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1.	 If	 you	 are	 considering	 

3.	 You	 can	 see	 the	 signatures	 from

2.	 If	 you	 are	 considering	 low	 reheating	 temperature

2

WIMP dark matter
Figure 1: The joint 68% and 95% confidence contours for (B, v') (left panel) and

(v', N) (right panel), for Planck TT+lowP (red) and Planck TT, TE, EE+lowP (blue)

data, respectively.
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Isocurvature of WIMP
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Weakly Interacting Massive Particles 

1.	 WIMPs	 are	 weakly	 interacting.

In	 the	 early	 Universe,	 they	 were	 in	 the	 thermal	 equilibrium	 
with	 background	 relativistic	 plasma,	 by	 changing	 energy,	 
momentum	 and	 number.

2.	 WIMPs	 decouple

Due	 to	 the	 expansion	 of	 the	 Universe,	 the	 interaction	 rate	 
becomes	 insufficient	 for	 the	 scatterings	 and	 finally	 the	 
interaction	 freeze-out.	 
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WIMP :  Weakly Interacting Massive Particle
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3. Warm Dark Matter

Besides hot and cold dark matter, the early uni-
verse can also provide warm dark matter (WDM) can-
didates whose velocity dispersion lies between that of
hot and CDM. The presence of WDM reduces the
power at small scales due to larger free-streaming
length compared to that of a CDM (Bode et al., 2001;
Sommer-Larsen and Dolgov, 2001).

The origin of WDM can be found within ster-
ile states. For instance, the see-saw mechanism
for the active neutrino masses from the SM singlet
states (Gell-Mann and Slansky, 1980; Minkowski, 1977;
Mohapatra and Senjanovic, 1981; Yanagida, 1979) would
naturally generate masses to the active m(ν1,2,3) ∼
y2⟨H⟩2/MN , and sterile neutrinos m(νa) ∼ MN (a > 3)
in Eq. (152), if we take i, j = 1, · · ·n + 3. The typi-
cal mixing angles in this case are: θai ∼ y2ai⟨H⟩2/M2

N .
In order to explain the neutrino masses from atmo-
spheric and solar neutrino data, n = 2 is sufficient, how-
ever for pulsar kicks (Kusenko, 2006; Kusenko and Segre,
1996, 1999), supernovae explosion (Fryer and Kusenko,
2006; Hidaka and Fuller, 2006, 2007), as well as sterile
neutrino as a dark matter candidate (Abazajian et al.,
2001; Asaka et al., 2005; Dodelson and Widrow, 1994;
Dolgov and Hansen, 2002; Petraki and Kusenko, 2008;
Shi and Fuller, 1999), we require at least n = 3, so in
total 6 sterile Majorana states, for a review on all these
effects, see (Kusenko, 2009). The presence of such extra
sterile neutrinos is also supported by ν̄µ → ν̄e oscillations
observed at LSND (Aguilar et al., 2001), and the recent
results by MiniBoone (Aguilar-Arevalo et al., 2010).

A sterile neutrino with a KeV mass can be an ideal
WDM candidate which can be produced in the early
universe by oscillation/conversion of thermal active neu-
trinos, with a momentum distribution significantly sup-
pressed from a thermal spectrum (Abazajian et al., 2001;
Dodelson and Widrow, 1994). A typical free-streaming
scale is given by, see (Abazajian and Koushiappas, 2006)

λFS ≈ 840 Kpc h−1

(
1 KeV

ms

)(
< p/T >

3.15

)
, (191)

wherems is the mass of the sterile flavor eigenstate, 0.9 ≥
⟨p/T ⟩/3.15 ≥ 1 is the mean momentum over tempera-
ture of the neutrino distribution and ranges from 1 (for a
thermal) to ∼ 0.9 (for a non-thermal) distribution. Very
stringent bounds on the mass of WDM particles have
been obtained by different groups. Typically, the bounds
range from ms ≥ 10 − 20 KeV (95 % CL) (mWDM ≥
2− 4 KeV), see (Kusenko, 2009). It is quite plausible to
imagine a mixed dark matter scenario, where more than
one species contributed to the total dark matter abun-
dance. If there is a fraction of sterile neutrinos or WDM,
then the above bounds can even be relaxed.

B. WIMP production

1. Thermal relics

At early times it is assumed that the dark matter parti-
cle, denoted by X is in chemical and kinetic equilibrium,
i.e. in local thermodynamic equilibrium. The dark mat-
ter will be in equilibrium as long as reactions can keep
X in chemical equilibrium and the reaction rate can pro-
ceed rapidly enough as compared to the expansion rate
of the universe, H(t). When the reaction rate becomes
smaller than the expansion rate, then the particle X can
no longer be in its equilibrium, and thereafter its abun-
dance with respect to the entropy density becomes con-
stant. When this occurs the dark matter particle is said
to be “frozen out.”
The equilibrium abundance of X relative to the en-

tropy density depends upon the ratio of the mass of
the particle to the temperature. Let us define the vari-
able Y ≡ nX/s, where nX is the number density of
X with mass mX , and s = 2π2g∗T 3/45 is the en-
tropy density, where g∗ counts the number of relativistic
d.o.f. The equilibrium value of Y , YEQ ∝ exp(−x) for
x = mX/T ≫ 1, while YEQ ∼ constant for x ≪ 1.
The precise value of YEQ can be computed exactly

by solving the Boltzmann equation (Kolb and Turner,
1988):

ṅX + 3HnX = −⟨σv⟩(n2
X − (neq

X )2) , (192)

where dot denotes time derivative, σ is the total annihila-
tion cross section, v is the velocity, bracket denotes ther-
mally averaged quantities, and neq is the number density
of X in thermal equilibrium:

neq = g (mT/2π)3/2 e−mX/T , (193)

where T is the temperature. In terms of Y = nX/s and
x = mX/T , and using the conservation of entropy per
comoving volume (sa3 = constant), we rewrite Eq. (192)
as:

dY

dx
= −⟨σv⟩s

Hx

(
Y 2 − (Y eq)2

)
. (194)

In the case of heavyX , the cross section can be expanded
with respect to the velocity in powers of v2, ⟨σv⟩ = a +
b⟨v2⟩ + O(⟨v4⟩) + ... ≈ a + 6b/x, where x = mX/T and
a, b are expressed in GeV−2. Typically a ̸= 0 for s-wave
annihilation, and a = 0 for p-wave annihilation. We
can rewrite Eq. (194) in terms of a new variable: ∆ =
Y − Y eq,

∆′ = −Y eq′ − f(x)∆(2Y eq +∆) , (195)

where prime denotes d/dx, and

f(x) =
πg∗
45

mXMP(a+ 6b/x)x−2 . (196)

annihilation	 cross	 section

=n/s

4

[B. W. Lee and S. Weinberg, PRL 1977]
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Freeze-out temperature < Mass

[P. Hut, PLB 1977]
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3. Warm Dark Matter

Besides hot and cold dark matter, the early uni-
verse can also provide warm dark matter (WDM) can-
didates whose velocity dispersion lies between that of
hot and CDM. The presence of WDM reduces the
power at small scales due to larger free-streaming
length compared to that of a CDM (Bode et al., 2001;
Sommer-Larsen and Dolgov, 2001).

The origin of WDM can be found within ster-
ile states. For instance, the see-saw mechanism
for the active neutrino masses from the SM singlet
states (Gell-Mann and Slansky, 1980; Minkowski, 1977;
Mohapatra and Senjanovic, 1981; Yanagida, 1979) would
naturally generate masses to the active m(ν1,2,3) ∼
y2⟨H⟩2/MN , and sterile neutrinos m(νa) ∼ MN (a > 3)
in Eq. (152), if we take i, j = 1, · · ·n + 3. The typi-
cal mixing angles in this case are: θai ∼ y2ai⟨H⟩2/M2

N .
In order to explain the neutrino masses from atmo-
spheric and solar neutrino data, n = 2 is sufficient, how-
ever for pulsar kicks (Kusenko, 2006; Kusenko and Segre,
1996, 1999), supernovae explosion (Fryer and Kusenko,
2006; Hidaka and Fuller, 2006, 2007), as well as sterile
neutrino as a dark matter candidate (Abazajian et al.,
2001; Asaka et al., 2005; Dodelson and Widrow, 1994;
Dolgov and Hansen, 2002; Petraki and Kusenko, 2008;
Shi and Fuller, 1999), we require at least n = 3, so in
total 6 sterile Majorana states, for a review on all these
effects, see (Kusenko, 2009). The presence of such extra
sterile neutrinos is also supported by ν̄µ → ν̄e oscillations
observed at LSND (Aguilar et al., 2001), and the recent
results by MiniBoone (Aguilar-Arevalo et al., 2010).

A sterile neutrino with a KeV mass can be an ideal
WDM candidate which can be produced in the early
universe by oscillation/conversion of thermal active neu-
trinos, with a momentum distribution significantly sup-
pressed from a thermal spectrum (Abazajian et al., 2001;
Dodelson and Widrow, 1994). A typical free-streaming
scale is given by, see (Abazajian and Koushiappas, 2006)

λFS ≈ 840 Kpc h−1

(
1 KeV

ms

)(
< p/T >

3.15

)
, (191)

wherems is the mass of the sterile flavor eigenstate, 0.9 ≥
⟨p/T ⟩/3.15 ≥ 1 is the mean momentum over tempera-
ture of the neutrino distribution and ranges from 1 (for a
thermal) to ∼ 0.9 (for a non-thermal) distribution. Very
stringent bounds on the mass of WDM particles have
been obtained by different groups. Typically, the bounds
range from ms ≥ 10 − 20 KeV (95 % CL) (mWDM ≥
2− 4 KeV), see (Kusenko, 2009). It is quite plausible to
imagine a mixed dark matter scenario, where more than
one species contributed to the total dark matter abun-
dance. If there is a fraction of sterile neutrinos or WDM,
then the above bounds can even be relaxed.

B. WIMP production

1. Thermal relics

At early times it is assumed that the dark matter parti-
cle, denoted by X is in chemical and kinetic equilibrium,
i.e. in local thermodynamic equilibrium. The dark mat-
ter will be in equilibrium as long as reactions can keep
X in chemical equilibrium and the reaction rate can pro-
ceed rapidly enough as compared to the expansion rate
of the universe, H(t). When the reaction rate becomes
smaller than the expansion rate, then the particle X can
no longer be in its equilibrium, and thereafter its abun-
dance with respect to the entropy density becomes con-
stant. When this occurs the dark matter particle is said
to be “frozen out.”
The equilibrium abundance of X relative to the en-

tropy density depends upon the ratio of the mass of
the particle to the temperature. Let us define the vari-
able Y ≡ nX/s, where nX is the number density of
X with mass mX , and s = 2π2g∗T 3/45 is the en-
tropy density, where g∗ counts the number of relativistic
d.o.f. The equilibrium value of Y , YEQ ∝ exp(−x) for
x = mX/T ≫ 1, while YEQ ∼ constant for x ≪ 1.
The precise value of YEQ can be computed exactly

by solving the Boltzmann equation (Kolb and Turner,
1988):

ṅX + 3HnX = −⟨σv⟩(n2
X − (neq

X )2) , (192)

where dot denotes time derivative, σ is the total annihila-
tion cross section, v is the velocity, bracket denotes ther-
mally averaged quantities, and neq is the number density
of X in thermal equilibrium:

neq = g (mT/2π)3/2 e−mX/T , (193)

where T is the temperature. In terms of Y = nX/s and
x = mX/T , and using the conservation of entropy per
comoving volume (sa3 = constant), we rewrite Eq. (192)
as:
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Hx
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. (194)

In the case of heavyX , the cross section can be expanded
with respect to the velocity in powers of v2, ⟨σv⟩ = a +
b⟨v2⟩ + O(⟨v4⟩) + ... ≈ a + 6b/x, where x = mX/T and
a, b are expressed in GeV−2. Typically a ̸= 0 for s-wave
annihilation, and a = 0 for p-wave annihilation. We
can rewrite Eq. (194) in terms of a new variable: ∆ =
Y − Y eq,

∆′ = −Y eq′ − f(x)∆(2Y eq +∆) , (195)

where prime denotes d/dx, and

f(x) =
πg∗
45

mXMP(a+ 6b/x)x−2 . (196)
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[B. W. Lee and S. Weinberg, PRL 1977]
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6
γµψ + i

√

2

3

∂µψ

mG

(3)

⟨v⟩ < 0.01 km/ sec (95%CL) l ≃ 1000 (4)

Ωh2 =
( mG

1 keV

)

(

100

g∗

)

(5)

Y =
n

s

∣

∣

∣

f
=

3
4
ζ(3)
π2 gT 3

2π2

45 g∗T 3
=

135ζ(3)

8π4

g

g∗
(6)

Y0 ≃ ⟨σv⟩MpTR ΓG ≃ 1

32π2

m3
G

M2
p
≃ 107 sec

( mG

1 TeV

)3

(7)

dY

dT
≃ ⟨σv⟩Mp ⟨σv⟩ ≃

1

M2
p

(

Mg

mG

)2

(8)

sR3 = constant t ≃ Mp

T 2
(9)

ṅ+ 3Hn = ⟨σv⟩(n2
eq − neqnG) Y ≡ n

s

Ẏ = ⟨σv⟩neq

s

(10)

mG ≪ Mg σn ∼
(

Mg

mG

)2 T 3

M2
p

H ≃ g1/2∗ T 2 Tf ∼ Mp

(

mG

Mg

)2

(11)

mG ≫ Mg σn ∼ T 3

M2
p

H ≃ g1/2∗ T 2 Tf ∼ Mp (12)

ds2 = (1 + 2φ)dt2 − a2[(1− 2ψ)δij − hij ]dx
idxj (13)

mn −mp ≃ 1.29 MeV (14)

mG > 50 TeV ⟨σannv⟩ ≃ 10−9 GeV−2 (15)

2

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.

m ≃ 100 eV 100 GeV logm H ≫ ⟨σv⟩nX (1)

ΩWDMh2 ≃
( m

1 keV

)

(

106.75

g∗

)

1040 (2)

m ! 10 keV 10−6 eV 10−19 eV 1 keV 100GeV eV ∼ 100GeV 1013GeV
(3)

2

Freeze-out temperature < Mass

[P. Hut, PLB 1977]
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5

• The scattering cross section and chemical/kinetic decoupling

Inelastic scatterings : Number changing interactions  

Elastic scatterings : change momentum (number conserved)

Chemical equilibrium

Kinetic equilibrium

Relic density

Structure formation

- The density perturbation can grow after kinetic decoupling

- Kinetic decoupling or free-streaming scale determines the minimum 
scale for the structure formation

1 Formulae

2 Dark Matter

Matters are around us, trees, food, animals. Even our body is made of matter.
From the first time of the history, human has been studying these matters,
to find out whether they are eatable or not, they are useful to make house
or clothes, they are strong enough to make weapons etc. Even nowadays we
are trying to understand the cells, materials atoms, stars. The mechanism of
their behaviors, the properties of the materials or the ultimate ingredients of
the matters, or what is the fundamental (the thing we cannot divide any more)
matters. At least now we understand the most of the matters are made of
atoms. They are made of charged particles, protons and electrons, thus they
may interact with light by electromagnetic interactions.

Those are successful at least in the world around us on earth, in the solar
system. However in the larger scales, such as galaxy, clusters of galaxies or in
the cosmological scales, it seems that something is missing.

T
fr

' m

20
(1)

T 0

0

= ⇢, T 0

i = T i
0

= 0, T i
j = p �ij gµ⌫u

µu⌫ = +1 (2)

m = �2.5 log
10

F

F
0

(3)

Fm+1

Fm
= 1001/5 2.5 log

10

Fm+1

Fm
= 1 (4)

�t
1

R(t
1

)
' �t

0

R(t
0

)
(5)

Z t0

t1

dt

R(t)
=

Z t0+�t0

t1+�t1

dt

R(t)
(6)

t
1

t
1

+ �t
1

t
0

t
0

+ �t
0

(7)

(r, ✓,�) 0 = ds2 = dt2 �R2(t)
dr2

1� kr2

Z t0

t1

dt

R(t)
=

Z r

0

drp
1� kr2

(8)

�0

�
=

1 + vrp
1� ~v2

' 1 + vr (9)

dt
0

= dt0 + vrdt
0 = (1 + vr)

�tp
1� ~v2

(10)

1

- Smaller scales are damped during kinetic decoupling
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Figure 1. The left panel shows the phaseplot and solution for the WIMP
temperature evolution, for m� ⇠ 100 GeV and |M|2 ⇠ g4

Y (m�/!)2, expressed
in the dimensionless variables introduced in equations (8) and (9). At T . Tkd,
any departure from thermal equilibrium (T� = T ) is restored almost immediately
(except for a short period around the QCD phase transition); for T & Tkd,
the WIMPs decouple from the thermal bath and cool down with the Hubble
expansion as T� / a�2. In the right panel, the effective number of relativistic
degrees of freedom is plotted as a function of the temperature, implementing the
results of [24] for the evolution of this quantity during the QCD phase transition;
for reference, the decoupling of muons and electrons is also indicated.

In principle, the scattering with all types of SM particles contributes to c(T ), see equation
(A.8). This picture is a bit complicated by the fact that kinetic decoupling in some cases can
take place close to, or even above the QCD phase transition, the details of which are not yet
fully understood. Lattice calculations, however, start to converge at a value for the critical
temperature of Tc ⇡ 170 MeV for the most interesting case of two light (up and down) and
one more massive (strange) quark flavour [22] and indicate that the plasma can be described by
free quarks and gluons only for T & 4Tc [23]. For the effective number of degrees of freedom
during the transition, we adopt the results of [24] as displayed in the right panel of figure 1.
As scattering partners are concerned, we conservatively restrict ourselves to leptons and, for
T > 4Tc, to the three lightest quarks.

The resulting range in Tkd for neutralino DM, obtained after having performed the extensive
scan described in section 2, is shown in figure 2 as a function of the mass m� and gaugino
fraction Zg ⌘ |N11|2 + |N12|2 (in our case dominated by the bino fraction). The grey band
indicates the QCD phase transition; values for Tkd inside or above this band should be interpreted
as upper bounds on the decoupling temperature since the scattering with some of the hadronic
degrees of freedom was not taken into account. On the other hand, as the coupling of WIMPs
to hadrons is usually smaller than to leptons, the difference between this upper bound and the
actual value of Tkd is not expected to be very big; note also that the scattering with bound QCD
states like, e.g. pions is suppressed due to their rather large masses and thus small abundance
(the evolution of density fluctuations, on the other hand, may very well be influenced by the
details of the QCD phase transition, see the next section). In addition to the result of the scan,
the figure also indicates the decoupling temperature for four mSUGRA benchmark models
that were introduced in [16, 25] and present typical examples for neutralinos in the bulk (I 0),

New Journal of Physics 11 (2009) 105027 (http://www.njp.org/)

: gaugino fraction [Bringmann,	 2009]7
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Figure 2. The range of decoupling temperatures for neutralino DM. For models
that fall inside or above the grey band marking the QCD phase transition, the
actual value of Tkd will be slightly smaller than indicated. See text for further
details.

coannihilation (J ⇤), funnel (K 0) and focus point (F⇤) region; the quite different annihilation
spectra in gamma rays for these models, and the resulting prospects for indirect detection, were
recently studied in some detail in [16, 26].

Assuming a constant equation of state and relativistic scattering partners, equation (5) has
actually an analytic solution [21] that can be used for a quick estimate of Tkd. This estimate
proves to be rather good (within 10% of the full result shown here) for masses below a few
hundred GeV; above that, however, the exact mass dependence of the number density of ⌧
leptons, in particular, can be crucial, leading in some cases to differences of more than a factor
of five between the two results. A further observation is that MSSM and mSUGRA models
occupy roughly the same regions in the Tkd–m� plane; the largest values of Tkd for higgsinos
(at high masses) and binos (at intermediate masses), however, corresponds nearly exclusively to
MSSM models, while almost all binos with a decoupling temperature below the band occupied
by mixed neutralino are mSUGRA models.

For illustrative reasons, finally, the right panel of figure 2 compares the kinetic with the
chemical decoupling temperature: as anticipated, kinetic decoupling takes place much later than
chemical decoupling, at temperatures a factor of 10–1000 lower. The possible range in Tkd is,
furthermore, considerably larger than the one in Tcd—which of course simply reflects the fact
that the DM relic density is constrained extremely well while there are so far no observations that
would put stringent bounds on Tkd (see also section 5.1). Note also that Tkd is fairly uncorrelated
with the chemical decoupling temperature, as well as with the neutralino annihilation cross
section.

To conclude this section, let us recall that the formalism presented here keeps the leading
order terms in p

2/m2
� , thus allowing the determination of the decoupling scale to an accuracy

of O(x�1
kd ); while this is usually more than sufficient, it would be straightforward to include also

New Journal of Physics 11 (2009) 105027 (http://www.njp.org/)

Kinetic decoupling takes place much later than chemical decoupling 
by a factor of 10 - 1000.

Kinetic Decoupling Temperature of Neutralinos
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Figure 3. The left panel shows the exponential cutoff scales associated to
the main damping mechanisms of the matter power spectrum after kinetic
decoupling, namely free streaming and the effect of acoustic oscillations,
respectively; for models above (below) the dashed line, the former (latter)
mechanism thus provides a stronger suppression of the power spectrum. In
the right panel, the cutoff mass resulting from the dominating of these two
independent effects is plotted against the neutralino mass, indicating the typical
size of the smallest protohalos to be formed.

Following the paradigm of hierarchical structure formation, the smallest scales, and
thus the scales closest to the cutoff, typically enter the nonlinear regime first. The smallest
gravitationally bound objects to be formed in the universe are in that case also the first;
protohalos with a mass of around Mcut. This behaviour has been confirmed numerically, where
these protohalos could be followed until a redshift of z ⇠ 26 [27]. The range of expected
minimal protohalo masses displayed in figure 3 is only slightly smaller than what was found
earlier [28] using an order-of-magnitude estimate for Tkd (based on [13]) instead of the exact
value as defined by the solution of equation (10). For a given model, however, it turns out
that the difference in the inferred cutoff mass still is typically about a factor of 10, rather
independent of m� ; adding to this the effect of identifying Mao (like in [14, 28]) instead of
Mcut = max[M fs, Mao] with the smallest protohalo mass, this difference can in some cases
increase to a factor of almost 1000.

5. Discussion

5.1. Observational prospects

Observational prospects depend crucially on whether the first protohalos survive until today
or whether they are disrupted due to tidal interactions in merger processes or encounters with
stars—an issue that is still under debate. Several studies show that even if the protohalos lose
some of their material on their way, most of the mass resides in a dense and compact core that

New Journal of Physics 11 (2009) 105027 (http://www.njp.org/)

Typical size of the smallest proto-halos :  

[Bringmann,	 2009]

12

Finally, if DM consists of superWIMPs that result from the late decay of thermally
produced WIMPs, the actual cutoff in the power-spectrum is not the one from the WIMP
decoupling but the one that is imposed from the kinematics of the decay (through the mass
difference between decaying particle and DM particle). In fact, such models have been proposed
to address a certain tension that is sometimes claimed at ‘small’ scales (in this case Mpc
instead of the pc scales that correspond to Mcut ⇠ 10�5 M�) between observations and numerical
N -body simulations [50]. However, this idea works only partially [51]; what is more, the
evidence for small-scale ‘problems’ of standard 3CDM cosmology may soon well disappear
completely, with more detailed observations and N -body simulations starting to converge [52].
Nevertheless, late-decaying DM is an interesting possibility that does not have to be related
to this particular idea; in contrast to the typical Mcut for WIMPs, a large cutoff in the power
spectrum might even be possible to probe by future micro-lensing missions.

6. Conclusions

The kinetic decoupling process of WIMPs from the thermal bath can be followed in great
detail by solving the full Boltzmann equation in this regime. Extending the formalism presented
in [21], by allowing for non-relativistic scattering partners and taking into account the full time-
dependence of the effective number of degrees of freedom, a highly precise determination of
the decoupling temperature becomes possible that in turn can be translated into a small-scale
cutoff in the spectrum of matter density fluctuations.

An extensive scan over the parameter space for SUSY neutralino DM reveals a slightly
smaller range of cutoff masses, 10�11 M� to a few times 10�4 M�, but basically confirms the
only existing corresponding scan so far [28], which is based on an order-of-magnitude estimate
for the decoupling temperature (given in [13]). The resulting difference in Mcut for individual
WIMP models, however, can be sizable; typically of the order of 10, models with a difference
of almost 103 were found. Another important result of the scan presented here is that whether
free streaming or acoustic oscillations are more effective in the suppression of power on small
scales depends on the DM particle nature (in slight disagreement with the claim of [15] who
presented a very detailed study of the evolution of density contrasts through and after kinetic
decoupling, albeit based only on one particular DM candidate).

The range of decoupling temperatures and cutoff masses presented here is indicative for
the whole class of WIMP DM candidates, though many models—such as Kaluza–Klein DM—
will exhibit a much smaller range. For non-WIMP candidates, the mass of the smallest clumps
can differ significantly from the range derived here; it would be interesting to develop tools that
allow an as precise determination of the cutoff scale for these cases as for the case of WIMPs.
As for detectional prospects of the smallest DM clumps, many interesting ideas have been put
forward. Though challenging, it is an exciting possibility that one may be able to measure
the DM distribution on such scales in the future. In order to really address the connection to
the microphysics of the DM particles, however, one still needs a better understanding of how
the first protohalos evolve and, given their initial distribution, what they are expected to look
like today.

The routines for calculating the kinetic decoupling temperature and the associated cutoff
scale have been implemented in DarkSUSY [17] and will be available with the next release
(see footnote 1).

New Journal of Physics 11 (2009) 105027 (http://www.njp.org/)

Earth mass ~

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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Primordial Perturbations

Adiabatic perturbation : contribute to the curvature perturbation

Isocurvature perturbation : does not contribute to the curvature 
perturbation but contribute to change it.

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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WIMP isocurvature perturbation and small scale structure
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The adiabatic perturbation of dark matter is damped during the kinetic decoupling due to the
collision with relativistic component on sub-horizon scales. However the isocurvature part is free
from damping and could be large enough to make a substantial contribution to the formation of
small scale structure. We explicitly study the weakly interacting massive particles as dark matter
with an early matter dominated period before radiation domination and show that the isocurvature
perturbation is generated during the phase transition and leaves imprint in the observable signatures
for small scale structure.

PACS numbers: 95.35.+d, 14.80.Ly, 98.80.Cq

Introduction. The formation of large scale structure
is consistent with non-relativistic dark matter (DM) in-
dependent of its nature. Small scale structure, however,
depends on the microphysics of DM and the correspond-
ing evolution in the early universe [1–4]. For weakly in-
teracting massive particles (WIMPs), the kinetic decou-
pling is a crucial stage to determine the size of smallest
object [5, 6]: during the process of kinetic decoupling col-
lisional damping smears out the inhomogeneities below
the corresponding damping scale. After kinetic decou-
pling WIMPs can move freely and this leads to additional
damping below the free streaming scale. For neutralino
DM, the kinetic decoupling scale is set when the temper-
ature is 10 MeV - 1 GeV for the mass between 100 GeV
and TeV [7].

In radiation dominated era (RD), while the “adiabatic”
component of DM perturbation on sub-horizon scales ex-
periences oscillations followed by collisional damping [8],
the isocurvature perturbation between DM and radia-
tion,

S ⌘ 3H

✓
�⇢m
⇢̇m

� �⇢r
⇢̇r

◆
= �m � 3

4
�r , (1)

remains constant without damped oscillations [9, 10].
This property was used to explain large scale structure
with baryon isocurvature perturbation [9], which is ruled
out now by the adiabatic constraint from the cosmic mi-
crowave background (CMB) [11]. However, large isocur-
vature perturbation on small scales is not constrained by
the CMB observations and can give observable signatures
in small scale structure.

In this article, we show how large isocurvature pertur-
bation of WIMPs can be generated for scales that enter
the horizon before the kinetic decoupling. If S = 0 at the
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onset of RD, it remains so during kinetic equilibrium. In-
stead, if an early matter dominated era precedes RD, a
sizable amount of S can be generated. We note that this
isocurvature perturbation will not be damped even if the
kinetic decoupling happens after the transition to RD.
Dark matter in non-thermal background. In the early

universe, it happens often that the energy density of the
universe is dominated by a non-relativistic matter which
subsequently decays into relativistic particles. This non-
relativistic matter includes a coherently oscillating scalar
field like an inflaton, or massive fields which decay very
late, such as curvaton, moduli and so on. As an illustra-
tion, we consider this dominating non-relativistic mat-
ter as a scalar � with a decay rate ��. Accordingly,
we call the epoch during which � dominates the energy
density as the scalar dominated era (SD). In the back-
ground, then there are three species of fluid: �, radiation
and DM. Their evolutions are governed by the continuity
equations,

⇢̇� + 3H⇢� = ���⇢� , (2)

⇢̇r + 4H⇢r = (1� fm)��⇢� +
h�avi
M

h
⇢2m � (⇢eqm )2

i
,

(3)

⇢̇m + 3H⇢m = fm��⇢� � h�avi
M

h
⇢2m � (⇢eqm )2

i
, (4)

where M is the mass of the DM particle, fm is the frac-
tion of the decay of � into DM, h�avi is the thermal
averaged annihilation cross section of DM and ⇢eqm ⇡
M4(2⇡M/T )�3/2 exp(�M/T ) is the energy density of
DM in thermal equilibrium. Here radiation is the rela-
tivistic particles thermalized quickly when produced from
the decay of �, and thus the temperature T is prop-
erly defined by its energy density ⇢r = ⇡2g⇤T

4/30 with
g⇤ being the e↵ective degrees of freedom of the rela-
tivistic particles in thermal equilibrium. The reheat-
ing temperature is then approximately given by T

reh

⇡
(⇡2g⇤/90)�1/4

p
m

Pl

��. For successful big bang nucle-
osynthesis, we require that T

reh

must be larger than
O(MeV) [12].
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For multiple fluids, for dark matter and radiation for example:

(flat gauge)
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Equate the first term with the second. h✓2
1,Xi = ✓̄2

1,X + (HI/2
p
2⇡f

X

)2

�✓2
1

is calculated as 2.67⇡2/3
So, add this to the red line to draw the dash. and take sqrt
The sqrt of sum of squares will give a dash-curve, not a line.
I think the white region in fa > HI is also bounded by a line, not a sqrt

curve. Draw in this way.
Remember that a dashed line curve in the white region for fa < HI
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�m (13)

1
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WIMP is Adiabatic

WIMPs are by definition adiabatic, since they are created from 
the background plasma (radiation) at all scales.

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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The constraints on the DM isocurvature modes from Planck (only 
for large scales).
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[Planck,	 2015]
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and so

This is consistent with observation.
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For sub-horizon mode,  the perturbation of DM density        :  

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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oscillates together

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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Before kinetic decoupling: DMs are tightly coupled to the radiation. 
Its perturbation oscillates in the same way as that of photons.The identification of dark matter is one of the most important problem of

modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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Perturbation of DM: Before Kinetic Decoupling
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After WIMP kinetic decoupling, the perturbation of WIMP can grow.The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.
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ã

h2 =
m

ã
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Perturbation of DM: After Kinetic Decoupling

grows

The DM density perturbation grows logarithmically during Radiation-
Domination, and linearly to scale factor during Matter-Dominatoin.
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However during kinetic decoupling, the density perturbation of 
WIMP is suppressed.

When the radiation and DM are tightly coupled, they move 
together and behaves as a single fluid.

When the coupling becomes less effective, then the difference of 
the velocities behaves as a friction, so that the density perturbation 
of DM becomes suppressed. 
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Figure 4: Case (II) with k�1 < k�1
reh. The evolution of the density contrast of the scalar (black),

radiation (red) and WIMP DM (blue) respectively with respect to the gravitational potential
during SD, �0, for the scale which enters the horizon during SD.

where we have neglected O(1) contribution. During the transition period, ��⇢⇢ ⇠ ⇢r, and both
�r and � decay so that the dominant source for the evolution of �m is �� as given by (38), which
gives
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where kreh ⌘ arehHreh. In the following section, we show that this perturbation is not damped
by kinetic decoupling and persists during RD.

3.2 Perturbation during RD

After reheating when radiation dominates, DMs are still in kinetically coupled. We can divide
the case (I) into two classes; the modes that enter the horizon before kinetic decoupling (k�1 <
k�1
kd ), and after kinetic decoupling (k�1

kd < k�1). Including the case (II), we can solve the
following perturbation equations taking the values from the previous section as initial conditions
at T = Treh.

The perturbation equations for radiation and dark matter during RD are approximated as
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Collisional Damping
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Isocurvature perturbation

Isocurvature perturbation is not damped during kinetic decoupling.

[Peebles, ApJ 1987]
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Introduction. The formation of large scale structure
is consistent with non-relativistic dark matter (DM) in-
dependent of its nature. Small scale structure, however,
depends on the microphysics of DM and the correspond-
ing evolution in the early universe [1–4]. For weakly in-
teracting massive particles (WIMPs), the kinetic decou-
pling is a crucial stage to determine the size of smallest
object [5, 6]: during the process of kinetic decoupling col-
lisional damping smears out the inhomogeneities below
the corresponding damping scale. After kinetic decou-
pling WIMPs can move freely and this leads to additional
damping below the free streaming scale. For neutralino
DM, the kinetic decoupling scale is set when the temper-
ature is 10 MeV - 1 GeV for the mass between 100 GeV
and TeV [7].

In radiation dominated era (RD), while the “adiabatic”
component of DM perturbation on sub-horizon scales ex-
periences oscillations followed by collisional damping [8],
the isocurvature perturbation between DM and radia-
tion,

S ⌘ 3H

✓
�⇢m
⇢̇m

� �⇢r
⇢̇r

◆
= �m � 3

4
�r , (1)

remains constant without damped oscillations [9, 10].
This property was used to explain large scale structure
with baryon isocurvature perturbation [9], which is ruled
out now by the adiabatic constraint from the cosmic mi-
crowave background (CMB) [11]. However, large isocur-
vature perturbation on small scales is not constrained by
the CMB observations and can give observable signatures
in small scale structure.

In this article, we show how large isocurvature pertur-
bation of WIMPs can be generated for scales that enter
the horizon before the kinetic decoupling. If S = 0 at the
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onset of RD, it remains so during kinetic equilibrium. In-
stead, if an early matter dominated era precedes RD, a
sizable amount of S can be generated. We note that this
isocurvature perturbation will not be damped even if the
kinetic decoupling happens after the transition to RD.
Dark matter in non-thermal background. In the early

universe, it happens often that the energy density of the
universe is dominated by a non-relativistic matter which
subsequently decays into relativistic particles. This non-
relativistic matter includes a coherently oscillating scalar
field like an inflaton, or massive fields which decay very
late, such as curvaton, moduli and so on. As an illustra-
tion, we consider this dominating non-relativistic mat-
ter as a scalar � with a decay rate ��. Accordingly,
we call the epoch during which � dominates the energy
density as the scalar dominated era (SD). In the back-
ground, then there are three species of fluid: �, radiation
and DM. Their evolutions are governed by the continuity
equations,

⇢̇� + 3H⇢� = ���⇢� , (2)

⇢̇r + 4H⇢r = (1� fm)��⇢� +
h�avi
M

h
⇢2m � (⇢eqm )2

i
,

(3)

⇢̇m + 3H⇢m = fm��⇢� � h�avi
M

h
⇢2m � (⇢eqm )2

i
, (4)

where M is the mass of the DM particle, fm is the frac-
tion of the decay of � into DM, h�avi is the thermal
averaged annihilation cross section of DM and ⇢eqm ⇡
M4(2⇡M/T )�3/2 exp(�M/T ) is the energy density of
DM in thermal equilibrium. Here radiation is the rela-
tivistic particles thermalized quickly when produced from
the decay of �, and thus the temperature T is prop-
erly defined by its energy density ⇢r = ⇡2g⇤T

4/30 with
g⇤ being the e↵ective degrees of freedom of the rela-
tivistic particles in thermal equilibrium. The reheat-
ing temperature is then approximately given by T

reh

⇡
(⇡2g⇤/90)�1/4

p
m

Pl

��. For successful big bang nucle-
osynthesis, we require that T

reh

must be larger than
O(MeV) [12].

ar
X

iv
:1

50
7.

03
87

1v
1 

 [a
str

o-
ph

.C
O

]  
14

 Ju
l 2

01
5

Isocurvature perturbation

Isocurvature perturbation is not damped. [Peebles, ApJ 1987]

Isocurvature perturbations between DM and radiation

APCTP-Pre2015-019, RUNHETC-2015-06

WIMP isocurvature perturbation and small scale structure

Ki-Young Choi,1, ⇤ Jinn-Ouk Gong,2, 3, † and Chang Sub Shin4, ‡

1
Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea

2
Asia Pacific Center for Theoretical Physics, Pohang, 790-784, Korea

3
Department of Physics, Postech, Pohang 790-784, Korea

4
Department of Physics and Astronomy, Rutgers University, Piscataway NJ 08854, USA

The adiabatic perturbation of dark matter is damped during the kinetic decoupling due to the
collision with relativistic component on sub-horizon scales. However the isocurvature part is free
from damping and could be large enough to make a substantial contribution to the formation of
small scale structure. We explicitly study the weakly interacting massive particles as dark matter
with an early matter dominated period before radiation domination and show that the isocurvature
perturbation is generated during the phase transition and leaves imprint in the observable signatures
for small scale structure.

PACS numbers: 95.35.+d, 14.80.Ly, 98.80.Cq

Introduction. The formation of large scale structure
is consistent with non-relativistic dark matter (DM) in-
dependent of its nature. Small scale structure, however,
depends on the microphysics of DM and the correspond-
ing evolution in the early universe [1–4]. For weakly in-
teracting massive particles (WIMPs), the kinetic decou-
pling is a crucial stage to determine the size of smallest
object [5, 6]: during the process of kinetic decoupling col-
lisional damping smears out the inhomogeneities below
the corresponding damping scale. After kinetic decou-
pling WIMPs can move freely and this leads to additional
damping below the free streaming scale. For neutralino
DM, the kinetic decoupling scale is set when the temper-
ature is 10 MeV - 1 GeV for the mass between 100 GeV
and TeV [7].

In radiation dominated era (RD), while the “adiabatic”
component of DM perturbation on sub-horizon scales ex-
periences oscillations followed by collisional damping [8],
the isocurvature perturbation between DM and radia-
tion,

S ⌘ 3H

✓
�⇢m
⇢̇m

� �⇢r
⇢̇r

◆
= �m � 3

4
�r , (1)
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This property was used to explain large scale structure
with baryon isocurvature perturbation [9], which is ruled
out now by the adiabatic constraint from the cosmic mi-
crowave background (CMB) [11]. However, large isocur-
vature perturbation on small scales is not constrained by
the CMB observations and can give observable signatures
in small scale structure.

In this article, we show how large isocurvature pertur-
bation of WIMPs can be generated for scales that enter
the horizon before the kinetic decoupling. If S = 0 at the
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onset of RD, it remains so during kinetic equilibrium. In-
stead, if an early matter dominated era precedes RD, a
sizable amount of S can be generated. We note that this
isocurvature perturbation will not be damped even if the
kinetic decoupling happens after the transition to RD.
Dark matter in non-thermal background. In the early

universe, it happens often that the energy density of the
universe is dominated by a non-relativistic matter which
subsequently decays into relativistic particles. This non-
relativistic matter includes a coherently oscillating scalar
field like an inflaton, or massive fields which decay very
late, such as curvaton, moduli and so on. As an illustra-
tion, we consider this dominating non-relativistic mat-
ter as a scalar � with a decay rate ��. Accordingly,
we call the epoch during which � dominates the energy
density as the scalar dominated era (SD). In the back-
ground, then there are three species of fluid: �, radiation
and DM. Their evolutions are governed by the continuity
equations,
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where M is the mass of the DM particle, fm is the frac-
tion of the decay of � into DM, h�avi is the thermal
averaged annihilation cross section of DM and ⇢eqm ⇡
M4(2⇡M/T )�3/2 exp(�M/T ) is the energy density of
DM in thermal equilibrium. Here radiation is the rela-
tivistic particles thermalized quickly when produced from
the decay of �, and thus the temperature T is prop-
erly defined by its energy density ⇢r = ⇡2g⇤T
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g⇤ being the e↵ective degrees of freedom of the rela-
tivistic particles in thermal equilibrium. The reheat-
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WIMP Isocurvature Perturbation

 Is it possible to have a large isocurvature perturbation at 
small scales with adiabatic still at large scales?

- However there is a one case, when 

- Not possible in the standard WIMP.

Figure 1: The joint 68% and 95% confidence contours for (B, v') (left panel) and

(v', N) (right panel), for Planck TT+lowP (red) and Planck TT, TE, EE+lowP (blue)

data, respectively.
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WIMP Isocurvature Perturbation
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The adiabatic perturbation of dark matter is damped during the kinetic decoupling due to the collision
with a relativistic component on subhorizon scales. However, the isocurvature part is free from damping
and could be large enough to make a substantial contribution to the formation of small scale structure. We
explicitly study the weakly interacting massive particles as dark matter with an early matter dominated
period before radiation domination and show that the isocurvature perturbation is generated during the
phase transition and leaves an imprint in the observable signatures for small scale structure.
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Introduction.—The formation of large scale structure is
consistent with nonrelativistic dark matter (DM) indepen-
dent of its nature. Small scale structure, however, depends
on the microphysics of DM and the corresponding evolu-
tion in the early Universe [1–4]. For weakly interacting
massive particles (WIMPs), the kinetic decoupling is a
crucial stage to determine the size of the smallest object
[5,6]: during the process of kinetic decoupling collisional
damping smears out the inhomogeneities below the corre-
sponding damping scale. After kinetic decoupling, WIMPs
can move freely and this leads to additional damping below
the free streaming scale. For neutralino DM, the kinetic
decoupling scale is set when the temperature is 10 MeV–
1 GeV for the mass between 100 GeV and TeV [7].
In the radiation dominated era (RD), while the “adia-

batic” component of DM perturbation on subhorizon scales
experiences oscillations followed by collisional damping
[8], the isocurvature perturbation between DM and
radiation,

S≡ 3H
!
δρm
_ρm

−
δρr
_ρr

"
¼ δm −

3

4
δr; ð1Þ

remains constant without damped oscillations [9,10]. This
property was used to explain large scale structure with
baryon isocurvature perturbation [9], which is ruled out
now by the adiabatic constraint from the cosmic microwave
background (CMB) [11]. However, large isocurvature
perturbation on small scales is not constrained by the
CMB observations and can give observable signatures in
small scale structure.
In this Letter, we show how large isocurvature pertur-

bation of WIMPs can be generated for scales that enter the
horizon before the kinetic decoupling. If S ¼ 0 at the onset
of RD, it remains so during kinetic equilibrium. Instead, if

an early matter dominated era precedes RD, a sizable
amount of S can be generated. We note that this isocurva-
ture perturbation will not be damped even if the kinetic
decoupling happens after the transition to RD.
Dark matter in nonthermal background.—In the early

Universe, it happens often that the energy density of the
Universe is dominated by a nonrelativistic matter that
subsequently decays into relativistic particles. This non-
relativistic matter includes a coherently oscillating scalar
field like an inflaton, or massive fields which decay very
late, such as curvaton, moduli, and so on. As an illustration,
we consider this dominating nonrelativistic matter as a
scalar ϕ with a decay rate Γϕ. Accordingly, we call the
epoch during which ϕ dominates the energy density the
scalar dominated era (SD). In the background there are
three species of fluid: ϕ, radiation, and DM. Their evolu-
tions are governed by the continuity equations,

_ρϕ þ 3Hρϕ ¼ −Γϕρϕ; ð2Þ

_ρr þ 4Hρr ¼ ð1 − fmÞΓϕρϕ þ
hσavi
M

½ρ2m − ðρeqm Þ2&; ð3Þ

_ρm þ 3Hρm ¼ fmΓϕρϕ −
hσavi
M

½ρ2m − ðρeqm Þ2&; ð4Þ

where M is the mass of the DM particle, fm is the fraction
of the decay of ϕ into DM, hσavi is the thermal averaged
annihilation cross section of DM and ρeqm ≈
M4ð2πM=TÞ−3=2 expð−M=TÞ is the energy density of
DM in thermal equilibrium. Here, radiation is the relativ-
istic particles thermalized quickly when produced from the
decay of ϕ, and thus the temperature T is properly defined
by its energy density ρr ¼ π2g'T4=30 with g' being the
effective degrees of freedom of the relativistic particles in
thermal equilibrium. The reheating temperature is then
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Low Reheating Temperature

• Inflaton oscillation

• Thermal inflation

• Curvaton domination

• Heavy axino and saxion

• Moduli decay

• .....

The Universe is dominated by heavy particles (early matter domination) 
and reheated (radiation domination) by the decay of them. It happens 
for:
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: early matter domination by a scalar or fermion

Rad.-dominated

Matter-dominated

The perturbation equations we need to solve can be microscopically derived from the Boltzmann
equation, and for each component ↵ are given by

�̇↵ + (1 + w↵)
✓↵
a

� 3(1 + w↵) ̇ =
1

⇢↵
(�Q↵ �Q↵�↵ +Q↵�) , (13)
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+
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=
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#
, (14)

where ✓↵ ⌘ r · v↵ = @iv
i
↵ is the velocity divergence field. The energy-momentum transfer

functions Q↵, �Q↵ and @iQ
i
(↵) are derived in Appendix A and are given by
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where we put fm = 0. In this perturbation equations, we included the elastic scattering
cross section between radiation and DM, �e, which makes DMs are coupled kinetically to the
radiation before they reaches the kinetic decoupling. The 00 component of the perturbed
Einstein equation governs the evolution of the metric perturbations,

�

a2
 � 3H

⇣
 ̇+H�

⌘
=

1

2m2
Pl

(⇢��� + ⇢r�r + ⇢m�m) . (24)

Note that in the absence of the anisotropic tensor as in our setup, � =  which then closes the
set of equations we need to solve.

3.1 Perturbations with WIMP DM

We first consider WIMP DM. For M = O(100) GeV, the chemical freeze-out temperature Tfr

is around several GeV, but DM is still in kinetic equilibrium. For usual WIMP, the kinetic
decoupling arises at Tkd = O(1� 10) MeV. Thus, as a benchmark scenario, we consider Treh =
O(10� 100) MeV so that

Tfr > Treh > Tkd . (25)
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric

ds2 = �(1 + 2�)dt2 + a2(1� 2 )�ijdx
idxj . (5)
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where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T
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set by ceh�evi⇢r/M |T=Tkd = H(T
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), with ce = O(1) be-
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric
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where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric

ds2 = �(1 + 2�)dt2 + a2(1� 2 )�ijdx
idxj . (5)

The perturbation equations can be derived from the
Boltzmann equation for each component (↵ = �, r and
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where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T
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set by ceh�evi⇢r/M |T=Tkd = H(T
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), with ce = O(1) be-
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The adiabatic perturbation of dark matter is damped during the kinetic decoupling due to the
collision with relativistic component on sub-horizon scales. However the isocurvature part is free
from damping and could be large enough to make a substantial contribution to the formation of
small scale structure. We explicitly study the weakly interacting massive particles as dark matter
with an early matter dominated period before radiation domination and show that the isocurvature
perturbation is generated during the phase transition and leaves imprint in the observable signatures
for small scale structure.
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Introduction. The formation of large scale structure
is consistent with non-relativistic dark matter (DM) in-
dependent of its nature. Small scale structure, however,
depends on the microphysics of DM and the correspond-
ing evolution in the early universe [1–4]. For weakly in-
teracting massive particles (WIMPs), the kinetic decou-
pling is a crucial stage to determine the size of smallest
object [5, 6]: during the process of kinetic decoupling col-
lisional damping smears out the inhomogeneities below
the corresponding damping scale. After kinetic decou-
pling WIMPs can move freely and this leads to additional
damping below the free streaming scale. For neutralino
DM, the kinetic decoupling scale is set when the temper-
ature is 10 MeV - 1 GeV for the mass between 100 GeV
and TeV [7].

In radiation dominated era (RD), while the “adiabatic”
component of DM perturbation on sub-horizon scales ex-
periences oscillations followed by collisional damping [8],
the isocurvature perturbation between DM and radia-
tion,

S ⌘ 3H

✓
�⇢m
⇢̇m

� �⇢r
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◆
= �m � 3

4
�r , (1)

remains constant without damped oscillations [9, 10].
This property was used to explain large scale structure
with baryon isocurvature perturbation [9], which is ruled
out now by the adiabatic constraint from the cosmic mi-
crowave background (CMB) [11]. However, large isocur-
vature perturbation on small scales is not constrained by
the CMB observations and can give observable signatures
in small scale structure.

In this article, we show how large isocurvature pertur-
bation of WIMPs can be generated for scales that enter
the horizon before the kinetic decoupling. If S = 0 at the
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onset of RD, it remains so during kinetic equilibrium. In-
stead, if an early matter dominated era precedes RD, a
sizable amount of S can be generated. We note that this
isocurvature perturbation will not be damped even if the
kinetic decoupling happens after the transition to RD.
Dark matter in non-thermal background. In the early

universe, it happens often that the energy density of the
universe is dominated by a non-relativistic matter which
subsequently decays into relativistic particles. This non-
relativistic matter includes a coherently oscillating scalar
field like an inflaton, or massive fields which decay very
late, such as curvaton, moduli and so on. As an illustra-
tion, we consider this dominating non-relativistic mat-
ter as a scalar � with a decay rate ��. Accordingly,
we call the epoch during which � dominates the energy
density as the scalar dominated era (SD). In the back-
ground, then there are three species of fluid: �, radiation
and DM. Their evolutions are governed by the continuity
equations,

⇢̇� + 3H⇢� = ���⇢� , (2)

⇢̇r + 4H⇢r = (1� fm)��⇢� +
h�avi
M

h
⇢2m � (⇢eqm )2

i
,

(3)

⇢̇m + 3H⇢m = fm��⇢� � h�avi
M

h
⇢2m � (⇢eqm )2

i
, (4)

where M is the mass of the DM particle, fm is the frac-
tion of the decay of � into DM, h�avi is the thermal
averaged annihilation cross section of DM and ⇢eqm ⇡
M4(2⇡M/T )�3/2 exp(�M/T ) is the energy density of
DM in thermal equilibrium. Here radiation is the rela-
tivistic particles thermalized quickly when produced from
the decay of �, and thus the temperature T is prop-
erly defined by its energy density ⇢r = ⇡2g⇤T

4/30 with
g⇤ being the e↵ective degrees of freedom of the rela-
tivistic particles in thermal equilibrium. The reheat-
ing temperature is then approximately given by T

reh

⇡
(⇡2g⇤/90)�1/4

p
m

Pl

��. For successful big bang nucle-
osynthesis, we require that T

reh

must be larger than
O(MeV) [12].
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric

ds2 = �(1 + 2�)dt2 + a2(1� 2 )�ijdx
idxj . (5)

The perturbation equations can be derived from the
Boltzmann equation for each component (↵ = �, r and
m) and they are given by
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where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T

kd

set by ceh�evi⇢r/M |T=Tkd = H(T
kd

), with ce = O(1) be-

We consider that the radiation is generated by the decay of the 
scalar and quickly thermalized.  The DMs are produced from the 
annihilation of radiations like WIMP.
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Introduction. The formation of large scale structure
is consistent with non-relativistic dark matter (DM) in-
dependent of its nature. Small scale structure, however,
depends on the microphysics of DM and the correspond-
ing evolution in the early universe [1–4]. For weakly in-
teracting massive particles (WIMPs), the kinetic decou-
pling is a crucial stage to determine the size of smallest
object [5, 6]: during the process of kinetic decoupling col-
lisional damping smears out the inhomogeneities below
the corresponding damping scale. After kinetic decou-
pling WIMPs can move freely and this leads to additional
damping below the free streaming scale. For neutralino
DM, the kinetic decoupling scale is set when the temper-
ature is 10 MeV - 1 GeV for the mass between 100 GeV
and TeV [7].

In radiation dominated era (RD), while the “adiabatic”
component of DM perturbation on sub-horizon scales ex-
periences oscillations followed by collisional damping [8],
the isocurvature perturbation between DM and radia-
tion,
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remains constant without damped oscillations [9, 10].
This property was used to explain large scale structure
with baryon isocurvature perturbation [9], which is ruled
out now by the adiabatic constraint from the cosmic mi-
crowave background (CMB) [11]. However, large isocur-
vature perturbation on small scales is not constrained by
the CMB observations and can give observable signatures
in small scale structure.

In this article, we show how large isocurvature pertur-
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onset of RD, it remains so during kinetic equilibrium. In-
stead, if an early matter dominated era precedes RD, a
sizable amount of S can be generated. We note that this
isocurvature perturbation will not be damped even if the
kinetic decoupling happens after the transition to RD.
Dark matter in non-thermal background. In the early

universe, it happens often that the energy density of the
universe is dominated by a non-relativistic matter which
subsequently decays into relativistic particles. This non-
relativistic matter includes a coherently oscillating scalar
field like an inflaton, or massive fields which decay very
late, such as curvaton, moduli and so on. As an illustra-
tion, we consider this dominating non-relativistic mat-
ter as a scalar � with a decay rate ��. Accordingly,
we call the epoch during which � dominates the energy
density as the scalar dominated era (SD). In the back-
ground, then there are three species of fluid: �, radiation
and DM. Their evolutions are governed by the continuity
equations,
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where M is the mass of the DM particle, fm is the frac-
tion of the decay of � into DM, h�avi is the thermal
averaged annihilation cross section of DM and ⇢eqm ⇡
M4(2⇡M/T )�3/2 exp(�M/T ) is the energy density of
DM in thermal equilibrium. Here radiation is the rela-
tivistic particles thermalized quickly when produced from
the decay of �, and thus the temperature T is prop-
erly defined by its energy density ⇢r = ⇡2g⇤T

4/30 with
g⇤ being the e↵ective degrees of freedom of the rela-
tivistic particles in thermal equilibrium. The reheat-
ing temperature is then approximately given by T
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⇡
(⇡2g⇤/90)�1/4

p
m

Pl

��. For successful big bang nucle-
osynthesis, we require that T

reh

must be larger than
O(MeV) [12].
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The perturbation equations we need to solve can be microscopically derived from the Boltzmann
equation, and for each component ↵ are given by
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where ✓↵ ⌘ r · v↵ = @iv
i
↵ is the velocity divergence field. The energy-momentum transfer
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where we put fm = 0. In this perturbation equations, we included the elastic scattering
cross section between radiation and DM, �e, which makes DMs are coupled kinetically to the
radiation before they reaches the kinetic decoupling. The 00 component of the perturbed
Einstein equation governs the evolution of the metric perturbations,
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Note that in the absence of the anisotropic tensor as in our setup, � =  which then closes the
set of equations we need to solve.

3.1 Perturbations with WIMP DM

We first consider WIMP DM. For M = O(100) GeV, the chemical freeze-out temperature Tfr

is around several GeV, but DM is still in kinetic equilibrium. For usual WIMP, the kinetic
decoupling arises at Tkd = O(1� 10) MeV. Thus, as a benchmark scenario, we consider Treh =
O(10� 100) MeV so that

Tfr > Treh > Tkd . (25)
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric

ds2 = �(1 + 2�)dt2 + a2(1� 2 )�ijdx
idxj . (5)

The perturbation equations can be derived from the
Boltzmann equation for each component (↵ = �, r and
m) and they are given by
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where ✓↵ ⌘ r ·v↵ = @iv
i
↵ is the velocity divergence field,

w� = wm = 0 and wr = 1/3. At leading order of T/M ,
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where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T

kd

set by ceh�evi⇢r/M |T=Tkd = H(T
kd

), with ce = O(1) be-
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
BkðtÞ vary in time. Their time dependence is determined by
the elastic scattering term as
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The values of Δk, ϕk, AkðtrehÞ, and BkðtrehÞ are given at the
onset of RD, and for adiabatic modes they are

Δk ¼ −10Φi; ϕk ¼ 0; AkðtrehÞ ¼ −10Φi;

Bad
k ðtrehÞ ¼ −10Φi

"
γE −
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where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]
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for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,
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and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),
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where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is
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As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as
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where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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Radiation is still produced from decay of the dominating scalar,
however dark matter is not produced any more.

The difference in the number density creates the isocurvature 
perturbation between dark matter and radiation.
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radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
θr
a
; ð26Þ

_δr ≈ −
4

3

θr
a
þ
Γϕρϕ
ρr

ðδϕ − δrÞ; ð27Þ

where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is

SðtrehÞ ≈ −
3

4

Z
treh

ti
dt

Γϕρϕδϕ
ρr

≈
5

4
Φi

"
k
kreh

$
2

: ð28Þ

As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
"
−

k2

2k2fr

$
5

4
Φi

"
k
kreh

$
2

; ð29Þ

where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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The 00 component of the perturbed Einstein equation
governs the evolution of the metric perturbations,

Δ
a2

Ψ − 3Hð _ΨþHΦÞ ¼ 1

2m2
Pl
ðρϕδϕ þ ρrδr þ ρmδmÞ:

ð17Þ

In the absence of the anisotropic tensor, we can set Φ ¼ Ψ,
which then closes the above set of equations. This is
possible since ϕ and radiation, which dominate the energy
density, are isotropic in our setup. Note that the effects of
the anisotropic shear and nonvanishing sound speed of
DM, cs ∼

ffiffiffiffiffiffiffiffiffiffi
T=M

p
, can be important after kinetic decou-

pling for scales smaller than the free streaming length k−1fr .
In Ref. [16], it is shown that when the free streaming length
is much shorter than the scale k−1kd that enters the horizon at
the moment of kinetic decoupling, we can take an approxi-
mation that solving the Boltzmann equations first in the
perfect fluid limit while maintaining the elastic scattering,
and then multiplying the solution by the Gaussian sup-
pression term. Actually, this limit is also physically
interesting, because two different damping scales can be
more clearly distinguished.
In this Letter, we consider the hierarchies among scales

as k−1fr < k−1reh < k−1kd , where k
−1
reh is the scale that enters the

horizon at T ¼ Treh. This means that the free streaming
scale enters the horizon during SD and that kinetic
decoupling occurs during RD. The large hierarchy between
k−1fr and k−1kd can be obtained when M is big enough while
the elastic scattering is mediated by a field much lighter
than DM. In this case, the freeze-out abundance also could
be large, but the subsequent dilution by entropy injection
from the scalar decay can provide the correct amount of the
present DM density [17,18]. For WIMP, we find [19]

k−1kd ¼ 0.86
10 MeV
Tkd

"
g%s

10.75

#
1=3

"
10.75
g%

#
1=2

pc; ð18Þ

k−1reh ¼ k−1kd
Tkd

Treh
; ð19Þ

k−1fr ¼
Z

t0

tkd

dt
a
cs ≈ k−1kd

ffiffiffiffiffiffiffi
Tkd

M

r
log

"
Tkd

Teq

#
; ð20Þ

where g%s is the effective number of light species for
entropy and Teq ¼ OðeVÞ is the temperature at matter-
radiation equality.
In Fig. 2, we show the evolution of perturbations on three

different scales. During SD, the perturbations are adiabatic
on super-horizon scales since both radiation and DM are
produced from a single source ϕ, which set the initial
values of perturbations as δϕðaiÞ ¼ 2δrðaiÞ ¼ −2Φi and
δmðaiÞ ≈MδrðaiÞ=ð4TiÞ, with Ti being determined from
ρrðaiÞ. During the transition from SD to RD, Φ rescales
from Φi to 10Φi=9 on superhorizon scales and accordingly
δr changes from −Φi to −2ð10=9ÞΦi. Meanwhile, at early
times when DM is in thermal (chemical) equilibrium, δm ∝
a3=8 and is reduced to−5Φi=3 during RDwhich follows the
adiabatic condition δm ¼ 3δr=4.
While for modes which enter the horizon after kinetic

decoupling (k−1kd < k−1), δr oscillates and δm grows loga-
rithmically as shown in the left panel of Fig. 2, for themodes
which enter before kinetic decoupling (k−1reh < k−1 < k−1kd ) δm
oscillates together with δr and is damped, which is known as
collisional damping. The nonvanishing subhorizon entropy
perturbation appears due to the damping of δm as shown in
the middle panel of Fig. 2.
An interesting feature happens for the modes that enter

the horizon during SD but after the free streaming scale
enters (k−1fr < k−1 < k−1reh) as in the right panel of Fig. 2.
During the transition from SD to RD, δm does not follow δr,
and the isocurvature perturbation is generated. In this
period, DM is no longer produced after chemical freeze-
out and the number density is frozen while radiation is still
being produced from ϕ. The continuous entropy injection
becomes the source of the isocurvature perturbation
between DM and radiation. This perturbation still persists
even after kinetic decoupling. Before calculating its ana-
lytic expression we explicitly show why it is not damped
from the solution for δm during RD [16],

FIG. 2 (color online). The evolution of the density contrast of the radiation (red), DM (blue), and the isocurvature perturbation (brown)
with respect to the initial gravitational potential for k−1kd < k−1 (k ¼ 0.1kkd, left), k−1reh < k−1 < k−1kd (k ¼ 5kkd ¼ 0.5kreh, middle), and
k−1fr < k−1 < k−1reh (k ¼ 50kkd ¼ 5kreh ¼ 0.8kfr, right). We have set M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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super
horizon

reheating

kinetic 
decoupling

damping enhancement 
during MD

δm ¼ Δk
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$
þ BkðtÞ; ð21Þ

whereΔk and ϕk are k-dependent constants while AkðtÞ and
BkðtÞ vary in time. Their time dependence is determined by
the elastic scattering term as

_Ak þ ce
hσeviρr
aM

Ak ¼ 9ce
hσeviρr
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¼ 0: ð22Þ

The values of Δk, ϕk, AkðtrehÞ, and BkðtrehÞ are given at the
onset of RD, and for adiabatic modes they are

Δk ¼ −10Φi; ϕk ¼ 0; AkðtrehÞ ¼ −10Φi;

Bad
k ðtrehÞ ¼ −10Φi

"
γE −

1

2

$
; ð23Þ

where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]

Ak; Bad
k ∝ exp

!
−0.8

"
k

2
ffiffiffi
3

p
kkd

$½ð4þnÞ=ð5þnÞ&%
ð24Þ

for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,

δϕðaÞ ¼ −2Φi −
2

3
Φi

!
k

aiHðaiÞ

%
2 a
ai
; ð25Þ

and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
θr
a
; ð26Þ

_δr ≈ −
4

3

θr
a
þ
Γϕρϕ
ρr

ðδϕ − δrÞ; ð27Þ

where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is

SðtrehÞ ≈ −
3

4

Z
treh

ti
dt

Γϕρϕδϕ
ρr

≈
5

4
Φi

"
k
kreh

$
2

: ð28Þ

As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
"
−

k2

2k2fr

$
5

4
Φi

"
k
kreh

$
2

; ð29Þ

where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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Discussion

23

1. Isocurvature perturbation of WIMP can be generated during 
the early matter domination and it is not damped during the 
kinetic decoupling.

2.  The large isocurvature perturbation of WIMP at small scales form 
minihalos. The WIMP DM annihilation the minihalos can produce visible 
signals such as the gamma-ray, cosmic rays or neutrinos. 

3.  The non-trivial shape of the power spectrum of  WIMP  implies 
another way to see the early Universe before BBN. 
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