Particle Acceleration in the Jets of Cen A

[HESS- F. Rieger, A. Taylor, et al., Nature 2020]

The Challenge: The Existence of Ultra High Energy Cosmic Rays

Particle Acceleration and Magnetic Turbulence

- Shifting of μ₁ ' to μ₂ ' is caused by magnetic turbulence, rate described by scattering time, which in Larmor time units is described by η
- Scattering agent velocity β dictates energy gain each crossing cycle

$$\mathbf{t_{acc}} = \eta \frac{\mathbf{R_{lar}}}{\mathbf{c}\beta^2}$$

Note- shock acceleration isn't the only acceleration mechanism on the block!

Cosmic Ray Source Requirements

DESY.

4

DESSources of extragalactic cosmic rays
Andrew Taylor

Electron Acceleration with Cooling

Maximum synchrotron energy tells us how efficient accelerator is!

Where do synchrotron cutoffs for AGN sit in energy?

The Cutoff Region-Synchrotron Emission Example

Centaurus A - VHE Extension

HESS Detected Extension on ~2kpc scale

Log₁₀(r [pc])

H.E.S

Centaurus A's Inner Jet-A Cosmic Lab

surface brightne:

Rel.

Transport & Cooling Times of Electrons in Cen A's Jets

Distinguishing Cen A's Nucleus and Inner Jet SED

Important Pending Questions to be Answered

Where does energy of synchrotron & IC spectra occur?

How does B-field strength vary along the jet on larger scales?

Variation of target photons on larger scales?

Keep It Simple- Shear Flow with Random Isotropic Scattering

Consideration of a Scenario with an Actual B-Field Realisation

Energy Boost Freq. Dist.

Dissecting Cen A's Acceleration Sites

Acceleration on kpc scales:

 $\mathbf{E_{max}} = \beta \mathbf{BR} / \eta$

$$eta_{\mathbf{scat.}} pprox \mathbf{0.5}, \ \eta pprox \mathbf{10}^{\mathbf{4}}$$

$$E_{\rm max}\approx 10^{15} eV$$

Acceleration on larger scales:

[S. O'Sullivan, A. Taylor, B. Reville in prep.]

Energy dependence of acceleration time may only approach the Bohm level (η^{-1}) at the highest energies

 $E_{\max} \approx 10^{18} eV$ ${
m t}_{
m acc} pprox {
m 0.1~Myr}_{
m 17}$

Looking to the Future

Next 10 years

General VHE efforts to probe UHECR source- determine the cutoff position of electrons accelerated by candidate UHECR sources. Additionally, probing the growth in small scale anisotropy at >60 EeV energies.

Tools needed to accomplish this

For local AGN, this amounts to filling in the observational MeV gap (**new instrument needed**), and pushing to higher energies in the VHE bands (**CTA**) where the synchrotron and IC cutoff in the spectrum sit

More broadly still

Determining the synchrotron cutoff of other UHECR candidates (eg. GRB) should be a major observational focus

Conclusion

- UHECR acceleration candidates force a consideration of local (mildly) relativistic accelerators
- Synchrotron emission from local AGN and GRB can tell us directly how efficient these sources operate as cosmic ray accelerators

 The nearest AGN candidate (Cen A) serves as a cosmic laboratory. We have now moved beyond hand picking magnetic field stregnths/radiation fields. This allows an indirect probe of the efficiency

UHE Cosmic Ray Dipole

$$rac{\partial \mathbf{n}}{\partial \mathbf{t}} = \mathbf{D}
abla^2 \mathbf{n} + \mathbf{Q}$$

$$egin{aligned} \mathbf{n} &= rac{\partial \mathbf{N}}{\partial^{3}\mathbf{r}} = \int_{\mathbf{0}}^{\infty} rac{\mathbf{e}^{-\mathbf{x^{2}}/(4\mathbf{Dt})}}{(4\pi\mathbf{Dt})^{3/2}} rac{\mathbf{dt}}{ au} \ &n = rac{1}{4\pi\mathbf{Dr}} \propto rac{1}{\lambda_{ ext{scatt}}\mathbf{r}} \end{aligned}$$

UHE Cosmic Ray Dipole

UHE Cosmic Ray Dipole

Dipole driven by nearest by source, and diluted by more distance sources

UHECR Dipole- Energy Dependence

- Dipole from nearest sources grows linearly with λ_{scatt} (for nearby sources steady-state approximation holds)
- Contribution of nearest source to total flux decays as $1/\lambda_{scatt}$
- At highest energies, harmonic power migrates to multi-pole terms....have the Auger collaboration seen this already?

Particle Acceleration in AGN

AM Hillas (1984)

VHE Phenomena Around SMBH- Andrew Taylor

Particle Acceleration with Cooling

Maximum synchrotron energy tells us how efficient accelerator is!

Can We See UHECR Sources Directly?

Observed Excess Map - E > 60 EeV

PAO Coll. 2018 (1801.06160)

Example Candidate Local Source

 $\mathbf{B}_{\mathrm{sc}} \approx \mathbf{30} \ \mu \mathbf{G}$ $\mathbf{\searrow} \mathbf{R}_{\mathrm{Lar}}(\mathbf{10^{18} eV} \ \mathbf{p}) \approx \mathbf{30} \ \mathbf{pc}$

Maximum energy (Hillas criterion)

$$\mathbf{R_{lar}} = \frac{\beta_{\mathbf{scat}}}{\eta} \mathbf{R}$$

For
$$\beta_{\rm scat.} \approx 10^{-1}, \ \eta \approx 10^{3}$$

$$E_{\max} \approx 10^{15} eV$$

Matthews et al. 2019 (1902.10382)

$$egin{aligned} \mathbf{E}_{ ext{max}} &pprox \mathbf{10^{18}eV} \ \mathbf{t}_{ ext{acc}} &pprox \mathbf{0.1~Myr} \end{aligned}$$

HE Phenomena Around SMBH- Andrew Taylor O'Sullivan et al. 2009 (0903. 1259)