Pulsars and the highest energy multi-messengers

Kumiko Kotera - Institut d'Astrophysique de Paris

YITP Workshop - 09/12/2020

Pulsars

- neutron star
- fast rotation, period P
- strong magnetic field B
- spins down by electromagnetic losses

supernova

2

conversion of pulsar electromagnetic into kinetic energy

particles accelerated to maximum Lorentz factor:

$$\gamma_{
m M}~\simeq~rac{L_{
m p}}{\dot{N}mc^2}$$
 Goldreich-Julian charge density

maximum energy:

 $E_0 \sim 1.5 \times 10^{20} \,\mathrm{eV}A_{56} \,\eta \,\kappa_4^{-1} P_{\mathrm{i},-3}^{-2} B_{13} R_{\star,6}^{3}$

fraction of luminosity into particle kinetic energy pair multiplicity

Lemoine, KK & Pétri (2015)

3

Pulsars born with ms periods and magnetars are good candidates of UHECR sources

Particle acceleration in pulsars

Acceleration region?

Acceleration mechanism?

- ≪ linear » E∝r e.g., Chen et al. 92, Arons 03
- ▶ Fermi @ TS e.g., Lemoine, KK, Pétri 15
- reconnection wind region and/or close to TS in striped wind or in nebula? e.g., Sironi & Spitkovsky 12 Lemoine, KK, Pétri 15

Ion acceleration in pulsar magnetospheres PIC simulations

Guépin, Cerutti, KK (2020)

Zeltron *Cerutti et al.* (2013) Magnetosphere configuration: **aligned dipole** Injection of protons and electrons allowed at the surface, limited by the GJ density Main variable: pair production "strength", local, $\gamma_{min,pp} = f_{pp} \gamma_{0,e}$

Proton luminosity in pulsars

Enorgy discination in protons

Interaction backgrounds for high-energy cosmic rays

nebula non-thermal γ Amato et al. (2003) Lemoine, KK, Pétri (2015) star's thermal γ to crede 2 Dertherma (1007)

Bednarek & Protheroe (1997) Link & Burgio (2006) KK,Amato & Blasi (2015)

Properties of escaping UHECRs

after interaction on supernova ejecta + propagation in the intergalactic medium

uniform source emissivity evolution accelerated: 50%P, 30%CNO, 20%Fe

100% Fe @ injection

then interaction on neutron star thermal radiation can lead to right composition **KK, Amato, Blasi 2015**

IceCube constraints on pulsars as sources of HECRs

population of pulsars with realistic (P,B) distribution

Exp eve of e	Model Rejection Factor			
ν Model	Event rate p-value		MRF	
	per livetime			
Murase et al. [45]				
$s = 2.3, \xi_{CR} = 100$	$7.4^{+1.1}_{-1.8}$	$2.2^{+9.9}_{-1.4}\%$	$0.96 \; (\xi_{CR} \leq 96)$	
Murase $et al.$ [45]				
$s = 2.0, \xi_{CR} = 3$	$4.5_{-0.9}^{+0.7}$	$19.9^{+20.2}_{-9.2}\%$	$1.66 \; (\xi_{CR} \leq 5.0)$	
Fang <i>et al.</i> [48]				
SFR	$5.5^{+0.8}_{-1.1}$	$7.8^{+14.4}_{-3.7}\%$	1.34	
Fang $et al.$ [48]				
uniform	$1.2^{+0.2}_{-0.2}$	$54.8^{+1.7}_{-2.7}\%$	5.66	
Padovani et al. [46]				
$Y_{\nu\gamma} = 0.8$	$37.8^{+5.6}_{-8.3}$	< 0.1%	$0.19 \ (Y_{\nu\gamma} \le 0.15)$	

MRF = ratio of expected average upper limit to expected signal

Population of newborn pulsars as sources of UHECRs following star formation rate excluded at 90% C.L.

> Fang, KK, Murase & Olinto 2013 Aartsen et al. 2016

No significant correlation between IceCube neutrinos and PWN locations

90% C.L. upper limits on hadronic gamma-ray emission from 35 stacked Pulsar Wind Nebulae

Aartsen et al. 2020

IceCube constraints on pulsars/magnetars as sources of UHECRs

Fang, KK, Murase & Olinto 2016 for magnetars: see also Murase et al. 2009

f_{jet} = "jet fraction"

fraction of accelerated particles that can escape without crossing a dense environment

Superluminous supernovae due to central pulsars

observable X-ray and gamma-ray emissions

KK, Phinney & Olinto 2013 Murase et al. 2015 injection of pulsar rotational energy into SN ejecta E_{rot} ~10⁵² erg >> E_{SN} ~10⁵¹ ergs

change radiation emission from SN?

systematic search with Fermi LAT @ location of SLSNe strong constraints on central object Renault-Tinacci, KK, et al. for the Fermi Coll., 2018

Search for superluminous supernovae with Fermi-LAT

Renault-Tinacci, KK, Ando, Neronov, for the Fermi Coll., 2018

sample of 39 SLSNe Fermi Pass-8 data 3+1 and 7+1 bands in E: 0.6-600 GeV 4 different time windows

Individual analysis only source detected above 3-sigma level: SN2011ke constraints on SLSNe luminosities: <~10⁴⁴ erg/s

Joint likelihood analysis (stacking)

Time window	Sig _{0.6-600.0 GeV}	L _{0.6-10.2 GeV}	$L_{0.6-600.0{ m GeV}}^{ m sum}$	$Sig_{E1-E2}^{best bnd}$	E1	E2
	σ units	$erg s^{-1}$	erg s ⁻¹	σ units	GeV	GeV
t_{peak} to $t_{\text{peak}} + 3$ months	0.1	$< 2.0 \times 10^{39}$	$2.3 \times 10^{38} \frac{2.0 \times 10^{39}}{1.8 \times 10^{28}}$	2.9	171.50	600.00
t_{peak} to t_{peak} + 6 months	0.0	$< 1.6 \times 10^{39}$	$2.5 \times 10^{38} \frac{1.5 \times 10^{39}}{2.3 \times 10^{38}}$	2.8	171.50	600.00
t_{peak} to $t_{\text{peak}} + 1$ year	0.2	$< 7.2 \times 10^{38}$	$< 9.5 \times 10^{38}$	1.5	67.04	171.50
t_{peak} to $t_{\text{peak}} + 2$ years	0.0	$< 6.6 \times 10^{38}$	$1.2 \times 10^{38} {}^{6.0 \times 10^{38}}_{1.2 \times 10^{38}}$	3.8	67.04	171.50
SN off-peak period	1.6	$< 3.5 \times 10^{38}$	$9.6 \times 10^{37} {}^{4.6 \times 10^{38}}_{8.8 \times 10^{37}}$	2.2	26.21	67.04

Table 4: Luminosities from joint likelihood analysis measurements with the 7+1 energy band set and all sources.

Pulsars and the highest energy multi-messengers

What's your targeted physics in next decades?

More precise understanding of ion acceleration in neutron star magnetospheres

Pulsars and more multi-messengers:

Association with UHE neutrinos

Association with GW (if association with BNS: Fang & Metzger 2017)

Association with FRBs (e.g., Mottez & Zarka 2014, Decoene et al., arXiv:2012.00029)

What do we need to accomplish?

Dedicated PIC simulations (magnetosphere configs., emission mechanisms, escape...)

Detection of UHE neutrinos to probe directly UHECR acceleration: UHE neutrino detectors (GRAND, PUEO, RNO, ...)

Efficient transient multi-messenger network (e.g., AMON)

Kumiko Kotera - Institut d'Astrophysique de Paris - YITP 2020