Not So Weakly Interacting Dark Matter Bonding with Sterile Neutrinos

Jörn Kersten

Outline

- Introduction
- Self-Interacting Dark Matter
- Oark Matter Interacting with Neutrinos
- 4 Reconciling Sterile Neutrinos and Cosmology

- Introduction
- Self-Interacting Dark Matter
- 3 Dark Matter Interacting with Neutrinos
- 4 Reconciling Sterile Neutrinos and Cosmology

The Universe after Planck

Flat ACDM cosmology fits data perfectly Planck, arXiv:1502.01589

The Universe after Planck

Flat ACDM cosmology fits data depressingly Planck, arXiv:1502.01589 Or does it?

Hints for Dark Radiation

- Dark radiation: relativistic particles $\neq \gamma, \nu^{\text{SM}}$
- Parameterized via radiation energy density

$$ho_{
m rad} \equiv \left[1 + rac{{
m N}_{
m eff}}{8} \left(rac{T_
u}{T}
ight)^4
ight]
ho_\gamma$$

- $T \equiv T_{\gamma}$
- N_{eff}: effective number of neutrino species
- Standard Model: N_{eff} = 3.046
- Existence of dark radiation $\Leftrightarrow \Delta N_{\text{eff}} \equiv N_{\text{eff}} 3.046 > 0$

Hints for Dark Radiation

- Dark radiation: relativistic particles $\neq \gamma, \nu^{\text{SM}}$
- Parameterized via radiation energy density

$$ho_{
m rad} \equiv \left[1 + rac{
m N_{
m eff}}{8} \left(rac{T_
u}{T}
ight)^4
ight]
ho_\gamma$$

- $T \equiv T_{\gamma}$
- N_{eff}: effective number of neutrino species
- Standard Model: N_{eff} = 3.046
- Existence of dark radiation $\Leftrightarrow \Delta N_{\text{eff}} \equiv N_{\text{eff}} 3.046 > 0$
- Measurements of Cosmic Microwave Background (CMB):

$$\Delta \textit{N}_{eff} = 1.51 \pm 0.75$$
 ACT, ApJ **739** (2011)
 $\Delta \textit{N}_{eff} = 0.81 \pm 0.42$ SPT, ApJ **743** (2011)
 $\Delta \textit{N}_{eff} = 0.10 \pm 0.23$ Planck, arXiv:1502.01589

Measurements

Hints for Hot Dark Matter

- 2...3 σ tension: CMB (z > 1000) vs. local (z < 10) observations
- Expansion rate
 - Planck: $H_0 = (67.8 \pm 0.9) \frac{\text{km}}{\text{s Mpc}}$ arXiv:1502.01589
 - \bullet Hubble: $\textit{H}_0 = (73.8 \pm 2.4) \frac{\text{km}}{\text{s Mpc}}$ Riess et al., ApJ 730 (2011)

Hints for Hot Dark Matter

- 2...3 σ tension: CMB (z > 1000) vs. local (z < 10) observations
- Expansion rate
 - Planck: $H_0 = (67.8 \pm 0.9) \frac{\text{km}}{\text{s Mpc}}$ arXiv:1502.01589
 - \bullet Hubble: $\textit{H}_0 = (73.8 \pm 2.4) \frac{\text{km}}{\text{s Mpc}}$ Riess et al., ApJ 730 (2011)

- Reanalysis: $H_0 = (70.6 \pm 3.3) \frac{\text{km}}{\text{s Mpc}}$ Efstathiou, MNRAS 440 (2014)
- Magnitude of matter density fluctuations (σ_8)
- Best fit:

$$\Delta N_{
m eff} = 0.61$$
 $m_s^{
m eff} \equiv \left(rac{T_s}{T_
u}
ight)^3 m_s = 0.41 \; {
m eV}$

Hamann, Hasenkamp, JCAP 10 (2013) Wyman, Rudd, Vanderveld, Hu, PRL 112 (2014) Battye, Moss, PRL 112 (2014) Gariazzo, Giunti, Laveder, JHEP 11 (2013)

Hint for Dark Matter Self-Interactions

Galaxy cluster Abell 3827

Hint for Dark Matter Self-Interactions

Galaxy cluster Abell 3827

Stars and DM separated (3.3 σ) \leadsto DM-DM interactions

$$\sigma/m_{DM}\sim 1.7\cdot 10^{-4}\, cm^2\!/g\,$$
 Massey et al., MNRAS 449 (2015)

Hint for Dark Matter Self-Interactions

Galaxy cluster Abell 3827

Stars and DM separated (3.3 σ) \leadsto DM-DM interactions

 $\sigma/m_{
m DM}\sim 1.5\,{
m cm}^2\!/{
m g}$ Kahlhoefer et al., arXiv:1504.06576

Numerical simulations of structure formation with cold dark matter

Springel, Frenk, White, Nature 440 (2006)

Numerical simulations of structure formation with cold dark matter

Springel, Frenk, White, Nature 440 (2006)

Talk by N. Yoshida

Missing satellites

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

Cusp-core

Oh et al., 1502.01281 De Blok et al., ApJ 552 (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS 422 (2011)

Most massive satellites predicted denser than observed

Talk by N. Yoshida

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

Cusp-core

Oh et al., 1502.01281 De Blok et al., ApJ 552 (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS 422 (2011)

Most massive satellites predicted denser than observed

Latest addition: diversity of dwarf rotation curves Oman et al., arXiv:1504.01437

Talk by N. Yoshida

Kravtsov, Adv. Astron. (2010) Klypin et al., ApJ **522** (1999)

More galactic satellites predicted than observed

Oh et al., 1502.01281 De Blok et al., ApJ **552** (2001)

More cuspy density profiles predicted than observed

Boylan-Kolchin et al., MNRAS **422** (2011)

Most massive satellites predicted denser than observed

Latest addition: diversity of dwarf rotation curves Oman et al., arXiv:1504.01437

Astrophysics solutions or new particle physics?

- Introduction
- Self-Interacting Dark Matter
- 3 Dark Matter Interacting with Neutrinos
- 4 Reconciling Sterile Neutrinos and Cosmology

Not-so-WIMPy Dark Matter

- Dark matter χ
 - Standard Model singlet
 - Charged under $U(1)_X$ gauge interaction
 - Mass $m_{\scriptscriptstyle Y} \sim \text{TeV}$
- Light gauge boson V, $m_V \sim \text{MeV}$
- → Long-range, velocity-dependent interaction

Feng, Kaplinghat, Yu, PRL 104 (2010) Loeb, Weiner, PRL 106 (2011)

Vogelsberger, Zavala, Loeb, MNRAS 423 (2012)

Velocity-Dependent Self-Interactions

- Described by Yukawa potential $V(r) = \pm \frac{\alpha_X}{r} e^{-m_V r}$
- Desired scattering cross section σ_T :
 - Large in dwarf galaxies
 - Small on larger scales to satisfy experimental limits

 → probably too small to explain Abell 3827
- Very different behavior depending on model parameters

Tulin, Yu, Zurek, PRL 110, PRD 87 (2013)

Velocity-Dependent Self-Interactions

- Described by Yukawa potential $V(r) = \pm \frac{\alpha_X}{r} e^{-m_V r}$
- Desired scattering cross section σ_T :
 - Large in dwarf galaxies
 - Small on larger scales to satisfy experimental limits

 → probably too small to explain Abell 3827
- Very different behavior depending on model parameters

Tulin, Yu, Zurek, PRL 110, PRD 87 (2013)

Here: classical regime → analytical approximations exist

- Introduction
- 2 Self-Interacting Dark Matter
- 3 Dark Matter Interacting with Neutrinos
- 4 Reconciling Sterile Neutrinos and Cosmology

Late Kinetic Decoupling

- Standard Model neutrinos coupled to V
- Dark matter scatters off neutrinos
- $\rightarrow T_{\chi} = T_{\nu}$ until kinetic decoupling at $T \sim 100 \text{ eV}$
- ---- Formation of smaller structures suppressed
- → Missing satellites solved

Van den Aarssen, Bringmann, Pfrommer, PRL 109 (2012)

Late Kinetic Decoupling

- Standard Model neutrinos coupled to V
- Dark matter scatters off neutrinos
- $\rightarrow T_{\chi} = T_{\nu}$ until kinetic decoupling at $T \sim 100 \, \text{eV}$
- → Formation of smaller structures suppressed
- → Missing satellites solved

Van den Aarssen, Bringmann, Pfrommer, PRL 109 (2012)

Problem: explicit breaking of $SU(2)_L$

Enter the Sterile Neutrino

- Sterile neutrino N
 - Mass $m_N \lesssim eV$
 - Standard Model singlet
 - Charged under $U(1)_X$ ("secret interactions")
 - Forms hot dark matter
- Dark matter scatters off sterile neutrinos

Enter the Sterile Neutrino

- Sterile neutrino N
 - Mass $m_N \leq eV$
 - Standard Model singlet
 - Charged under $U(1)_X$ ("secret interactions")
 - Forms hot dark matter
- Dark matter scatters off sterile neutrinos
- → Most problems solved
 - All small-scale problems of structure formation
 - Hot dark matter hint (CMB-local tension)
 - Neutrino oscillation anomalies (?)

Bringmann, Hasenkamp, JK, JCAP **07** (2014) Dasgupta, Kopp, PRL **112** (2014) Ko, Tang, PLB **739** (2014) Chu. Dasgupta. PRL **113** (2014)

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

$$\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |H|^2 |\Theta|^2$$

• $\langle \Theta \rangle \sim \text{MeV breaks } U(1)_X$

Dark Matter Production

• High temperatures: $U(1)_X$ sector thermalized via Higgs portal

$$\mathcal{L}_{\mathsf{Higgs}} \supset \kappa |H|^2 |\Theta|^2$$

- $\langle \Theta \rangle \sim \text{MeV breaks } U(1)_X$
- $T_{\chi} \sim m_{\chi}/25$: freeze-out (chemical decoupling) of dark matter

$$\Omega_{\rm CDM}h^2 \sim 0.11 \left(\frac{0.67}{g_X}\right)^4 \left(\frac{m_\chi}{\rm TeV}\right)^2$$

Cold Dark Matter Parameter Space

- Blue band can be moved vertically by changing sterile neutrino charge and temperature
- Crosses: simulations show that too big to fail solved

Simulating Self-Interacting Dark Matter

First simulation of structure formation with DM-DM and DM-*N* interactions obtained from viable particle physics model

Vogelsberger et al., arXiv:1512.05349

Simulating Self-Interacting Dark Matter

First simulation of structure formation with DM-DM and DM-*N* interactions obtained from viable particle physics model

- Confirms solution (alleviation) of too big to fail, missing satellites
- Cusp-core and rotation curve diversity unclear

- Introduction
- 2 Self-Interacting Dark Matter
- 3 Dark Matter Interacting with Neutrinos
- Reconciling Sterile Neutrinos and Cosmology

Sterile Neutrino Abundance

- $T \downarrow \leadsto$ Higgs portal no longer effective $\leadsto U(1)_X$ sector decouples at T_X^{dpl} (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not $U(1)_X$ bath $\leadsto T_N < T_\nu$ (depending on number of d.o.f. g_*)

$$\Delta extstyle e$$

Sterile Neutrino Abundance

- $T \downarrow \leadsto$ Higgs portal no longer effective $\leadsto U(1)_X$ sector decouples at T_x^{dpl} (depending on κ)
- SM particles becoming non-relativistic afterwards heat SM bath, not $U(1)_X$ bath $\leadsto T_N < T_\nu$ (depending on number of d.o.f. g_*)

$$egin{aligned} \Delta extstyle extstyle N_{ ext{eff}}(au) &= \left(rac{T_N}{T_
u}
ight)^4 = \left(rac{g_{*,
u}}{g_{*,
u}}
ight)^{rac{4}{3}}igg|_T \left(rac{g_{*,N}}{g_{*,
u}}
ight)^{rac{4}{3}}igg|_{T_x^{ ext{dpl}}} \ & \Delta extstyle N_{ ext{eff}}|_{ ext{BBN}} < \left(rac{58.4}{g_{*,
u}(T_x^{ ext{dpl}})}
ight)^{rac{4}{3}} \stackrel{!}{\lesssim} 1 \end{aligned}$$

- \rightsquigarrow BBN bounds satisfied for $T_x^{dpl} \gtrsim 1 \text{ GeV}$

Hot Dark Matter Parameter Space

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos
 → oscillations → ΔN_{eff} ≃ 1
- $U(1)_X$ interactions \leadsto effective matter potential suppresses mixing \leadsto no production by oscillations for $T \gtrsim \text{MeV}$

Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos \rightsquigarrow oscillations \rightsquigarrow $\Delta N_{\text{eff}} \simeq$ 1
- U(1)_X interactions → effective matter potential suppresses mixing → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- T < MeV: mixing unsuppressed

 → additional production of sterile neutrinos via U(1)_X?

 Bringmann, Hasenkamp, JK, JCAP 07 (2014)
- Oscillations + $U(1)_X$ -mediated scatterings $NN \rightarrow NN$ $\rightsquigarrow N$ re-thermalize: $T_N = T_{\nu}$ Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015); Tang, PLB 750 (2015)
- Irreversible process → only kinetic equilibrium Chu, Dasgupta, Kopp, JCAP 10 (2015)

Sterile Neutrino Production by Oscillations

- Standard scenario: mixing between active and sterile neutrinos \rightsquigarrow oscillations \rightsquigarrow $\Delta N_{\rm eff} \simeq$ 1
- U(1)_X interactions → effective matter potential suppresses mixing → no production by oscillations for T ≥ MeV
 Hannestad, Hansen, Tram, PRL 112 (2014); Dasgupta, Kopp, PRL 112 (2014)
- T < MeV: mixing unsuppressed

 → additional production of sterile neutrinos via U(1)_X?

 Bringmann, Hasenkamp, JK, JCAP 07 (2014)
- Oscillations + $U(1)_X$ -mediated scatterings $NN \rightarrow NN$ $\rightsquigarrow N$ re-thermalize: $T_N = T_{\nu}$ Mirizzi, Mangano, Pisanti, Saviano, PRD 91 (2015); Tang, PLB 750 (2015)
- Irreversible process → only kinetic equilibrium
 Chu, Dasgupta, Kopp, JCAP 10 (2015)
- $\rightsquigarrow \Delta N_{\rm eff}|_{\rm CMB} \simeq {\rm const.}$, but $T_N \uparrow \leadsto m_s^{\rm eff} \uparrow \sim {\rm Cosmology\ still\ fine,\ but\ neutrino\ anomalies\ not\ explained}$

Sterile Neutrinos Become Non-Relativistic

$$m_N \sim 1~{\rm eV} > T_{\rm rec} \sim 0.3~{\rm eV}$$

→ sterile neutrinos not highly relativistic during CMB epoch Jacques, Krauss, Lunardini, PRD 87 (2013)

$$N_{ ext{eff}} = N_{ ext{eff}}^{ ext{rel}} \left(rac{3}{4} + rac{1}{4} rac{P_{m_N=1 ext{ eV}}}{P_{m_N=0}}
ight)$$

 \leadsto $N_{\rm eff} \downarrow$

 \rightarrow even $\Delta N_{\rm eff} < 0$ possible \rightarrow possible test for scenario

Mirizzi, Mangano, Pisanti, Saviano, PRD **91** (2015) Chu, Dasgupta, Kopp, JCAP **10** (2015)

Cosmological Mass Bound

- ullet CMB + BAO $\leadsto m_s^{eff} < 0.38 \, eV$ at 95% CL Planck, arXiv:1502.01589
- Bound due to free-streaming of sterile neutrinos
- $U(1)_X$ interactions \rightsquigarrow free-streaming scale reduced

Cosmological Mass Bound

- ullet CMB + BAO $\leadsto m_s^{eff} < 0.38$ eV at 95% CL Planck, arXiv:1502.01589
- Bound due to free-streaming of sterile neutrinos
- $U(1)_X$ interactions \rightsquigarrow free-streaming scale reduced
- Most sensitive constraints from Ly- α forest

Chu, Dasgupta, Kopp, JCAP 10 (2015)

 $\rightsquigarrow m_N \sim 1 \text{ eV}$ can be consistent with cosmology

Conclusions

Particle physics solution for tensions in standard ΛCDM cosmology:

- Self-interacting dark matter
- Sterile neutrinos N with mass ≤ eV
- lacktriangle Secret interactions mediated by gauge boson with mass \sim MeV
 - N → small hot DM component, oscillation anomalies solved
 - DM-DM scattering → cusp-core, too big to fail solved
 - Hint for self-interactions in Abell 3827 not explained (?)
 - DM-N scattering → missing satellites solved
 - N-N scattering → cosmological mass bound satisfied

Timeline

Dark Radiation and Big Bang Nucleosynthesis

- T ~ 1 MeV: freeze-out of n ↔ p
 ¬¬ n/p ratio fixed
- $T \sim 0.1 \text{ MeV}$: $p + n \rightarrow D$
- Afterwards formation of ³He, ⁴He, ⁷Li
- ρ_{rad} ↑ → faster expansion
 → more n available for D fusion
 → more ⁴He
- $N_{\text{eff}} = 3.8^{+0.8}_{-0.7}$ at 2σ CL Izotov, Thuan, arXiv:1001.4440
- ΔN_{eff} ≤ 1 at 2σ CL
 Mangano, Serpico, arXiv:1103.1261

Dark Radiation Effects on the CMB

- ρ_{rad} ↑ → later matter-radiation equality
- 1st/3rd peak ratio \rightsquigarrow no change $\rightsquigarrow \rho_{\rm m} \uparrow \leadsto t_{\rm eq}$ unchanged
- $\rho_{\rm rad} \uparrow \leadsto$ sound horizon $r_{\rm s} \propto 1/H \downarrow$
- Peak positions \leadsto no change of angular size $\theta_s = \frac{r_s}{D_A} \leadsto D_A \propto 1/H \downarrow$ (by $\rho_\Lambda \uparrow$)

Hou et al., arXiv:1104.2333

Meet the Dark Side

- Dirac fermion χ (dark matter), $m_{\chi} \sim \text{TeV}$
- Gauge boson V, $m_V \sim \text{MeV}$
- Kinetic mixing $F_{\mu\nu}^X F^{\mu\nu}$, $F_{\mu\nu}^X Z^{\mu\nu}$ negligible
- Scalar Θ breaking $U(1)_X$, $\langle \Theta \rangle \sim \text{MeV}$
- Light sterile neutrino N, $m_N \lesssim eV$
- Heavier sterile neutrino N_2 , $m_{N_2} \sim \text{MeV} \rightsquigarrow \text{cancel anomalies}$
- Scalar ξ , $\langle \xi \rangle < \langle \Theta \rangle \leadsto$ active-sterile neutrino mixing

$$\mathcal{L}_{N}\supset -rac{Y_{M}}{2}\Theta^{\dagger}\,\overline{N^{c}}N-rac{Y_{M}^{\prime}}{2}\Theta\,\overline{N_{2}^{c}}N_{2}-rac{Y_{
u}}{\Lambda}\xi\widetilde{\phi}\,\overline{\ell_{L}}N+ ext{h.c.}$$