Observation of ultra high energy cosmic rays from space (K-EUSO and POEMMA)

K-EUSO (2023+)

Mini-EUSO (2019-)

POEMMA (2029+)

Y. Takizawa (RIKEN) for the JEM-EUSO collaboration

CRPHYS2020 (2020.12.09)

Science of the space missions

- All sky survey with the world's largest exposure
 - $\cdot\,$ Find sources of UHECRs.
 - Find new hotspots in the equatorial region of the sky.
 - $\cdot\,$ TA and Auger are low sensitivity in this region.
 - $\cdot\,$ We expected to find new UHECR sources (about ten).
 - If we observed sources, we can study acceleration mechanism by comparison with spectrum of each source.
 - · Confirmation of GZK steeping (comparison with each spectrum)
 - Acceleration limit (in case of source distance is in GZK horizon)
 - Possibility of new acceleration mechanism (Japan team)
 - Bow wake field acceleration (T. Ebisuzaki and T. Tajima, 2014a and 2014b)
 - · Observation of up-going au neutrino from space (POEMMA)
 - · Pioneer space observations of astrophysical neutrinos and,
 - Discover cosmogenic neutrinos

Possibility of new acceleration mechanism

Astronomical ZeV Acceleration in the relativistic jet from an accreting supermassive blackholes

Toshikazu Ebisuzaki and Akira Mizuta (RIKEN) Toshiki Tajima (UC Irvine)

T. Ebisuzaki and T. Tajima, "Astrophysical Wake Acceleration Driven by Relativistic Alfvenic Pulse Emitted from Bursting Accretion Disk", (arXiv:1905.04506)

Difficulties of Fermi acceleration in UHECR

1. Bending is inevitable

 \rightarrow synchrotron loss

2. Confinement is difficult

 \rightarrow no acceleration

3. Escape problem

→magnetic field does not disappear without adiabatic loss

Wakefield acceleration

Bow wake field acceleration in the relative jet

E > 57 EeV

T. Ebisuzaki and T. Tajima, "Astrophysical Wake Acceleration Driven by Relativistic Alfvenic Pulse Emitted from Bursting Accretion Disk", (arXiv:1905.04506)

Accretion disk at the inner edge makes many transitions between a strongly magnetized state and a weakly magnetized state. These transitions excite strong pulses of EM disturbance. These disturbances convert into strong EM wave pulses to accelerate particles in jets.

Wakefield/pondermotive acceleration

- No bending: linear acceleration
 →No synchrotron loss
- 2. No Confinement is necessary

 \rightarrow just push

3. No escape problem

 \rightarrow Wake will naturally disappear

4. Prediction: it must be gamma-ray sources

Science of the space missions

The JEM-EUSO Japan would like to examine the bow wake filed acceleration theory by K-EUSO and POEMMA.

The JEM-EUSO program

EUSO-TA (2013-) EUSO-Balloon (2014) EUSO-SPB (2017)

EUSO-SPB2 (2023)

Mini-EUSO (2019) K-EUSO (2023+) POEMMA (2029+)

Space missions

We start space missions for observing UHECRs from 2019.

Mini-EUSO

Mini-EUSO is a Joint mission of Russian and Italian team with the JEM-EUSO corroboration.

Main purpose is measurement of the near UV region background from space for future space missions such as K-EUSO and POEMMA.

Science Objectives

Main purpose is to observe near UV background level and cloud environment for future missions such as K-EUSO and POEMMA.

MINI-EUSO EM in clean room

NIR (Near Infrared) CPU Camera **Front-End Focal Surface** Asic (FM) 25cm First Lens (EM) 25cm Second Lens VIS Camera

Readout Board (MSU)

High Voltage power supply

East Japan and Tokyo bay

UV main camera 48*48 pixels 40 deg 243km 5km/pix 2.5mus and above

This photo detector module design will be used for K-EUSO and POEMMA.

RGB camera 1280*960 pixels 33.2*24.8 degrees 231*174 km 180 m/ pixel ls

NIR camera (BW with phosphor coating 1280*960 pixels 33.2*24.8 degrees 231*174 km 180 m/pixel 4s

Roll-out of Soyuz MS-14, 19/8/2019

Launch, 2/8/2019

First docking, 24/8/2019 unsuccessful

	Φ	4	4		C	Б	Л	N	ĸ		3	4-1	3	ΞК.	0	H.	T		0	8		2				20
	Л	C	K							T	C	(e)))		100	3				Д	У	C		2	3	(mit)	4
												5.7	64				+		u	х		0		N.	3	Ϋ́Υ
												**	4													
A	C	Н	1		ĸ	C	в												64	Z		0		1	0	4
ĸ			Б										98	Π	P	Ич	A	Л			ĸ	У	Ρ	C		
Ρ											-	1		1						γ						0
ψ						2						-80	22												1	1
0				-0		4	2				4			1						θ-			-0		4	6
Ω	Y										10	12	51	1					Ω	Y						2
Ω	Z										10	100	6						Ω	Z					8	2
	Φ										10	-7	3													
ρ							8	8 1	S M			-	5		1			/	ρ							0
p							4	Μ,	\C			-					1		p						2	
								Y						62		1	1		С							1

Relocation of MS-13 from Zvezda to Poisk

Second docking, 27/8/2019 successful

Mini-EUSO installation

Uv transparent window, Zvezda module, International Space Station

UV maps: Northern Japan

Meteor 2019-11-27

Meteor 2019-11-20

ELVES (transient luminous

Superluminal rings 100km+ radius

Upper atmospheric lighting releases e.m. wave which heats the ionosphere Transient Gamma Flash relationship

About 400mus Overall duration

K-EUSO mission

K-EUSO is a Joint mission of Russian and Japanese team with the JEM-EUSO corroboration.

K-EUSO will be launched 2023 or after. Phase A study in Russia will be finished by May 2019.

K-EUSO mission

Russia, Japan and the JEM-EUSO corroboration

Phase A study in Russia has finished May 2019 with conditions attached.

Condition: ROSCOSMOS requests to redesign the telescope with reducing EVA[extra-vehicular activity].

 \rightarrow Alignment of segment mirrors needs huge EVA by astronauts.

FOV 20° x 15°、 RMS spot size < 3mm

Russian, Italy and Japanese team is estimating performance of new telescope. Japanese task : manufacturing of K-EUSO lens.

K-EUSO lens manufacturing

Production of slumping molds 27th November

Concave mold

UV transparent PMMA 3rd December

A CAD image of lens manufacturing Lens manufacturing will start from January 2021.

Annual Exposure by Y. Takizawa Rough estimation from S/N ration (K-EUSO 2020)

KEUSO has 4 times of Auger and 4.4 times of TAx4 exposure.
K-EUSO will observe, in three years, about 8000 events over 10¹⁹ eV, about 500 events over 5.7×10¹⁹ eV.

POEMMA mission Stereo observation

POEMMA team is working on a conceptual design for selection of the 2020 Astronomy and Astrophysics Decadal Survey .

POEMMA mission

Mission Lifetime: 3 years (5 year goal) 525 km. 28.5 Inc Orbits: Orbit Period: 95 min Satellite Separation: ~25 km - 1000+ km Satellite Position: 1 m (knowledge) Pointing Resolution: 0.1 Pointing Knowledge: 0.01 8 min for 90 -Slew Rate: Satellite Wet Mass: 3860 kg 2030 W Power: Data: 1 GB/day Data Storage: 7 days Communication: S-band (X-band if needed) Clock synch (timing): 10 nsec

Operations:

- Each satellite collects data autonomously
- Coincidences analyzed on the ground
- View the Earth at near-moonless nights, charge in day and telemeter data to ground

Dual Manifest Atlas V

John Krizmanic, UHECR2018

POEMMA optics design

Mirror: 4.0m diameter spherical Corrector lens: 3.3m, aspherical、UV-PMMA Focal surface: 1.6m diameter FOV: 45° F# : 0.64 Spot size: ~3mm diameter Angular resolution : 1°/pixel Effective area : 6~2 m² (JEM-EUSO: 2 m²) Orbit altitude: 525 km

Hybrid focal surface detector

UV Fluorescence Detection using MAPMTs with UV filter: developed by JEM-EUSO: 1 usec sampling

Cherenkov Detection using SiPMs: 20 nsec sampling

POEMMA observation modes

Sky Coverage

Nadir mode (UHECR)

Limb-viewing mode (neutrino+UHECR)

One year with re-orientations

1.6e + 02

Fractional exposure

1.7e+01

9.8e + 00

6

Calcs & plots by K. Shinozaki

Calcs & plots by C. Guépin & F. Sarazin

UHECR observation (Nadir)

Integral exposure

John Krizmanic, UHECR2018

Cosmic neutrino observation from 20 PeV through the EeV scale

Limb-viewing mode (UHECR + neutrino)

- 20% duty cycle
- 10 PE threshold with time coincidence to reduce air glow background 'false positives'
- \cdot Viewing to 7° away from Limb

Highly energetic cosmic neutrinos from astrophysical transient events,

such as

gravitational wave events from compact object merge,

short and long gamma-ray burst,

the birth of pulsars and magnetars,

etc

POEMMA sensitivity to short burst (1000s)

POEMMA sensitivity to long burst (> 1 day)

arXiv:1906.07209

Summary

The JEM-EUSO corroboration is moving to space missions from 2019. mini-EUSO(2019), K-EUSO(2023+), POEMMA(2029+)

What's your targeted physics in next decades?

The JEM-EUSO Japan would like to examine the bow wake filed acceleration theory by K-EUSO and POEMMA.

What we need to accomplish?

I (we) need to study more about the bow wake filed acceleration theory to find its clear signs from observation data of K-EUSO and POEMMA.

Thank you