CMB probes on the correlated axion isocurvature peturbations

Kenji Kadota
IBS Center for Theoretical Physics of the Universe(CTPU), Institute for Basic Science(IBS), S. Korea

Based on:

$>$ "CMB probes on the correlated axion isocurvature perturbation" (arXiv:1411.3974) KK, Jinn-Ouk Gong (APCTP), Kiyotomo Ichiki (Nagoya), Takahiro Matsubara (Nagoya)
$>$ "Axion inflation with cross-correlated axion isocurvature perturbations"(arXiv:1509.04523) KK, Tatsuo Kobayashi (Hokkaido), Hajime Otsuka (Waseda).
> Motivations for cross correlations:

Parameter precision
> Concrete example (Analytical formula for cross-correlation)
> Conclusion

$$
P=P_{R}+P_{I}+P_{C}
$$

Planck (2015) 95\% CL
Uncorrelated isocurvature mode:

$$
\frac{P_{I}}{P_{R}+P_{I}}<0.038
$$

Cross-correlated isocurvature mode:

$$
0.034<\frac{P_{I}}{P_{R}+P_{I}}<0.28
$$

Cross correlation between curvature and isocurvature perturbation

(Polarski, Starobinsky (1994), Pierpaoli, Garcia-Bellido, Borgani(1999), Enqvist, Kurki-Suonio (2000),Bucher,Noodley, Turok(2001), Amendola, Gordon, Wands, Sasaki (2002), ...)

$$
\begin{gathered}
\boldsymbol{P}=\boldsymbol{P}_{\boldsymbol{R}}+\boldsymbol{P}_{\boldsymbol{I}}+\boldsymbol{P}_{\boldsymbol{C}} \\
\mathcal{P}_{X}=A_{X}\left(k_{0}\right)\left(\frac{k}{k_{0}}\right)^{n_{X}-1} \\
A_{X}=\left(\begin{array}{cc}
A_{R} & A_{C} \\
A_{C} & A_{I}
\end{array}\right) \quad n_{X}=\left(\begin{array}{cc}
n_{R} & n_{C} \\
n_{C} & n_{I}
\end{array}\right)
\end{gathered}
$$

χ : inflaton
a : energetically subdominant field (e.g. axion)

$$
\begin{aligned}
& C_{R} \sim \int d^{3} k T_{\chi}(k) T_{\chi}(k)\langle\delta \chi(k) \delta \chi(k)\rangle \\
& C_{I} \sim \int d^{3} k T_{a}(k) T_{a}(k)\langle\delta a(k) \delta a(k)\rangle \\
& \underset{\text { kenji kadota (crip, }}{C_{C}} \boldsymbol{\int} d^{3} k T_{\chi}(k) T_{a}(k)\langle\delta \chi(k) \delta a(k)\rangle
\end{aligned}
$$

Two independent solutions for the acoustic wave equation
Adiabatic initial condition
 - $-\infty \leq k \neq 27$ ace

Isocurvature initial condition

Kurki-Suonio et al (2004)

Robustness of the base \wedge CDM model against different assumptions on initial conditions

Planck (2015)

> Motivations for cross correlations:
> Parameter precision
> Concrete example: Axion (analytical formula for cross-correlation)
> Conclusion

How large does βc have to be, for the isocurvature parameters to be determined precisely by Planck? $\beta c \geq 0.1$

	T	$T E$	$T L$	Joint
$\beta_{\mathcal{C}}=1$				
$\sigma\left(n_{\mathcal{I}}\right) / n_{\mathcal{I}}$	33	13	21	12
$\sigma\left(A_{\mathcal{I}}\right) / A_{\mathcal{I}}$	240	81	220	80
$\sigma\left(A_{\mathcal{C}}\right) / A_{\mathcal{C}}$	65	11	20	11
$\beta_{\mathcal{C}}=0.1$				
$\sigma\left(n_{\mathcal{I}}\right) / n_{\mathcal{I}}$	110	39	65	38
$\sigma\left(A_{\mathcal{I}}\right) / A_{\mathcal{I}}$	260	100	260	100
$\sigma\left(A_{\mathcal{C}}\right) / A_{\mathcal{C}}$	230	76	170	74

Polarization Important!

How much does βc affect the Λ CDM parameter estimations? 10% or more.

	Ω_{Λ}	$\Omega_{m} h^{2}$	$\Omega_{b} h^{2}$	$n_{\mathcal{R}}$	$A_{\mathcal{R}}$	τ
$\beta_{\mathcal{C}}=1$	1.1	1.1	1.0	1.4	0.97	0.94
$\beta_{\mathcal{C}}=0.1$	1.1	1.1	1.0	1.4	1.1	1.1
No correlation	1.0	1.0	1.0	1.1	1.1	1.1

Normalized error $\sigma / \sigma_{\text {no }}$ iso

isocurvature
> Motivations for cross correlations:
> Parameter precision
> Concrete example: Axion (analytical formula for cross-correlation)
> Conclusion

Example: Nambu-Goldstone boson

$$
\phi=\frac{r e^{i \theta}}{\sqrt{2}}, a=f_{a} \theta
$$

Analytical Formula for βc in terms of axion parameters

1) Upper bound on βc in terms of axion parameters. $B C \sim 0.1$ possible.
2) Implications: Spontaneous Symmetry breaking scale $\sim \mathrm{Mp}$ is desired

$$
\begin{aligned}
& \text { e.g. I: } V \sim g \frac{\chi \phi^{4}}{m_{p l}} \quad \frac{n_{R}+n_{I}}{2}=n_{C} \\
& \beta_{C} \equiv \frac{P_{C}}{\sqrt{P_{R} P_{I}}} \sim g \sin \left(4 \theta_{0}\right)\left(\frac{f_{a}}{m_{p l}}\right)^{3}\left(\frac{m_{p l}}{H}\right)^{2} \\
& e . g . \mathrm{II}: V_{\mathrm{int}} \sim g \frac{\chi^{m} \phi^{n}}{m_{p l}^{m+n-4}} \\
& \beta_{C} \equiv \frac{P_{C}}{\sqrt{P_{R} P_{I}}} \sim g \sin \left(n \theta_{\mathrm{o}}\right)\left(\frac{\chi_{\mathrm{o}}}{m_{p l}}\right)^{m-1}\left(\frac{f_{a}}{m_{p l}}\right)^{n-1}\left(\frac{m_{p l}}{H}\right)^{2}
\end{aligned}
$$

Model discrimination

Planck (2015), KK, Kobayashi, Otsuka(2015)

Concrete Example: Natural inflation (Freese, Frieman, Olinto (1990))
Adiabatic fluctuations:
Isocurvature fluctuations:

$$
\begin{aligned}
& V_{\mathrm{inf}}=\Lambda_{1}^{4}\left(1-\cos \frac{\phi}{f}\right) \\
& V_{\mathrm{int}}=\Lambda_{2}^{4}\left(1-\cos \left(\frac{\phi}{g_{1}}+\frac{\chi}{g_{2}}\right)\right)
\end{aligned}
$$

DSU Kyoto 2015
KK, Kobayashi, Otsuka (2015)

Concrete Example：
Axion monodromy inflation（McAllister，Silverstein，Westphal $(2008,2010)$ ）

$$
\begin{gathered}
V=\mu_{1}^{4-p} \phi^{p}+\mu_{2}^{4} \cos \left(\frac{\phi}{g_{1}}+\frac{\chi}{g_{2}}\right) \\
\frac{P_{1}}{P_{R}}-\left(\frac{\Omega_{a}}{\Omega_{m}}\right)^{2}\left(\frac{1}{\xi_{1} \theta_{0}}\right)^{2}\left(\frac{P}{\phi_{0}}\right)^{2}
\end{gathered}
$$

KK，Kobayashi，Otsuka（2015）

p	N	91	g_{2}	μ_{2}^{4-p} / H^{2}	Ω_{a} / Ω_{m}	$\cos \left(\psi_{0}+\theta_{0}\right)$	θ_{0}	β_{c}	$\beta_{\text {iso }}$	n_{s}
2	55	10^{-2}	10^{-2}	6×10^{-7}	0.03	1／2	2	0.002	0.14	0.964
4／3	55	10	10	$3 \times$	0.03	1／2	2	0.001	0.1	0.97
1	55	10	10	$4 \times$	0.03	$1 /$	2	0.001	0.08	0.973
Reple	㐌勿曻	${ }^{10} 10-2$	10^{-2}	4×10^{-7}	20.03	15 1／2	2	0.001	0.05	0.976

ㄴ. $95 \% \mathrm{CL}$ ㄴI $68 \% \mathrm{CL}$

- $\mathrm{C}=50: \phi^{2}$
- $N=60$
- $N=50$
.. $C=50: \phi^{4 / 3}$
- $\mathrm{C}=50: \phi$
- C=50: $\phi^{2 / 3}$
- $c=10: \phi_{4 / 3}^{2}$
$\cdots c=10: \phi^{4 / 3}$
- $C=10: \phi$
- $c=10: \phi^{2 / 3}$
$-c=1: \phi^{2}$
$-C=1: \phi^{2}$
$\cdots \quad c=1: \phi^{4 / 3}$
- $c=1: \phi$
- $C=1: \phi^{2 / 3}$

Conclusion:

CMB measurement perspectives:
Polarization is very powerful to constrain the isocurvature cross-correlation.
^CDM parameter estimation can be affected by 10% or more.
> Cross-correlated isocurvature modes through a concrete example: Axion

Inflation model discrimination:
preferred for the monodromy inflation, disfavored for natural inflation.

