static magnetic turbulence with

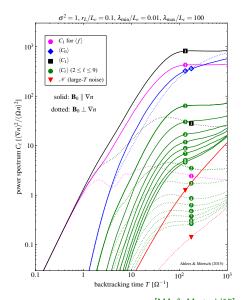
$$\overline{\delta \mathbf{B}^2} = \mathbf{B}_0^2$$

- relative orientation of CR gradient:
 - solid lines : $\mathbf{B}_0 \parallel \nabla n$
 - dotted lines : $\mathbf{B}_0 \perp \nabla n$
- diffusive regime at $T\Omega \gtrsim 100$
- enhanced dipole predicions:

$$\langle C_1 \rangle > C_1 \text{ for } \langle f \rangle$$

 asymptotically limited by simulation noise:

$$\mathcal{N} \simeq rac{4\pi}{N_{
m pix}} 2T K_{ij}^s rac{\partial_i n \partial_j n}{n^2}$$



[MA & Mertsch'15]

Summary and Outlook

- Observation of CR anisotropies at the level of one-per-mille is challenging.
- Reconstruction methods can introduce bias, sometimes not stated or corrected for.
- Dipole anisotropy can be understood in the context of standard diffusion theory:
 - TeV-PeV dipole phase aligns with local ordered magnetic field.
 - Amplitude variations as a result of local sources
 - Plausible & natural candidate: the Vela supernova remnant
- Observed CR data shows evidence of small-scale anisotropy.
 - Influenced by heliosphere?
 - Effect from non-uniform pitch-angle diffusion?
 - Result of local magnetic turbulence?
- ✓ Both observations allow to probe our local magnetic environment.
- → Future TeV-EeV CR data (e.g. from LHAASO) with improved energy resolution and event statistics will allow to decipher large- and small-scale features in presently uncharted territory.
- → Joint analyses of data from Northern and Southern observatories (e.g. from SWGO & IceCube-Gen2) benefit from **extended FoV** and reduced multipole cross-talk.

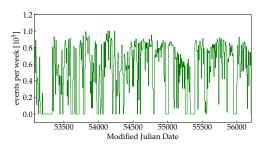
Appendix

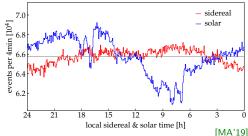
KASCADE-Grande Data

- KASCADE-Grande in Karlsruhe, Germany (49.1° N, 8.4° E)
- data collected between March 2004 and October 2012
- available via: kcdc.ikp.kit.edu
- three energy bins from $N_{\rm ch}$ cuts:

data	E_{med}^{\bullet}	N_{ch} -range	$N_{ m tot}$
sidereal	_	> 10 ^{5.2}	23,674,844
solar		≥ 10	20,071,011
bin 1	2.7 PeV	$[10^{5.2}, 10^{5.6})$	17,443,774
bin 2	6.1 PeV	$[10^{5.6}, 10^{6.4})$	6,084,275
bin 3	33 PeV	$\geq 10^{6.4}$	146,795

• Full anisotropy construction in Northern Hemisphere possible with max- \mathcal{L} method. [MA'19]





Non-Uniform Pitch-Angle Diffusion

• stationary pitch-angle diffusion ($\mu \equiv \cos \theta$) :

$$v\mu \frac{\partial}{\partial z} \langle f \rangle = \frac{\partial}{\partial \mu} D_{\mu\mu} \frac{\partial}{\partial \mu} \langle f \rangle$$

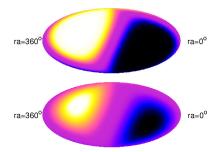
• non-uniform diffusion:

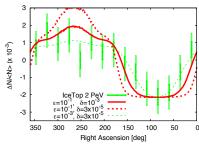
$$\frac{D_{\mu\mu}}{1-\mu^2} \neq \text{const}$$

- non-uniform pitch-angle diffusion modifies the large-scale anisotropy aligned with B₀
 - small scale excess/deficits for enhanced diffusion towards $\mu \simeq \pm 1$

[Malkov, Diamond, Drury & Sagdeev'10]

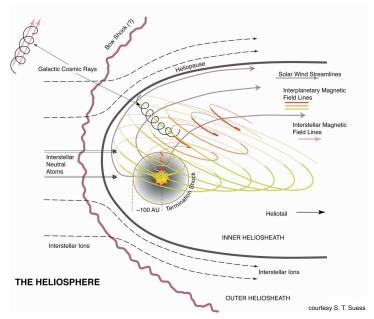
• modified large-scale features for enhanced diffusion at $\mu \simeq 0$ [Giacinti & Kirk'17]





[Giacinti & Kirk'-17]

Small-Scale Anisotropies from Heliosphere?



Small-Scale Anisotropies from Heliosphere?

• Solar potential affects cosmic ray flux (monopole) only at rigidity $\mathcal{R} \lesssim GV$.

[Gleeson & Axford 68; Gleeson & Urch 73]

However, gyroradius of sub-TV cosmic rays smaller than the size of heliosphere:

$$r_g \simeq 200 \left(\frac{\mathcal{R}}{\text{TV}}\right) \left(\frac{B}{\mu\text{G}}\right)^{-1} \text{AU}$$

various effects and studies:

* hard CR spectra via magnetic reconnection in the heliotail [Lazarian & Desiati'10]

* non-isotropic particle transport in the heliosheath

[Desiati & Lazarian'11]

* heliospheric electric fields induced by plasma motion

[Drury'13]

* simulation via CR back-tracking in MHD simulation of heliosphere

[Zhang, Zuo & Pogorelov'14; López-Barquero et al.'16]

Solar Potential

dipole anisotropy induced by CR diffusion in solar wind:

$$|\Phi| = -\underbrace{\frac{\beta_{\odot}(r)}{3} \frac{\partial \phi}{\partial \ln p}}_{\text{Compton-Getting}} - \underbrace{\kappa_{\odot}(r, p) \frac{\partial \phi}{\partial r}}_{\text{diffuse dipole}}$$

ightharpoonup force-field approximation: $|oldsymbol{\Phi}| \simeq 0$

[Gleeson & Axford'68;Gleeson & Urch'73]

local solution related to distribution beyond heliosphere:

$$\phi(r_{\oplus},p(r_{\oplus})) = \lim_{R \to \infty} \phi(R,p(R))$$

• p(r) solution of characteristic equation:

$$\frac{\partial p}{\partial r} = \frac{\beta_{\odot}(r)}{3} \frac{p}{\kappa_r(r,p)}$$

ightharpoonup assume **Bohm diffusion** in heliosphere: $\kappa_{\odot}(r,p) \simeq \kappa_0(r)(\mathcal{R}/\mathcal{R}_0)$

$$p(r_{\oplus}) = p(\infty) - |Z| eV_{\odot}$$
 with $V_{\odot} = \underbrace{\frac{\mathcal{R}_0}{3} \int_{r_{\oplus}}^{\infty} \mathrm{d}r' \frac{\beta_{\odot}(r')}{\kappa_0(r')}}_{\text{effective "solar potential"}} \lesssim 1\,\mathrm{GV}$

Simulated Turbulence

3D-isotropic turbulence:

[Giacalone & Jokipii'99]

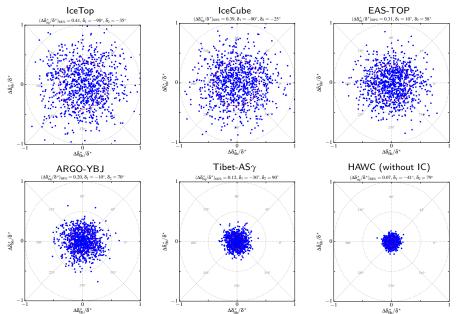
$$\delta \mathbf{B}(\mathbf{x}) = \sum_{n=1}^{N} A(k_n) (\mathbf{a}_n \cos \alpha_n + \mathbf{b}_n \sin \alpha_n) \cos(\mathbf{k}_n \mathbf{x} + \beta_n)$$

- α_n and β_n are random phases in $[0,2\pi)$, unit vectors $\mathbf{a}_n \propto \mathbf{k}_n \times \mathbf{e}_z$ and $\mathbf{b}_n \propto \mathbf{k}_n \times \mathbf{a}_n$
- with amplitude

$$A^{2}(k_{n}) = \frac{2\sigma^{2}B_{0}^{2}G(k_{n})}{\sum_{n=1}^{N}G(k_{n})} \quad \text{with} \quad G(k_{n}) = 4\pi k_{n}^{2} \frac{k_{n}\Delta \ln k}{1 + (k_{n}L_{c})^{\gamma}}$$

- Kolmogorov-type turbulence: $\gamma = 11/3$
- N=160 wavevectors \mathbf{k}_n with $|\mathbf{k}_n|=k_{\min}e^{(n-1)\Delta \ln k}$ and $\Delta \ln k=\ln(k_{\max}/k_{\min})/N$
- ullet $\lambda_{ ext{min}} = 0.01 L_c$ and $\lambda_{ ext{max}} = 100 L_c$ [Fraschetti & Giacalone'12]
- rigidity: $r_L = 0.1 L_c$
- turbulence level: $\sigma^2 = \mathbf{B}_0^2/\langle \delta \mathbf{B}^2 \rangle = 1$

Systematic Uncertainty of CR Dipole



Compton-Getting Effect

phase-space distribution is Lorentz-invariant

$$f(\mathbf{p}) = f^{\star}(\mathbf{p}^{\star})$$

• relative motion of observer $(\beta = \mathbf{v}/c)$ in plasma rest frame (\star) :

$$\mathbf{p}^{\star} = \mathbf{p} + p\boldsymbol{\beta} + \mathcal{O}(\beta^2)$$

Taylor expansion:

$$f(\mathbf{p}) \simeq f^{\star}(\mathbf{p}) + (\mathbf{p}^{\star} - \mathbf{p}) \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p}) + \mathcal{O}(\beta^{2}) \simeq f^{\star}(\mathbf{p}) + p \beta \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p}) + \mathcal{O}(\beta^{2})$$

 \rightarrow dipole term Φ is **not invariant**:

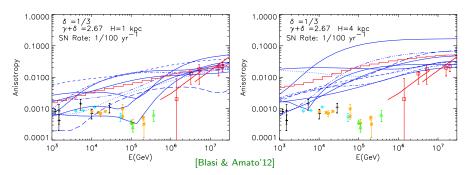
$$\phi = \phi^{\star}$$
 and $\Phi = \Phi^{\star} + \frac{1}{3}\beta \frac{\partial \phi^{\star}}{\partial \ln p}$

• with $\phi \sim p^{-2} n_{\rm CR} \propto p^{-2-\Gamma_{\rm CR}}$:

$$\delta = \delta^\star + \underbrace{(2 + \Gamma_{
m CR})oldsymbol{eta}}_{
m Compton-Getting\ effect}$$

X What is the plasma rest-frame? LSR or ISM : $v \simeq 20 \mathrm{km/s}$

Local Sources



 Distribution of local cosmic ray sources (SNR) in position and time induces variation in the anisotropy.
 [Erlykin & Wolfendale'06; Blasi & J.

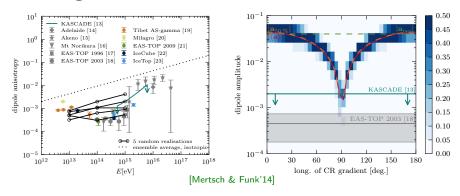
[Erlykin & Wolfendale'06; Blasi & Amato'12] [Sveshnikova et al.'13; Pohl & Eichler'13]

variance of amplitude can be estimated as:

[Blasi & Amato'12]

$$\sigma_A \propto \frac{K(E)}{cH} \longrightarrow \frac{\sigma_A}{A} = \text{const}$$

Local Magnetic Field



- strong regular magnetic fields in the local environment
- → diffusion tensor reduces to **projector**: [e.g. Mertsch & Funk'14; Schwadron et al.'14; MA'17]

$$K_{ij} \to \kappa_{\parallel} \widehat{B}_i \widehat{B}_j$$

ightharpoonup reduced dipole amplitude and alignment with magnetic field: $\delta \parallel \mathbf{B}$

Local Magnetic Field

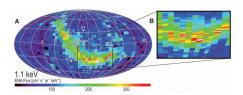
- IBEX ribbon: enhanced emission of energetic neutral atoms (ENAs) observed with Interstellar Boundary EXplorer [McComas et al.'09]
- interpreted as local magnetic field ($\lesssim 0.1~{\rm pc}$) drapping the heliosphere
- circle center defines field orientation (in Galactic coordinate system):

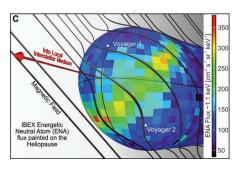
[Funsten et al.'13]

$$l \simeq 210.5^{\circ}$$
 & $b \simeq -57.1^{\circ}$
($\Delta \theta \simeq 1.5^{\circ}$)

• consistent with starlight polarization by interstellar dust ($\lesssim 40~{\rm pc}$) [Frisch *et al.*'15]

$$l \simeq 216.2^{\circ}$$
 & $b \simeq -49.0^{\circ}$





[McComas et al.'09]

Evolution Model

• Diffusion theory motivates that each $\langle C_\ell \rangle$ decays exponentially with an effective relaxation rate [Yosida'49]

$$\nu_{\ell} \propto \mathbf{L}^2 \propto \ell(\ell+1)$$

• A **linear** $\langle C_{\ell} \rangle$ evolution equation with generation rates $\nu_{\ell \to \ell'}$ requires:

$$\partial_t \langle C_\ell \rangle = -\nu_\ell \langle C_\ell \rangle + \sum_{\ell' \geq 0} \nu_{\ell' \to \ell} \frac{2\ell' + 1}{2\ell + 1} \langle C_{\ell'} \rangle \quad \text{with} \quad \nu_\ell = \sum_{\ell' \geq 0} \nu_{\ell \to \ell'}$$

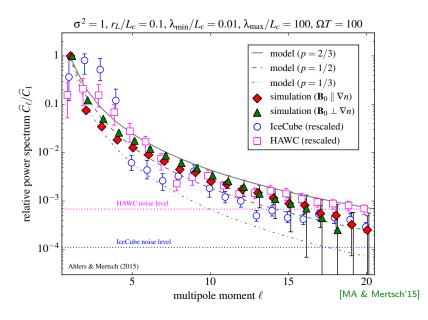
• For $\nu_{\ell} \simeq \nu_{\ell \to \ell+1}$ and $\widetilde{C}_{\ell} = 0$ for $l \geq 2$ this has the analytic solution:

$$\langle C_{\ell} \rangle (T) \simeq \frac{3\widetilde{C}_1}{2\ell+1} \prod_{m=1}^{\ell-1} \nu_m \sum_n \prod_{p=1(\neq n)}^{\ell} \frac{e^{-T\nu_n}}{\nu_p - \nu_n}$$

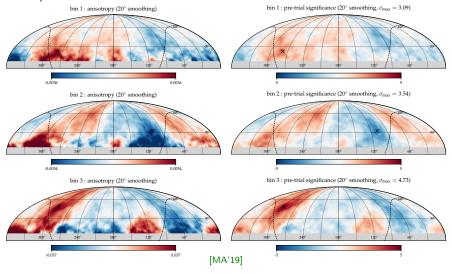
• For $\nu_{\ell} \simeq \ell(\ell+1)\nu$ we arrive at a finite asymptotic ratio:

$$\lim_{T \to \infty} \frac{\langle C_\ell \rangle(T)}{\langle C_1 \rangle(T)} \simeq \frac{18}{(2\ell+1)(\ell+2)(\ell+1)}$$

Simulation vs. Data

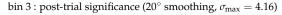


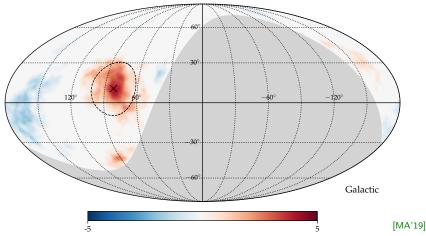
Example: KASCADE-Grande



Sidereal anisotropy in the KASCADE-Grande data with median energy of 2.7 PeV (bin 1), 6.1 PeV (bin 2) and 33 PeV (bin 3).

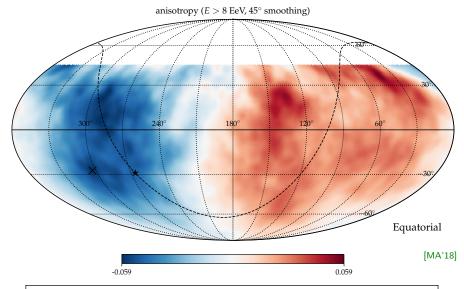
Small-Scale Feature At the 2nd Knee?





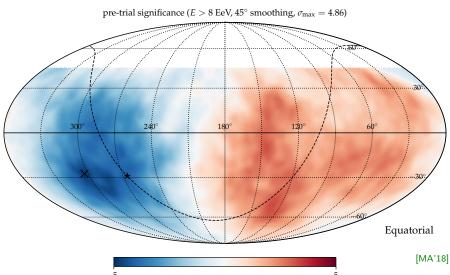
Small-scale anisotropy of 33 PeV cosmic rays overlaps with Cygnus region. (gyro radius <10 pc; neutron decay length $\simeq300$ pc)

Example: Pierre Auger



Method can also be applied to high-energy data beyond the knee, $\it e.g.$ Auger.

Example: Pierre Auger



Method can also be applied to high-energy data beyond the knee, e.g. Auger.