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Uncorrelated	isocurvature	mode:	
PI

PR +PI
< 0.038

0.034 < PI
PR +PI

< 0.28Cross-correlated	isocurvature	mode:	

Planck	(2015)	95%	CL	

adiabatic curvature perturbations

PR = ASk
ns−1, (14)

is fixed to be AS ≃ H2/(8π2ϵ) ≃ 2.2 × 10−9 with ϵ ≃ 2/φ2
0 being the slow-roll parameter

at the pivot scale k∗ = 0.05Mpc−1. This figure also shows the Planck likelihood contours
including the polarization data which greatly improve the constraints on the isocurvature per-
turbations compared with the WMAP results [1,2]. The high-l (l ≥ 30) TE,EE data turn out
to drive the isocurvature cross-correlation towards a smaller value and disfavor the negative
cross-correlations which would be allowed otherwise with the high-l TT data [3]. We can find
that the coefficient c in βC = cφ2

0 has to be of order less than 10−3 to be within 2 sigma and
the axion decay constant f is constrained to the range between 5 and 10. The cross correlation
parameter βC is constrained to be −0.1 ! βC ! 0.3, or, in terms of the parameters in the
sinusoidal correction term (Eq. (5)), to be within

−0.1 ! 4.2

(
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96π2
! 0.3. (15)

Moreover, the following conditions are taken into account to justify our calculations:

• The adiabatic perturbations come from Vinf and not from Vint, that is, Vinf ≫ Vint.

• The inflaton dynamics is dominated by φ, i.e.,
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• The quantum fluctuations of axions are not over-damped during the inflation, m2
θ, m

2
φ ≪ H2.

• The standard slow-roll conditions, ϵ≪ 1 and |η| ≪ 1.

Some of the above conditions may be redundant depending on the parameter range of interest.
In the light of these conditions, the cross-correlation parameter is bounded above by

βC ≃ 4.2
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, (16)

where |Λ4
2 cos(ψ0+θ0)| ≪ |Vinf | is applied. For g1, g2 < O(1), the constraint of Eq. (16) for βC is

automatically satisfied if Eq. (15) is satisfied. The illustrative values of isocurvature parameters
are listed in Tab. 1 by setting the typical values for the parameters in the scalar potential in Eq.
(7). Note that, although the axion decay constants are typically of order the grand unification
scale (1016 GeV) [22] and hence one may expect g1 ∼ g2, the hierarchical values g1 ≪ g2
(g1 ≫ g2) can well be realized for the axion χ (φ) by the non-perturbative effects through the
(gauge) threshold correction (Eq. (4)).

Next, we estimate the fraction of isocurvature perturbations

βiso =
PI

PR + PI

=
PI

PR

1 + PI

PR

, (17)
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where CXY
ℓ and NXY

ℓ are respectively the power spectra of the CMB signal and the noise in the
measurements. p⃗ is the vector consisting of the cosmological parameters {pi}. We assume for
concreteness the Planck-like experiment covering up to the multipole of lmax = 2500, the sky
coverage of fsky = 0.65 and three frequency channels 100, 142 and 217 GHz, where the beam
width θFWHM [arcmin] and the temperature (polarization) sensitivity ∆T (∆P ) [µK/pixel] are,
respectively, (θFWHM,∆T ,∆P ) = (9.5′, 6.8, 10.9), (7.1′, 6.0, 11.4) and (5.0′, 13.1, 26.7). For the
temperature and polarization noise, we simply consider the dominant detector noise represented
by the photon shot noise [35,36], and, for the statistical noise of the CMB lensing deflection field,
we use the optimal quadratic estimator of Hu and Okamoto [37,38]. To study the isocurvature
perturbation, we introduce (AI , AC, nI) in addition to the conventional six ΛCDM parameters
(ΩΛ = 0.69, Ωmh2 = 0.14, Ωbh2 = 0.022, nR = 0.96, AR = 2.2 × 10−9, τ (reionization optical
depth)= 0.95) with the numerical values being the fiducial values in our Fisher analysis [1]. The
spectral index of the cross-correlation is set to nC = (nR +nI)/2 for simplicity, which is indeed
realized in and motivated from our axion model in the next section. The total matter density
consists of baryon and (non-baryonic) cold dark matter (CDM) Ωm = Ωb + Ωc = 1 − ΩΛ. We
assume the flat Universe and use the reduced Hubble parameter h =

√

Ωmh2/(1− ΩΛ) in our
analysis. We define the power spectra of the curvature, isocurvature and their cross-correlation,
denoted by subscripts R, I and C respectively, as

PX = AX(k0)

(

k

k0

)nX−1

, (3)

with X ⊃ (R, I, C), and the fractions of the isocurvature perturbation and cross-correlation as

βI =
PI

PR

, βC =
PC√
PRPI

, (4)

respectively. Unless stated otherwise, A’s and β’s are evaluated at the reference scale k0 =
0.05 Mpc−1 and the isocurvature fraction is set to βI = 0.04 (95% CL upper bound from
Planck+WMAP [39]) in the following analysis. We modified the CAMB [40] to calculate the
CMB power spectra in existence of the isocurvature cross-correlation for our purpose. We
found the sign of βC did not affect our conclusion quantitatively, and the following discussions
simply assume a positive βC. The Fisher matrix consists of aforementioned 9 parameters, and
the marginalized errors for the parameters involving the isocurvature perturbation are listed in
Table 1 for different cross-correlation power spectrum amplitudes. The constraints on AI and
nI are not expected to change significantly for βC ! O(0.1) which is sufficiently small compared
with the isocurvature perturbation whose amplitude is fixed to βI = 0.04 in our analysis.

Let us take a look at the bound on AC which is of our particular interest. We can see that
AC is constrained more tightly for a bigger βC, which is reasonable because a bigger value of βC

can let the cross correlation make a bigger contribution to the observable total power spectrum.
We find that βC ≥ O(0.01) is required for the error on AC not to exceed 100%. We can also find
an improvement in σ(AC)/AC by adding the CMB polarization (and to a lesser extent by the
CMB lensing). An advantage of adding the polarization data to the temperature data is that
the sensitivity of polarization to AC is different from that of temperature. This is illustrated
in Figure 1 where we plot ∂Cℓ/∂ lnAC for the temperature and polarization data. Another,
more important reason for the improvement comes from the breaking of the degeneracy among

2

P = PR +PI +PC

χ : inflaton
a :  energetically subdominant field (e.g. axion)
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Cross	correla*on	between	curvature	and	isocurvature	perturba*on		
(	Polarski,	Starobinsky	(1994),	Pierpaoli,	Garcia-Bellido,	Borgani(1999),	Enqvist,	Kurki-Suonio	
(2000),Bucher,Noodley,	Turok(2001),	Amendola,	Gordon,	Wands,	Sasaki	(2002),	...)	
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Figure 1: The unit-amplitude component angular power spec-
tra Ĉad

l (red), Ĉiso
l (blue), and Ĉcor

l (green) of Eqs. (13) and
(20) for the case of spectral indices nad = niso = 1 and other
cosmological parameters representing median values of their
marginalized likelihoods from our 11-parameter model. These
curves would represent the relative contributions to the total
Cl for the case α = 0.5, γ = 1, i.e., “equal” weights for the
adiabatic and isocurvature contributions and a maximal pos-
itive correlation between them.

The problem remains that when some multiplier in
(20) is close to zero, the spectral index of the correspond-
ing component becomes unconstrained leading to more
volume in parameter space upon marginalization. This
may introduce a bias towards “pure” models where the
isocurvature or correlation amplitude is zero.

We want the pivot scale to be roughly in the middle of
the data set used, and have chosen k0 = 0.01Mpc−1 as
our pivot wavenumber. For the concordance values of the
cosmological parameters, ΩΛ = h = 0.7, this corresponds
to “pivot multipole” l0 ∼ 140. [The correspondence is
l0 ∼ D∗k0, where D∗ = D∗(h, ΩΛ, Ωm) is the angular
diameter distance to last scattering. D∗(h, 0.7, 0.3) ≈
h−110 000Mpc−1 while the “old day’s standard value”
was D∗(h, 0, 1) ≈ h−16 000Mpc−1.]

This work is similar to a recently published study by
Beltran et al. [16]. The main differences are: 1) Dif-
ferent parametrization of correlation. When we divide
the adiabatic spectrum in a correlated and an uncorre-
lated part, they consider the total adiabatic spectrum PR

and the correlation spectrum CRS as the basic entities,
which they approximate by power laws. This leads to
constraints on the correlation spectral index ncor, which
depend on the correlation amplitude, and therefore they
introduce a related parameter, “δcor”, to be the indepen-
dent parameter, leaving ncor as a derived parameter. 2)
They have set an upper limit niso ≤ 3, whereas we allow
niso to vary over a wider range. 3) They use a pivot scale
k0 = 0.05 Mpc−1 (l0 ∼ 700). We use k0 = 0.01 Mpc−1

(l0 ∼ 140), but consider also the effect of changing the
pivot scale. 4) They use a larger data set, including type
Ia Supernova (SNIa) data [22], whereas we use CMB and
LSS data only. 5) They include an equation-of-state pa-
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Figure 2: The same as Fig. (1), but for (a) ĈTE
l and (b) the

matter power spectrum P̂ (k). We also show (c) the ĈTT
l of

Fig. 1 with a logarithmic scale, so that the effect of chang-
ing the spectral indices can be readily estimated from the
figure. The pivot scale k0 = 0.01Mpc−1 becomes k0/h =
0.01418Mpc−1 for the parameter values used (h = 0.7053) for
this plot.

rameter w for dark energy, wheras we keep w = −1. 6)
They consider neutrino isocurvature modes also.

Crotty et al. [12] and Beltran et al. [16] use the same
isocurvature parameter α as we use, but they use the
correlation parameter

β ≡ − cos∆ ≡−sign(AsB)

√

A2
s

A2
r + A2

s
≡−sign(γ)

√

|γ|

(22)

Kurki-Suonio	et	al	(2004)		

Two	independent	solu6ons	for	the	acous6c	wave	equa6on	

Adiaba6c	ini6al	condi6on	 ΔT
T
~ cos(kcsηdec )

Isocurvature	ini6al	condi6on	 ΔT
T
~ sin(kcsηdec )
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Planck	(2015)	

Robustness	of	the	base	ΛCDM	model	against	different	assump6ons	on	ini6al	condi6ons	
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KK,	Gong,	Ichiki	and	Matsubara	(2014)		

How	large	does	βc	have	to	be,	for	the	isocurvature	
parameters	to	be	determined	precisely	by	Planck?		
				βc	≥0.1																																																

βC ≡
PC
PRPI

Polariza6on	Important!		

T TE TL Joint

βC = 1
σ(nI)/nI 33 13 21 12
σ(AI)/AI 240 81 220 80
σ(AC)/AC 65 11 20 11
βC = 0.1
σ(nI)/nI 110 39 65 38
σ(AI)/AI 260 100 260 100
σ(AC)/AC 230 76 170 74
βC = 0.01
σ(nI)/nI 150 49 85 47
σ(AI)/AI 290 110 280 110
σ(AC)/AC 1800 710 1700 690

Table 1: 1σ errors [%] for different values of βC. T refers to the analysis using only the CMB
temperature data. TE (TL) refers to the analysis using both temperature and polarization
(temperature and lensing) information. Joint refers to the use of T , E and L.
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Figure 1: The derivatives CXY
ℓ (XY = TT,EE, TE) with respect to AC (for βI = 0.04, βC = 1).

For an easier comparison, we plot scaled values for TT and EE by a factor 10 as indicated in
the figure.

suppressed by the reionization optical depth by a factor ∼ e−2τ . This is illustrated in Figure 2.
We can clearly see the big degeneracy between τ and AC in the temperature data alone, which
is broken by adding the polarization data. Polarization is sensitive to the reionization bump
on large scales (ℓ ! 10) which can lift the degeneracies concerning τ , resulting in the improved
constraints on AC. The CMB lensing also improves the constraints on AC because the lensing
is sensitive to the initial power amplitude even though polarization would be more powerful in
constraining AC , assuming the noise and angular scale of a Planck-like CMB experiment.

The cosmological parameters are in fact not totally independent from each other, and the
existence of a small cross-correlation power spectrum can still affect the other cosmological
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Figure 2: Marginalized 1σ error contours for τ and AC (magnified by 109) (for βI = 0.04, βC =
1).

ΩΛ Ωmh2 Ωbh2 nR AR τ

βC = 1 1.1 1.1 1.0 1.4 0.97 0.94
βC = 0.1 1.1 1.1 1.0 1.4 1.1 1.1

No correlation 1.0 1.0 1.0 1.1 1.1 1.1

Normalized error σ/σno iso

Table 2: The comparison between the error estimation assuming the isocurvature perturbation
(βI = 0.04) and that assuming the ΛCDM with no isocurvature perturbation. All the errors
here are estimated using all of T , E and L.

parameters which are well constrained by the CMB alone. This is illustrated in Table 2 where
the errors estimated assuming the isocurvature perturbation are normalized to those assuming
no isocurvature components. The marginalized errors in this table are calculated by using
the 9× 9 Fisher matrix except the last row with no cross-correlation which used 8 × 8 Fisher
matrix without AC. These errors are then divided by those calculated by 6 × 6 Fisher matrix
in the ΛCDM. The error in τ can be reduced for a sufficiently large βC partly because the
response of polarization to the isocurvature perturbation is different from that to the adiabatic
perturbation. This as a result also helps in reducing the errors in AR by breaking the τ -AR

degeneracy. We can see that the estimation of some of the ΛCDM parameters can well be
affected by O(10)% in existence of the cross-correlation, and the complete ignorance of the
cross-correlation could result in the misinterpretation of the underlying cosmological model.

Before concluding this section, let us mention here that βC can have either sign. For instance,
for the concrete example in the next section, the sign of βC can change depending on the initial
displacement angle of the axion. We however checked that a negative βC did not change our
final conclusion: in view of the forthcoming CMB data, |βC| ! O(0.1) would be required for
the forthcoming CMB experiment to be sensitive to the isocurvature cross-correlation, and
the ΛCDM cosmological parameter estimations can well be affected at the order of O(10)% in
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How	much	does	βc	affect	the	ΛCDM	parameter	es6ma6ons?				
																																																		10%	or	more.		
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e.g. I:  V ~ g χφ
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	1)		Upper	bound	on		βc	in	terms	of	axion	parameters.	Βc	~0.1	possible.	
	
	2)	Implica6ons:		Spontaneous	Symmetry	breaking	scale	~	Mp	is	desired	

Analy6cal	Formula	for	βc	in	terms	of	axion	parameters		
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Figure 1: 68% and 95% confidence level constraints on the adiabatic spectral index and tensor
to scalar ratio from Planck [3]. The filled contours are for generally-correlated adiabatic and
CDM (axion) isocurvature modes. The unfilled dashed contours are for the pure adiabatic
model without the isocurvature perturbations.

inflation model building [20]. The curvature and isocurvature perturbations in our scenarios
are [20, 30]

R = −H

φ̇0

δφ , (8)

I = 2
Ωa

Ωm

δθ

θ0
, (9)

with Ωa and Ωm being the axion and matter densities with respect to the critical density. The
factor Ωa/Ωm appears here because we are interested in the isocurvature perturbations between
the radiation and the non-relativistic matter, and the non-adiabatic fluctuations arise solely
from an axion which contributes to the total matter density with the fraction Ωa/Ωm. The dot
denotes the time derivative and the subscript 0 represents the background field values during
the inflation and, in the following, we omit δ representing the fluctuations for the notational
brevity when it is clear from the context.
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Concrete	Example:	Natural	infla6on	(Freese,	Frieman,	Olinto	(1990))	

2 Natural inflation with sinusoidal correction

The natural inflation is among the simplest axion inflation models [17] which can be constructed
in the field theory as well as superstring theory. Although, at the perturbative level, the axion
potential is not generated due to the gauge symmetry in string theory, the non-perturbative
effects in a hidden gauge sector can generate the axion potential terms. Especially, when
the gauginos (λ) of the hidden gauge group condensate at a certain energy scale [21], the
superpotential can be generated in the four-dimensional (4D) N = 1 supersymmetry,

W ≃ ⟨λλ⟩ ≃ Ae−aT , (1)

where A = O(1) and a = 24π2/b0 with b0 being the one-loop beta-function coefficient.1 We
consider the scenarios where the size of gauge coupling is determined by the real part of modulus
field, T , which is typical for heterotic string theory, type I string theory and type II string theory
with D-branes along the single cycle (see for reviews, e.g., Refs. [14,15]). By fixing the real part
of moduli, for instance through another non-perturbative effect, we can obtain the effective
inflaton potential for the imaginary part of modulus (axion),

Vinf = Λ4
1

(

1− cos
φ

f

)

, (2)

with φ and f being the axion-inflaton and its decay constant. The conventional natural inflation
model, in view of the recent Planck data, requires the trans-Planckian axion decay constant,
f > 5, even though its construction requires some care because the fundamental axion decay
constant obtained after the dimensional reduction is typically much smaller than the Planck
scale [22]. The gauge couplings in the visible and hidden sectors, in general, depend on the
linear combination of moduli fields through the gauge threshold correction and non-trivial brane
configuration. For example, in type II string theory, the D-branes wrap the internal cycle of
six extra-dimensional manifold and then the volume of this internal cycle is determined by the
linear combination of moduli fields Ti where the number of moduli Ti is determined by the
topology of the extra-dimensional manifold [14,15]. Thus, the gauge coupling on Dp-branes is
represented by the linear combination of them,

⟨ciT i⟩ = 1

g2
, (3)

where ci are constant. Furthermore, if we consider the one-loop corrections for the gauge
coupling, the superpotential also depends on the linear combination of moduli fields T and T ′,

W = Ae−aT−dT ′

, (4)

where A = O(1), a = 24π2/b0 and d = 24π2/b0× b/48π with b being the one-loop beta-function
coefficient determined by massive modes [23]. The axion decay constant for the modulus T ′ here
can be enhanced by the one-loop effect [24, 25]. Indeed, there are several scenarios to enhance

1Here and in what follows, we employ the reduced Planck units, MPl = 2.4× 1018GeV = 1.

2

the axion decay constant based on the moduli-mixing in the gauge kinetic function such as the
alignment mechanism [26], N-flation [27], kinetic mixing [28], the threshold correction [24, 25]
and the flux-induced enhancements [29].

Since there exist, in general, ubiquitous axion fields in string theory, one can also expect
that there are moduli-dependent correction terms in the potential,

Vint = Λ4
2

(

1− cos

(

φ

g1
+
χ

g2

))

, (5)

where φ and χ represent an axion-inflaton and another light axion field. For the notational
brevity, we in the following define the parameters

σ =
φ

f
, ψ =

φ

g1
, θ =

χ

g2
, (6)

so that the total potential can be written as

V = Λ4
1(1− cosσ) + Λ4

2 (1− cos (ψ + θ)) . (7)

We hereafter focus on the scenarios where the adiabatic perturbations are dominantly sourced
by the axion-inflaton fluctuation δφ and the additional axion fluctuation δχ leads to the isocur-
vature perturbations.

Before discussing the cosmological perturbations and their indication for the model discrim-
ination, we show an allowed parameter region for the spectral tilt of the adiabatic perturbations
and the tensor-to-scalar ratio in both pure adiabatic (ADI) model and generally-correlated ADI
+ cold dark matter isocurvature (CDI) model. Fig. 1 shows that, for the natural inflation with
isocurvature perturbations, the inclusion of a cross-correlated isocurvature mode tightens the
constraints on the axion decay constant, 5 < f < 10, and the e-folding number, 60 < N . On
the other hand, the axion monodromy inflation, to be discussed in the next section, except
for the quadratic one can be better fitted by the Planck data by including the cross-correlated
isocurvature mode.

The degeneracies among the parameters involving the correlated isocurvature perturbations
result in the shift in the best-fit parameters compared with those in the pure adiabatic model,
even though the strong degeneracies such as that between the isocurvature perturbation ampli-
tude and adiabatic perturbation spectral index which WMAP data had greatly suffered from
reduced significantly in Planck TT + polarization data [1, 2]. The constraints on r however
turn out not to be significantly affected by the inclusion of the cross-correlated isocurvature
modes partly because the Planck data including the polarization already gives sufficiently tight
constraints on the isocurvature and tensor modes [3]. In the rest of the paper, we for simplicity
do not consider the significant tensor contribution and we adopt the Planck likelihood analysis
results without including r in the following discussions.

We now discuss the cosmic perturbations for the axion fields, starting with the brief dis-
cussions for the conventional curvature and isocurvature perturbations to set up our notations
followed by the exploration on their cross-correlations along with their indication for the string
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curves.
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adiabatic curvature perturbations

PR = ASk
ns−1, (14)

is fixed to be AS ≃ H2/(8π2ϵ) ≃ 2.2 × 10−9 with ϵ ≃ 2/φ2
0 being the slow-roll parameter

at the pivot scale k∗ = 0.05Mpc−1. This figure also shows the Planck likelihood contours
including the polarization data which greatly improve the constraints on the isocurvature per-
turbations compared with the WMAP results [1,2]. The high-l (l ≥ 30) TE,EE data turn out
to drive the isocurvature cross-correlation towards a smaller value and disfavor the negative
cross-correlations which would be allowed otherwise with the high-l TT data [3]. We can find
that the coefficient c in βC = cφ2

0 has to be of order less than 10−3 to be within 2 sigma and
the axion decay constant f is constrained to the range between 5 and 10. The cross correlation
parameter βC is constrained to be −0.1 ! βC ! 0.3, or, in terms of the parameters in the
sinusoidal correction term (Eq. (5)), to be within

−0.1 ! 4.2

(

1

g1g2

)(

Λ4
2

2.2× 10−9

)

cos(ψ0 + θ0)
φ2
0

96π2
! 0.3. (15)

Moreover, the following conditions are taken into account to justify our calculations:

• The adiabatic perturbations come from Vinf and not from Vint, that is, Vinf ≫ Vint.

• The inflaton dynamics is dominated by φ, i.e.,
∣

∣

∣

∂Vinf

∂φ

∣

∣

∣
≫
∣

∣

∣

∂Vint

∂φ

∣

∣

∣
.

• The quantum fluctuations of axions are not over-damped during the inflation, m2
θ, m

2
φ ≪ H2.

• The standard slow-roll conditions, ϵ≪ 1 and |η| ≪ 1.

Some of the above conditions may be redundant depending on the parameter range of interest.
In the light of these conditions, the cross-correlation parameter is bounded above by

βC ≃ 4.2

(

1

g1g2

)(

Λ4
2

AS

)

cos(ψ0 + θ0)
φ2
0

96π2
≪ 2.1

(

1

g1g2

)

, (16)

where |Λ4
2 cos(ψ0+θ0)| ≪ |Vinf | is applied. For g1, g2 < O(1), the constraint of Eq. (16) for βC is

automatically satisfied if Eq. (15) is satisfied. The illustrative values of isocurvature parameters
are listed in Tab. 1 by setting the typical values for the parameters in the scalar potential in Eq.
(7). Note that, although the axion decay constants are typically of order the grand unification
scale (1016 GeV) [22] and hence one may expect g1 ∼ g2, the hierarchical values g1 ≪ g2
(g1 ≫ g2) can well be realized for the axion χ (φ) by the non-perturbative effects through the
(gauge) threshold correction (Eq. (4)).

Next, we estimate the fraction of isocurvature perturbations

βiso =
PI

PR + PI

=
PI

PR

1 + PI

PR

, (17)
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Concrete	Example:		
	Axion	monodromy	infla6on			(McAllister,	Silverstein,	Westphal	(2008,	2010))	

Let us consider the spacetime filling D5-brane in type IIB string theory [18]. The D5-brane
wraps a certain internal two-cycle Σ2 in the 6D compact space in addition to the 4D spacetime
and its Dirac-Born-Infeld action is given by

SD5 =
1

(2π)5gs(α′)3

∫

d6σ
√

−det(Gab +Bab), (27)

where gs is the string coupling, α′ is the regge-slope, Gab, a, b = 0, 1, 2, 3, 4, 5 is the pullback of
the metric of the target space, Bab is the Kalb-Ramond field whose extra-dimensional component
corresponds to the axion b =

∫

Σ2
B2 where B2 is the Kalb-Ramond two-form. We here do not

consider the magnetic flux background.
After carrying out the dimensional reduction, the axion potential can be extracted as

Veff ≃ T
(2π)5gs(α′)2

√
l4 + b2, (28)

where T and l are some warp factors and the volume of two-cycle Σ2 in string units (α′ = 1).
For a large field value of the inflaton b ≫ l2, the potential reduces to a linear type,

Veff ≃ T
(2π)5gs(α′)2

b. (29)

Then, the relevant Lagrangian of the inflaton is given by

L = −1

2
(∂φ)2 − µ3

1φ, (30)

where µ3
1 = T

f(2π)5gs(α′)2 with f being the decay constant of the axion φ = b. Furthermore, for

the D4-brane in a nilmanifold (twisted torus) on type IIA string theory, the axion potential has
the form of Eq. (26) with p = 2/3 [19]. When we consider the seven-branes [34] or a four-form
field strength [35], the axion monodromy inflation is that with p = 2. The other types of axion
monodromy inflation with p = 4/3, 3 can also be constructed by a coupling between NS-NS
two-form and the Ramond-Ramond field strength [36].

As mentioned for the natural inflation, the axion, in general, can receive the non-perturbative
effects associated with the gaugino condensation, D-brane instanton and world-sheet instanton,
and the scalar potential receives the moduli-dependent correction including the mixing with
another light axion χ,

V = µ4−p
1 φp + µ4

2cos

(

φ

g1
+
χ

g2

)

, (31)

where g2 denotes the decay constant of χ. We here assume that the moduli except for the
relevant axions under our discussion are fixed at their minimum and decoupled from our setup.

For the notational brevity, we in the following define the parameters

ψ =
φ

g1
, θ =

χ

g2
, (32)
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where the power spectrum of adiabatic perturbations is fixed to be AS = 2.2 × 10−9 at the
pivot scale k∗ = 0.05Mpc−1, whereas the fraction of PR and PI is given by

PI

PR

≈
(

Ωa

Ωm

)2( 2

g1θ0

)2( p

φ0

)2

. (40)

Fig. 5 plots βiso with p = 2/3, 1, 4/3, 2 as a function φ0 by setting the parameters as

PI

PR

= c×
(

p

φ0

)2

, (41)

with c = 1, 10, 50, and we can find, as expected, the isocurvature contribution increases for
a larger p. The Planck data hence favors the sizable generally correlated isocurvature per-
turbations for the axion monodromy inflation with sinusoidal correction. Tab. 2 exemplifies
the parameters which can realize the sizable fraction of isocurvature perturbations. Figs. 1, 4
and 5 hence demonstrates that, for the axion monodromy inflation with p = 1, 2/3 including
the sinusoidal correction, there is a preference for the existence of cross-correlated isocurvature
modes in the currently available CMB data.

p N g1 g2 µ4−p
2 /H2 Ωa/Ωm cos(ψ0 + θ0) θ0 βC βiso ns

2 55 10−2 10−2 6× 10−7 0.03 1/2 2 0.002 0.14 0.964
4/3 55 10−2 10−2 3× 10−7 0.03 1/2 2 0.001 0.1 0.97
1 55 10−2 10−2 4× 10−7 0.03 1/2 2 0.001 0.08 0.973
2/3 55 10−2 10−2 4× 10−7 0.03 1/2 2 0.001 0.05 0.976

Table 2: The typical numerical values for the axion monodromy inflation with sinusoidal cor-
rection.
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adiabatic curvature perturbations

PR = ASk
ns−1, (14)

is fixed to be AS ≃ H2/(8π2ϵ) ≃ 2.2 × 10−9 with ϵ ≃ 2/φ2
0 being the slow-roll parameter

at the pivot scale k∗ = 0.05Mpc−1. This figure also shows the Planck likelihood contours
including the polarization data which greatly improve the constraints on the isocurvature per-
turbations compared with the WMAP results [1,2]. The high-l (l ≥ 30) TE,EE data turn out
to drive the isocurvature cross-correlation towards a smaller value and disfavor the negative
cross-correlations which would be allowed otherwise with the high-l TT data [3]. We can find
that the coefficient c in βC = cφ2

0 has to be of order less than 10−3 to be within 2 sigma and
the axion decay constant f is constrained to the range between 5 and 10. The cross correlation
parameter βC is constrained to be −0.1 ! βC ! 0.3, or, in terms of the parameters in the
sinusoidal correction term (Eq. (5)), to be within

−0.1 ! 4.2

(

1

g1g2

)(

Λ4
2

2.2× 10−9

)

cos(ψ0 + θ0)
φ2
0

96π2
! 0.3. (15)

Moreover, the following conditions are taken into account to justify our calculations:

• The adiabatic perturbations come from Vinf and not from Vint, that is, Vinf ≫ Vint.

• The inflaton dynamics is dominated by φ, i.e.,
∣

∣

∣

∂Vinf

∂φ

∣

∣

∣
≫
∣

∣

∣

∂Vint

∂φ

∣

∣

∣
.

• The quantum fluctuations of axions are not over-damped during the inflation, m2
θ, m

2
φ ≪ H2.

• The standard slow-roll conditions, ϵ≪ 1 and |η| ≪ 1.

Some of the above conditions may be redundant depending on the parameter range of interest.
In the light of these conditions, the cross-correlation parameter is bounded above by

βC ≃ 4.2

(

1

g1g2

)(

Λ4
2

AS

)

cos(ψ0 + θ0)
φ2
0

96π2
≪ 2.1

(

1

g1g2

)

, (16)

where |Λ4
2 cos(ψ0+θ0)| ≪ |Vinf | is applied. For g1, g2 < O(1), the constraint of Eq. (16) for βC is

automatically satisfied if Eq. (15) is satisfied. The illustrative values of isocurvature parameters
are listed in Tab. 1 by setting the typical values for the parameters in the scalar potential in Eq.
(7). Note that, although the axion decay constants are typically of order the grand unification
scale (1016 GeV) [22] and hence one may expect g1 ∼ g2, the hierarchical values g1 ≪ g2
(g1 ≫ g2) can well be realized for the axion χ (φ) by the non-perturbative effects through the
(gauge) threshold correction (Eq. (4)).

Next, we estimate the fraction of isocurvature perturbations

βiso =
PI

PR + PI

=
PI

PR

1 + PI

PR

, (17)
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Conclusion:	
	
Ø  CMB	measurement	perspec6ves:	
	Polariza6on	is	very		powerful	to	constrain	the	isocurvature	cross-correla6on.	
	
	
					ΛCDM	parameter	es6ma6on	can	be	affected	by	10%	or	more.	
	

Ø  	Cross-correlated	isocurvature	modes	through	a	concrete	example:	Axion		

					Infla6on	model	discrimina6on:		
					preferred	for	the	monodromy	infla6on,	disfavored	for	natural	infla6on.	
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