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Galactic Cosmic-rays (p, He, Li-Be-B, C,…)

(probably) produced via 
diffusive shock acceleration 
at SNRs

proton, He, C, O, etc.：
primarily produced at 
SNRs, power-law spectrum

Li-Be-B：secondarily
produced via spallation of 
heavier nuclei during 
propagation, having steeper 
spectrum than primary CRs
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Spectral hardening of primary CR nuclei

Aguilar+ 2015

Direct measurements of CRs by 
PAMELA / AMS-02 / CALET etc.
à The spectra of p, He, C, and 

O harden above ≳200 GV
Aguilar+ 2017acceleration physics?

propagation effect?
local source? Ne, Mg, and Si also harden (Aguilar+ 2020)



Spectral hardening of “secondary” CR nuclei

Aguilar+ 2018

AMS-02:
(1) The spectra of Li, Be, and 

B harden above ≳ 200GV
(2) Li, Be, and B harden 

more than He, C and O

• propagation effect?
(Thoudam & Horandel 14; Blasi+ 12 etc.)
• reacceleration? (Bresci+ 19 etc.)
• superposition of different 

kinds of sources? (Niu+ 20 etc.)
• Only Li hardens? primary Li 

source?
(NK & Yanagita 2018; Boschini+ 2020)
• Primary Li-Be-B source? (This work)



Production and Acceleration of secondary CRs
Primary CRs are accelerated
à interact with surrounding 
medium
à secondary CRs production
à secondary CRs are also 

shock-accelerated
à HE primary CRs can 

produce more secondaries
à The spectrum of secondary 

CRs would be harder than 
that of primary CRs Mertsch & Sarkar 2009

Mertsch & Sarkar 2009 etc.
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⚠ The escape of CRs into the upstream is still not 
taken into account in this model. 



Escape-limited CR acceleration

CRs with higher energy 
escape the SNRs earlier than 
those with lower energy
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𝑝% ≡ 𝑝esc 𝑡⇔

𝑢! = 𝑢sh : expansion velocity of the SNR
l ~ Rsh : escape boundary ~ size of the SNR
𝐷SNR = 𝐷" ⁄𝑝 𝑝" : diffusion coefficient ∝ B-1
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l

escape condition for a particle

diffusion length

decreases with t

Gabici+ 2007, 2009; Ohira+ 2010

supported by g-ray observations
(Aharonian & Atoyan 1996; Gabici+ 09; 
Ohira+ 11; see also Oka-san’s poster)



CR distribution function fi at the SNR
diffusion-convection equation

i = Li, Be, B, C, N, O
Gi = S i>j G i→j: spallation rate of nuclei i
Qi: injection rate of nuclei i qi ~ Si<j Gj→i fj: injection rate due to the spallation

Boundary conditions fi

x-lLow E CR

NEW!

shock front

0

escape flux
−𝐷! ⁄𝜕𝑓! 𝜕𝑥

High E CR

NK and Lee in prep.



Case 1: uniform ISM (namb = const.)
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Escaping CR spectrum

Secondaries are always 
softer than primaries L
∵ High energy primaries 
escape the SNR earlier and 
produce less secondaries. 

time

time

namb= 0.1 cm-3
NK and Lee in prep.
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Case 2: SN with dense CSM  (namb ∝ r -2)
𝑀̇ = 1×10!"𝑀⨀ yr!$, 𝑣% = 100 km s!$
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Secondaries are always 
harder than primaries J
∵ The ambient density is 
higher in the early phase, which 
enables high energy primaries 
to produce more secondaries.

Carbon 
(primary)

Boron 
(secondary)

Escaping CR spectrum
NK and Lee in prep.
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SN with CSM as a secondary CR accelerator

Moriya+ 2014

• e.g., Type IIn SNe:
mass loss rate before the explosion
≳ 10'(𝑀⨀ yr'* (𝑣 = 100 km s!$)

• total mass of CSM
≳ 0.1 − 1𝑀⨀ ∼ SN ejecta mass

• typical size of CSM ≳ 0.01 pc

Hypothesis：CR Li-Be-B nuclei (and their 
primary nuclei) are produced and accelerated 
at a local SNR in the dense CSM.



Fitting to the observed CR spectra
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a local SNR with CSM:

Spectral hardenings of 
primary and secondary 
nuclei are reproduced 
simultaneously!

Primaries

Secondaries

(thin lines)

NK and Lee in prep.



Prediction
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a local SNR contribution
(≳ 200 GeV):
Secondaries are harder than 
primaries 

background (≲ 200 GV):
Secondaries are softer than 
primaries.

Energy dependence of 
secondary-to-primary ratios 
would flatten at higher 
energies
# It may rise with energy!

NK and Lee in prep.



Summary
• We propose a local supernova with dense 

circumstellar medium as the birth place of the hard 
CR Li-Be-B component appearing ≳ 200 GV.

• We calculate the production and acceleration of 
secondary CR nuclei in the SNR, as well as their 
escape into the ISM in a consistent way.

• The energy spectra of p, He, Li, Be, B, C, N, and O 
predicted from our model are consistent with the 
observations of AMS-02.

• Our scenario may be tested by secondary-to-
primary ratios (e.g., B/C, Li/C, etc.) in ≳ TeV range?

• AMS-02, CALET, DAMPE etc.


