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Galactic Cosmic-rays (p, He, Li-Be-B, C,...)

supernova remnant
(SNR)

(probably) produced via
diffusive shock acceleration
at SNRs

primary (p, He, C,...)

proton, He, C, O, etc. .
O

primarily produced at
SNRs, power-law spectrum

Secondary (Li-Be-B)

Li-Be-B . secondarily

produced via spallation of
heavier nuclei during
propagation, having steeper
* g

spectrum than primary CRs
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Direct measurements of CRs by
PAMELA / AMS-02 / CALET etc.

— The spectra of p, He, C, an
O harden above =200 GV

acceleration physics?
propagation effect?
local source?
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Spectral hardening of primary CR nuclei
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Ne, Mg, and Si also harden (Aguilar+ 2020)



Spectral hardening of “secondary” CR nuclei
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AMS-02:
(1) The spectra of Li, Be, and

B harden above = 200GV
(2) Li, Be, and B harden

more than He, C and O
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* propagation effect?

(Thoudam & Horandel 14; Blasi+ 12 etc.) I & Helium 4 Lithium

e reacceleration? (Bresci+ 19 etc.) 25'_4‘: R - oryeen toon

* superposition of different % ) ~Wae_s 4
kinds of sources? (Niu+20etc.) = . + R

e Only Li hardens? primary Li £ + Ly
source? T A - -

(NK & Yanagita 2018; Boschini+ 2020) | 1 Aguilar+ 2018
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* Primary Li-Be-B source? (This worky = = gty A [0V



Production and Acceleration of secondary CRs

) Mertsch & Sarkar 2009 etc.
Primary CRs are accelerated

secondary

- interact with surrounding

medium . [ e

- secondary CRs production prmeS />‘

- secondary CRs are also ¢ .
shock-accelerated . ha

> HE primary CRs can downstream upstream
produce more secondaries .

- The spectrum of secondary ;" TELL
CRs would be harder than = | \ T
that of pl‘imal‘y CRs "t Mertsch & Sarkar 2009 3
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L. The escape of CRs into the upstream is stﬂl not
*taken into account in this model. y




Escape-limited CR acceleration

CRs with higher energy

escape the SNRs earlier than

those with lower energy

supported by y-ray observations
(Aharonian & Atoyan 1996; Gabici+ 09;
Ohira+ 11; see also Oka-san’s poster)

“ escape condition for a particle

Dsnr(p)

/u_

diffusion length

U_ = Ug}, - expansion velocity of the SNR

> &

secondary [

primary \

Gabici+ 2007, 2009; Ohira+ 2010
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P> —5—Po= Pesc(t)
0

\

decreases with ¢

[ ~ Ry, : escape boundary ~ size of the SNR
DgNR = Do(p/po): diffusion coefficient o« B! 4



CR distribution function f; at the SNR

, NK and Lee in prep.
H diffusion-convection equation
0 f i 0 af i p du 0 f;
U (x) = D;( ) — I f; +q;
ax [P P oy | P 3dnap it
i=Li,Be,B,C,N, O +u-Q;06(x)o(p — po),
[;=%,.,[',;: spallation rate of nuclei i
Q;: injection rate of nuclei i q;~ 2, I, f;: injection rate due to the spallation
Boundary conditions 1 1
l shock front

(i) lim f,— 11m f,

x—-0

(ii) ‘ lml fi= \ NEW!

: iescape flux
(ii) xgrpmﬁ < oo, High E CR \ —D;(0f;/0x)
x=-—0 :
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Case 1: uniform ISM (n,,,, =
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Escaping CR spectrum
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Secondaries are always

softer than primaries ®
High energy primaries

escape the SNR earlier and

produce less secondaries.



Case 2: SN with dense CSM (n,,, X r 2)

M = 1x1073Mg yr—l, =100 kms™* NK and Lee inpigg
o — ey o ¢ Escapmg CR spectrum _
‘\ " Carbon 3{2 — : ;
0% | ‘\ (p‘nmary)goig o ﬁ:
0% r WL time ‘3 ’ : 5 £
\ ‘ ” Lix 50 ——— ]
5 . Be x 50
™ r . \ B x 50
- Cx15 —
1020 L Nx 18
1040 E H L L L ! tt S I e I E—
N Boron £ — 102 10° 104
35 (secondar ) 10t ______ KE/nuc [GeV]
%) Y) a0 .2 A .
3 NP Secondaries are always
8 F_ 1 harder than primaries ©
S ~_Ltime . . . 4
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SN with CSM as a secondary CR accelerator

mass-loss rate (M, yr ')

10° ; i ' '
~ SN 2005kj —— SN 2005ip
—— SN 2006bo
—— SN 2006jd
Lot —— SN 2006qq .
h —— SN 2008fq
SN 2010j|
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* e.g., Type IlIn SNe:
mass loss rate before the explosion

= 107°Mgyr~* (v=100kms™1)

|+ total mass of CSM
| = 0.1 — 1My ~ SN ejecta mass

years before the explosion

e typical size of CSM = 0.01 pc

) 4

Hypothesis : CR Li-Be-B nuclei (and their
primary nuclei) are produced and accelerated
at a local SNR in the dense CSM.




Fitting to the observed CR spectra

| Primaries
a local SNR with CSM: T m_p#m__, '
4 ~ tHe " ]
(thin lines) S i
.y £ ’
M = 1x10"3Mg yr 1, » [O(x10 e
0 10° asrEatamapgessst © @
v, = 100 km s™1, 5| [/
T ESN — 1051erg, NCR = 0.1 =10 N )
age: 1.5 X 10° yr o
distance: 1.5 kpc 0 _RGY]

Secondarles ]

Spectral hardenings of
primary and secondary|:
nuclei are reproduced
simultaneously!
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Prediction

LR
m

odelBC —— |  background (< 200 GV):
AMS-02 :--—+---1 ] et .

' Secondaries are softer than
primaries.

a local SNR contribution
| (= 200 GeV):
e Secondaries are harder than

10°

primaries

R [GV]

| NKand Leein prep.

‘model LilC —— -
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Energy dependence of
secondary-to-primary ratios
would flatten at higher
energies
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0t 10 # It may rise with energy!



Summary

* We propose a local supernova with dense
circumstellar medium as the birth place of the hard
CR Li-Be-B component appearing = 200 GV.

* We calculate the production and acceleration of
secondary CR nuclei in the SNR, as well as their
escape into the ISM in a consistent way.

* The energy spectra of p, He, Li, Be, B, C, N, and O
predicted from our model are consistent with the
observations of AMS-02.

* Our scenario may be tested by secondary-to-
primary ratios (e.g., B/C, Li/C, etc.) in = TeV range?

« AMS-02, CALET, DAMPE etc.



