Effects of Galactic Magnetic Field on the UHECR Anisotropy Studies

YTIP Workshop, Kyoto, Japan 2020/12/10

ICRR Univ of Tokyo^A, Riken^B, Kyoto Univ^C,

Ryo Higuchi^A, Takashi Sako^A, Eiji Kido^B, Kazumasa Kawata^A, Toshihiro Fujii^C, Telescope Array Collaboration

Kiyomizu-dera, 2020/12/09, 7:08 a.m.

UHECR Anisotropy

- <u>Search for origin of UHECR</u> <u>anisotropy</u>
 - TA Hotspot, Dipole etc...
- Possible Candidates
 - SBGs, AGNs...
 - Parameter estimation (later)
 - ->~10% of anisotropy comes from SBGs? (Auger2018, 1st day's talk)
- Deflection by Magnetic Field
 - Galactic magnetic field (GMF)
 - ~10deg at 60 EeV (Jansson&Farrar 2012)
 - Extragalactic magnetic field (EGMF)

Constraints on Anisotropy

- 2 Parameters to constrain source candidates (Auger 2018)
 - anisotropic fraction(f_sig)
 - the fraction of all events due to the sources
 - separation angular scale(Θ)
 - RMS angular separation between an event and its source (smearing angle)
- Estimation Process:
 - CR Flux model from the source(SBGs)+isotropic flux
 - with parameter (f_sig, Θ)

$$F(\hat{\mathbf{n}}; f_{\text{sig}}, \Theta) = \frac{\omega(\hat{\mathbf{n}})}{\mathcal{C}} \left[(1 - f_{\text{sig}}) + f_{\text{sig}} \sum_{i=1}^{N_{\text{cat}}} \mathcal{F}_{\gamma, i} w(z_i) \, \mathfrak{F}(\hat{\mathbf{n}}, \hat{\mathbf{s}}_i; \Theta) \right] \times \text{exposure}$$

- UHECR events (TA/Auger/Mock events)
- Maximizing likelihood:

$$\mathscr{L}(f_{\mathrm{sig}}, \Theta; \hat{\mathbf{n}}_j) = \prod_{i=1}^N F(\hat{\mathbf{n}}_j; f_{\mathrm{sig}}, \Theta),$$

• Estimate (f_ani, Θ), changing 2 parameters

0.05

SBG Anisotropic Fraction

1st Step: Training of my calculation

- Sources: 23 nearby SBGs (Auger 2018)
- UHECR events (published data of Auger 2015)
 - without GMF
 - (f_sig, Θ)=(16%,14deg)

This Study Looks fine! -> with GMF (next step)

Backtracking in GMF (with CRPropa) (JF12 Model, 10 EeV)

- **Backtracking:** inverse calculation using anti-particle from the earth
 - particle: anti-proton
 - back to 20 kpc from the galactic center
- Tool: CRPropa 3
 - software for UHECR propagation
 - propagation with GMF
- GMF: JF12 Model (Jansson&Farrar+12)

JF12 Backtracking (Proton)

Deflection of Protons by JF12 model

x: observed arrival direction on the earth

• original direction at 20 kpc from the galactic center (40, 100, 400, 1000 EeV)

- Symmetric deflection with Galactic plane
- Small deflection angle around TA Hotspot
- ~10 deg deflection at maximum (in case of proton)

2nd Step: Parameters Estimation with backtracked events

- UHECR sample from Auger 2015
 - without GMF(upper)
 - (f_sig, Θ)=(16%,14deg)
 - with GMF(bottom)
 - with backtracked events (pure proton assumption)
 - (f_sig, Θ)=(14%,14deg)
- Parameters do not change significantly with pure proton assumption.
- Deflection would be larger considering a mixed mass composition.
- Event-by-event backtracking is not feasible because we do not know event-by-event mass.
- -> Remaking CR flux pattern with
 - GMF model
 - Mixed mass composition
 - Energy spectrum

GMF Forward Tracking Function

Effects of GMF on the CR Flux Pattern

Difference of Flux Patterns between with/without GMF (flux1-flux0)

- ~15% fluctuation of flux at maximum
 0.05 (compared with maximum of flux0)
- $^{0.00}$ <7 deg deflection of the peak of the flux

• <14 deg deflection in case of He 12

Summary

- Source Candidates of UHECR Anisotropy
 - SBGs are good candidates of UHECR anisotropy (Auger 2018)
- 2 Parameter Estimation (Auger 2018)
 - anisotropic fraction f_sig
 - separation angular scale Θ
- Effect of GMF is studied based on the Auger 2015 published events
 - Events are backtracked using CRPropa3 with JF12 GMF model
 - Only small difference (-2% in f_sig) is found
 - Small GMF effect on this analysis (with pure proton assumption)
 - -> Mixed mass composition in the next step
- Convoluting GMF, Mass composition and Energy spectrum into CR flux pattern instead of backtracking
 - Forward-tracking function is constructed
 - With pure proton assumption, maximum 15% effect on flux and 7deg displacement of source (SBG) position are observed.
 - -> Next step: mixed mass composition