

The 11th International Workshop Dark Side of the Universe 2015 14th-18th December, Kyoto, Japan

XENON1T: THE START OF A NEW ERA IN THE SEARCH FOR DARK MATTER

Sara Diglio

Subatech - Nantes

on behalf of the XENON Collaboration

PAYS

WHY DO WE NEED DARK MATTER?

Evidences at different scales: galaxies, clusters, CMB

What we know about dark matter ?

- Neutral
- Non-baryonic → weakly interacting
- Not a Standard Model (SM) particle → New Particle

Galactic Rotation Curves

DM Distribution Gravitational Lensing

Sara Diglio

DARK MATTER DETECTION

THE DIRECT DETECTION PRINCIPLE

WIMPs elastically scatter off nuclei in targets, producing Nuclear Recoils (NR)

we have the average recoil energy: $E_0 = \frac{1}{2} M_X v_0^2 \sim 30 ~{
m keV}$

ubatech

THE DIRECT DETECTION PRINCIPLE

WIMPs elastically scatter off nuclei in targets, producing Nuclear Recoils (NR)

we have the average recoil energy: $E_0 = \frac{1}{2} M_X v_0^2 \sim 30 \ {\rm keV}$

ubatech

DIRECT DETECTION TODAY?

ubatech

LIQUID XENON AS A DETECTOR MEDIUM

 Heavy nucleus (A~131): good for Spin Independent (σ ~ A²) and for Spin Dependent (~50% odd isotopes)

 Self-shielding: effective background rejection via selfshielding and ratio of ionization/scintillation

- Charge & Light signals: highest yield among noble liquids
- Intrinsically pure:

no long-lived radioactive isotopes; free of intrinsic radioactivity other than Kr which we know how to remove

• "Easy" cryogenics:

high boiling point allows to cool and keep cold for long time a massive Xe target

• Scalability:

possible to scale detectors to large dimensions for an affordable cost (~1 k\$/kg)

Dubatech

Bottom PMT array

Top PMT array

Dubatech

Sara Diglio

Top PMT array

Dubatech

Bottom PMT array

Top PMT array

Dubatech

Bottom PMT array

Dubatech

Bottom PMT array

DUAL DUAL

DUAL PHASE TIME PROJECTION CHAMBER

THE XENON COLLABORATION

XENON experiments at Gran Sasso National Laboratory (LNGS) in Italy

THE XENON DARK MATTER PROGRAM

Jubatech

Dubatech THE XE

THE XENON DARK MATTER PROGRAM

Probing the DAMA/LIBRA Anomaly with XENON100

WIMP wind Freese et al., Rev. Mod. Phys. 85, 1561 (2013)

ubatech

DM signal rate is expected to be annually modulating Peak phase 152 days (June 1)

Probing the DAMA/LIBRA Anomaly with XENON100

WIMP wind Sun December

ubatech

Freese et al., Rev. Mod. Phys. 85, 1561 (2013)

DM signal rate is expected to be annually modulating Peak phase 152 days (June 1)

Seems to be convincing evidence, HOWEVER...

... Null results from many experiments more sensitive than DAMA/LIBRA

Sara Diglio

Probing the DAMA/LIBRA Anomaly with XENON100

WIMP wind Sun December

ubatech

Freese et al., Rev. Mod. Phys. 85, 1561 (2013)

DM signal rate is expected to be annually modulating Peak phase 152 days (June 1)

Xenon100 studies

- From overall ER Rate:
 Exclusion of leptophilic DM Science 349, 851 (2015)
- From ER periodic variations: Search for Event Rate Modulation Phys. Rev. Let. 115, 091302

Seems to be convincing evidence, HOWEVER...

... Null results from many experiments more sensitive than DAMA/LIBRA

Reconcile DAMA/LIBRA with the null-results from other experiments assuming leptophilic dark matter? → DAMA/LIBRA might see electronic recoils ?

Exclusion of leptophilic Dark Matter

- DAMA/LIBRA experiment observes annual modulation interpretable with leptophilic DM Eur.Phys.J. C73, 2648
- Convert DAMA/LIBRA modulation spectrum to Xe

ubatech

- Assume some model of WIMP coupling to e⁻ to estimate expected signal in XENON100
- XENON100 steady background level lower than DAMA/LIBRA modulation signal

Exclusion of several types of DM models as the
cause of the annual modulationKinematically mixed Mirror DM:3.6σ ExclusionLuminous DM:4.6σ ExclusionAxial-vector coupling:4.4σ Exclusion

Science 349, 851 (2015)

Search for Event Rate Modulation

- The first LXe TPC with more than one year of stable running conditions
- Temporal evolution of relevant detector parameters studied (02/2011-03/2012)
 → no significant correlation with event rate observed

Discovery potential

Search for Event Rate Modulation

 The first LXe TPC with more than one year of stable running conditions

ubatech

- Temporal evolution of relevant detector parameters studied (02/2011-03/2012)
 → no significant correlation with event rate observed
- No evident peak crossing the 1σ global significance threshold!

Discovery potential

Search for Event Rate Modulation

• The phase (112+-15) days (April 22) is not consistent with the standard halo model (June 2) at 2.5σ

ubatech

- The amplitude is too small (only~25%) compared with the expected DAMA/LIBRA modulation signal in XENON100
- Interpretation of DAMA/LIBRA signal as electron recoils (axial-vector coupling) excluded at 4.8σ

Exclusion DAMA/Libra annual modulation:4.8σDisfavor of modulation due to standard Dark Matter halo:2.5σ

Phys. Rev. Let. 115, 091302

Sara Diglio

XENON1T

In Hall B of the Gran Sasso National Laboratory

Hall B in July 2013

XENON1T

Two years later... Hall B in November 2015

Sara Diglio

XENON1T SUBSYSTEMS

Construction started in 2013 and on schedule, having completed:

Water tank and PMT installation and cabling Storage and recovery vessel 3500 Kg of Xe transferred into storage vessel TPC installed in the cryostat Cryogenic system xen Purification system, Cryogenic Distillation Slow control systems Data Acquisition (DAQ) **Calibration** systems Detector commissioning has started Expect first science run in spring 2016

ubatech

WATER SYSTEM AND CHERENKOV MUON VETO

Water System

Goals

- Provide a "house" and clean water for an active shield around the LXe detector
- Provide access points and feedthroughs for water purification, calibration sources and detector leveling

Water Cherenkov Muon Veto

Goal

Identify cosmic ray muons reaching the detector and their induced neutrons that are a source of background for XENON1T

Principle: detection of the passage of the muon or its secondary charged particles through the Cherenkov light they produce in a mass of pure water surrounding the cryostat

E. Aprile et al. (XENON Collaboration), JINST 9, P11006 (2014)

TIME PROJECTION CHAMBER

Goal

build a ultra-low-background two-phase XeTPC with the best performance for WIMP detection

Design: The XENON1T TPC has the longest drift (~1 m) and largest active mass of LXe (~2000 kg) of any TPC built to-date

PMTs and their Characterization

Goal

compact, low-radioactivity, high QE photomultipliers (Hamamatus R11410-21)

E. Aprile et al. (XENON), Eur. Phys. J. C75 (2015) 11, 546 arXiv:1503.07698

The overall background goal of XENON1T is < 1 event for an exposure of 2 ton per year

Sara Diglio

Recovery AND STORAGE OF XENON: RESTOX

Goals

- Store up to 7600 kg of Xe in gaseous or liquid/solid phase under high purity conditions
- Fill Xe in ultra-high-purity conditions into detector vessel
- Recover all the Xe from the detector: in case of emergency all Xe can be safely recovered in a few hours

ReStoX Construction Phases

MONTE CARLO SIMULATION

Goal

ubatech

Reproduce via software the performance of the XENON1T detector, and predict the sensitivity of the experiment

Position of the ER background from the materials ← they are negligible inside the 1 ton fiducial volume

Method:

- Input from screening campaign by all detector components
- Monte Carlo simulation with GEANT4
- Statistical treatment

Source	Bkg (evts/ton/year)
ER (materials + intrinsic + solar v)	0.32
NR from radiogenic neutrons	0.22
NR from $\boldsymbol{\nu}$ coherent scattering	0.21
Total	0.75

XENON1T infrastructure already designed to host XENONnT

- Larger TPC and inner vessel
- ~ 200 additional PMTs
- 4 extra tons of LXe (7.5 t in total)

Projected to start in **2018**

 $\frac{\text{Sensitivity}}{\sigma < 2 \cdot 10^{-48} \text{ cm}^2}$ for a 50 GeV WIMP

XENON1T- nT SENSITIVITY

Design sensitivity after 2 years of data taking \rightarrow minimum x-sec: $\sigma = 1.6 \times 10^{-47} \text{ cm}^2$ @ m = 50 GeV/c²

XENONnT: improvement by one order of magnitude with 20 ton x year exposure

ubatech

CONCLUSIONS

- The hypothesis that the Dark Matter is made of a new, heavy, neutral, stable and weakly interacting particle is well motivated by the expectation of new physics at the weak scale
- Direct detection plays a unique role in the search for WIMPs and is highly complementary to accelerator and indirect searches
- Liquid Xenon based experiments offer great sensitivity over a wide range of masses
- XENON100 has reached its design sensitivity for medium-heavy WIMPs, and it probes other type of interactions
- XENON1T is under commissioning at LNGS & first science data for spring 2016 → if WIMPs are out there, XENON1T will be the first in line to discover them
- **XENONNT** is proposed as a fast upgrade to XENON1T, with a factor of 10 increase in sensitivity: observe an initial XENON1T signal with higher statistics, constrain WIMP properties

ubatech

THANK YOU !

Васкир

The number of free electrons liberated by a nuclear recoil is very small, because the bulk of the ionization electrons recombine within picoseconds.

Thus, under a high electric field, a nuclear recoil will yield a very small charge signal and a much larger light signal, compared to an electron recoil of the same energy.

ubatech

THE XENON DARK MATTER PROGRAM

	XENON10	XENON100	XENON1T
total Xe mass	25 kg	161 kg	3.5 ton
TPC size	D=20cm, H=15 cm	D=30 cm, H=30 cm	D=100cm, H=100 cm
PMT	89, 1" PMTs	242, 1" PMTs	248, 3" PMTs
Kr/Xe	5 ppb	20 ppt	0.2 ppt
Rn/Xe	60 μBq/kg	65 μBq/kg	10 Bq/kg
ER bkg @ FV	~1 /keV/kg/day	5.3x10 ⁻³ /keV/kg/day	3.5x10 ⁻⁵ /keV/kg/day
LY @122keV,w/ E-field	3.0 PE/keV	2.3 PE/keV	4.6 PE/keV
σ _{sı} limit (cm²)	4.5x10 ⁻⁴⁴ @ 30 GeV Phys.Rev.Lett.100,021303 (2008)	2.0x10 ⁻⁴⁵ @ 55 GeV Phys.Rev.Lett.109,181301(2012)	1.6x10 ⁻⁴⁷ @ 50 GeV Projected (2017)

XENON100 DM SEARCH BENCHMARKS

Spin-independent WIMP-nucleon coupling

 10^{I}

 10^{2}

WIMP mass [GeV/c²]

Axions and Axion-like Particles

Phys. Rev. D 90, 062009 (2014)

WIMP mass [GeV/c2]

SD WIMP-poo

Search for Event Rate Modulation

Sara Diglio

ubatech

CRYOSTAT AND CRYOSTAT SUPPORT

Goal

a ultra-high-vacuum, thermally insulated system made of low-radioactivity material, to contain the detector with 3.5 tons of LXe at -95 °C and 2 bar pressure and to couple it to the cryogenics system outside the water shield

GAS HANDLING, IMPURITY CONTROL AND PURIFICATION SYSTEM

Gas handling and Impurity control

Goal

Measure impurities level of each cylinder of Xe gas prior to transferring into storage vessel (ReStoX) using a dedicated Gas Chromatograph

Purification system

Goal

clean Xe from electronegative impurities via continuous circulation of gas through heated getters

Method: implement a high flow rate purification system (100 SLPM) with two parallel custom-developed pumps and two high capacity purifiers

RADON CONTROL AND MEASUREMENT AND DETECTOR CALIBRATION

Radon control measurement

Detector Calibration

Goal

Accurately calibrate the detector response to electron and nuclear recoils

New (respect to XENON100) usage of internal sources and a neutron generator

Goals

- Select construction materials with low radon (²²²Rn) emanation rate
- Implement measures to further reduce ²²²Rn (alternative materials, surface cleaning procedures, etc.)
- Quantify and locate remaining ²²²Rn sources

CRYOGENIC SYSTEM AND

DISTILLATION COLUMN

Cryogenic system

Goals

liquefy 3500 Kg of Xe and maintain the Xenon in the cryostat in liquid form, at a constant temperature and pressure, and so for years without interruption

Cryogenic Distillation Column

Goal Active removal of Kr contamination in Xe

Principle: cryogenic distillation based on improved package column uses the 10 times higher vapor pressure of Kr w.r.t. Xe at -95°C to reach ^{Nat}Kr/Xe < 0.2 ppt for XENON1T

First results:

Purified liquid out: NatKr/Xe < 0.026 ppt (90% c.l.) A factor ~10 better than required for XENON1T!

S. Rosendahl et al., JINST 9 (2014) P10010 E. Brown et al., JINST 8 (2013) P02011 S. Rosendahl et al., Rev. Sci. Instr. 86 (2014) 115104

DATA ACQUISITION (DAQ) AND

COMPUTING SYSTEM

Goals

- lowest possible threshold
 →achieved by a trigger-less readout combined with a computer-based online trigger
- high data throughput (1200 MB/s)

→achieved through parallelization and an online veto system

Computing system

Storage

Processing

and

Goals

•

- Providing enough computing facilities to process raw data and to allow data analysis by all Collaboration members
- Development and use of sharing resources

MATERIAL SCREENING AND SELECTION

Goal

Improve radio purity of all materials used in XENON1T detector by screening and selection: all relevant components of the cryostat and the TPC have been measured

GeMPI-1, LNGS

GeMPI-4, LNGS

GIOVE, MPIK

Method

- multiple facilities available to Collaboration
- 200 samples measured with gamma spectroscopy and ~40 samples with mass spectroscopy

GATOR at LNGS

LNGS screening facility

THE NEXT STEP: XENONNT

How do we increase sensitivity?

Lower the backgrounds!

- less radon (Rn/Xe separation; Rn slowed down in adsorber and decays; boil-off purification -> lower vapour pressure of Rn compared to Xe)
- increased exposure and the larget detector (better self shielding)
- less krypton (use XENON1T krypton purification column)
- lower radioactivity of materials (use world's best HPGe detectors for screening/ selection)

Direct measurement of emanated 222Rn

- sensitivity 30 μBq
- automated system
- high sample throughput
- increased reproducibility
- systematic investigation of 222Rn sources
- system under construction at MPIK
- Commissioning Feb 2016

MOST RECENT LUX RESULTS

arXiv:1512.03506v1

ubatech