

Dark Matter Superfluidity Justin Khoury (U. Penn)

JK, 1409.0012 L. Berezhiani & JK, 1506.07877 + 1507.01019

Ongoing work with B. Famaey, T. Lubensky, V. Miranda, A. Sharma, A. Solomon, J. Wang

The coarse-grained evidence

Most clear-cut evidence for DM comes from large (linear) scales

The coarse-grained evidence

Most clear-cut evidence for DM comes from large (linear) scales

On these scales, only use the hydrodynamical limit of DM

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$

The coarse-grained evidence

Most clear-cut evidence for DM comes from large (linear) scales

On these scales, only use the hydrodynamical limit of DM

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$

 \implies Any perfect fluid with $P\simeq 0$ and $c_s\simeq 0$ does the job.

Baryonic Tully-Fisher relation McGaugh (2011)

$$M_{\rm b} \sim v_c^4$$

Actual galaxies are remarkably regular

Baryonic Tully-Fisher relation McGaugh (2011)

$$M_{\rm b} \sim v_c^4$$

Flat rotation curves

N

$$\rho(r) \sim \frac{1}{r^2} \quad \text{isothermal}$$

-body sims: $\rho_{\text{NFW}}(r) = \frac{\rho_s}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)^2}$

Navarro, Frenk & White (1996)

DISTRIBUTION OF DARK MATTER IN NGC 3198

Hydro simulations

- Star formation model
- Stellar evolution
- Mass and metal return
- Supernovae rates
- Gas enrichment
- Cooling and heating rates
- Self-shielding
- Stellar feedback
- Local and non-local SNII feedback
- Black hole and AGN feedback

Hydro simulations

- Star formation model
- Stellar evolution
- Mass and metal return
- Supernovae rates
- Gas enrichment
- Cooling and heating rates
- Self-shielding
- Stellar feedback
- Local and non-local SNII feedback
- Black hole and AGN feedback

How can these feedback processes, which are inherently stochastic, result in tight correlation displayed in BTFR?

Hydro simulations

Vogelsberger et al. (2014)

How can these feedback processes, which are inherently stochastic, result in tight correlation displayed in BTFR?

Modified Newtonian Dynamics (MOND)

Milgrom (1983)

$$a_{\rm N} = \frac{G_{\rm N} M_{\rm b}(r)}{r^2}$$

Modified Newtonian Dynamics (MOND)

Milgrom (1983)

$$a_{\rm N} = \frac{G_{\rm N} M_{\rm b}(r)}{r^2}$$

Consider test mass orbiting galaxy in MOND regime,

$$\frac{v^2}{r} = \sqrt{\frac{G_{\rm N}M_{\rm b}a_0}{r^2}}$$

Modified Newtonian Dynamics (MOND)

Milgrom (1983)

$$a_{\rm N} = \frac{G_{\rm N} M_{\rm b}(r)}{r^2}$$

Consider test mass orbiting galaxy in MOND regime,

$$\frac{v^2}{r} = \sqrt{\frac{G_{\rm N}M_{\rm b}a_0}{r^2}}$$

 \implies Flat rotation curve

$$\implies v^4 = G_{\rm N} M_{\rm b} a_0$$

Baryonic Tully-Fisher

 $a_0 \simeq \frac{1}{6} H_0 \simeq 1.2 \times 10^{-8} \text{ cm/s}^2$

Scalar MOND

Bekenstein & Milgrom (1984)

The MOND regime is described by the effective theory:

$$\mathcal{L}_{\rm MOND} = -\frac{2M_{\rm Pl}^2}{3a_0} \left((\partial \phi)^2 \right)^{3/2} + \frac{\phi}{M_{\rm Pl}} \rho_{\rm b}$$

Scalar MOND

Bekenstein & Milgrom (1984)

The MOND regime is described by the effective theory:

$$\mathcal{L}_{\text{MOND}} = -\frac{2M_{\text{Pl}}^2}{3a_0} \left((\partial \phi)^2 \right)^{3/2} + \frac{\phi}{M_{\text{Pl}}} \rho_{\text{b}}$$

MOND? For static, spherically-symmetric source,

$$\vec{\nabla} \cdot \left(\frac{|\vec{\nabla}\phi|}{a_0} \vec{\nabla}\phi \right) = 4\pi G_{\rm N}\rho$$

$$\implies \phi' = \sqrt{a_0 \frac{G_N M(r)}{r^2}} = \sqrt{a_0 a_N}$$

Poor fit to galaxy clusters:

Aguirre (2001)

Poor fit to galaxy clusters:

Aguirre (2001)

Relativistic extensions are rather frightening...

$$\begin{aligned} \mathcal{L} &= -\frac{1}{2} \left[\sigma^2 h^{\alpha\beta} \partial_\alpha \phi \partial_\beta \phi + \frac{G_N}{2\ell^2} \sigma^4 F(kG_N \sigma^2) \right] \\ &- \frac{K}{32\pi G_N} \left[g^{\alpha\beta} g^{\mu\nu} B_{\alpha\mu} B_{\beta\nu} + \frac{2\lambda}{K} \left(g^{\mu\nu} u_\mu u_\nu - 1 \right) \right] \\ &+ S_{\text{matter}} \left[\psi_{\text{m}}, e^{2\phi} g^{\mu\nu} - 2u^\mu u^\nu \sinh(2\phi) \right] \end{aligned}$$

Bekenstein (2004)

DM-MOND hybrids

Blanchet (2006); Bruneton et al. (2008); Ho, Minic & Ng (2009); JK (2014)...

How about MOND and DM together?

DM-MOND hybrids

Blanchet (2006); Bruneton et al. (2008); Ho, Minic & Ng (2009); JK (2014)...

How about MOND and DM together?

Occam's razor?

Common origin?

DM-MOND hybrids

Blanchet (2006); Bruneton et al. (2008); Ho, Minic & Ng (2009); JK (2014)...

How about MOND and DM together?

Occam's razor?

Common origin?

Different regimes

Mostly DM

Mostly MOND

Mostly DM

No MOND

Unified approach:

MOND phenomenon from DM superfluidity

2 Conditions for DM Condensation

2 Conditions for DM Condensation

Overlapping de Broglie wavelength

 $\Lambda X X$ $\lambda_{\rm dB} \sim \frac{1}{mv} \gtrsim \ell \sim \left(\frac{m}{\rho_{\rm vir}}\right)^{1/3}$ $m \lesssim 2 \ {
m eV}$

2 Conditions for DM Condensation

Overlapping de Broglie wavelength

$$\lambda_{\rm dB} \sim \frac{1}{mv} \gtrsim \ell \sim \left(\frac{m}{\rho_{\rm vir}}\right)^{1/3}$$
$$\implies m \leq 2 \ \rm eV$$

Thermal equilibrium

$$\Gamma \sim \mathcal{N} v \sigma \frac{\rho_{\rm vir}}{m} \gtrsim t_{\rm dyn}^{-1} \implies$$

$$\frac{\sigma}{m} \gtrsim \left(\frac{m}{\text{eV}}\right)^4 \frac{\text{cm}^2}{g}$$

DM is quite cold:

$$T_{\rm c} = 6.5 \left(\frac{{\rm eV}}{m}\right)^{5/3} (1+z_{\rm vir})^2 {\rm mK}$$

(⁷Li atoms $\Longrightarrow T_{\rm c} \sim 0.2 {\rm mK}$)

Two-fluid model

Free bose gas:

- Galaxies are mostly condensed 0
- <u>Galaxy clusters</u> are in mixed phase 0

 \overline{N} 0.4 0.2 m = 0.8 eV10¹² 10¹³ 10¹⁴ 10¹⁵ 10¹¹ $M \left[h^{-1} M_{\odot} \right]$

Can generalize to include interactions.

Khoury, Lubensky, Miranda & Sharma (to appear)

Effective Description of Superfluids

Greiter, Wilczek & Witten (1989)

Effective Description of Superfluids A superfluid phase is defined as:

Global U(1) symmetry, spontaneously broken

Greiter, Wilczek & Witten (1989)

Effective Description of Superfluids A superfluid phase is defined as:

Global U(1) symmetry, spontaneously broken

 \implies Goldstone boson $\theta \rightarrow \theta + c$

Greiter, Wilczek & Witten (1989)

State has finite charge density, $\langle J^0 \rangle \sim \langle \dot{\theta} \rangle \neq 0$ By redefining field, can set

 $\theta = \mu t + \phi$

chemical potential

phonons

Effective Description of Superfluids A superfluid phase is defined as: Global U(1) symmetry, spontaneously broken \implies Goldstone boson $\theta \rightarrow \theta + c$ State has finite charge density, $\langle J^0
angle \sim \langle \dot{ heta}
angle
eq 0$ By redefining field, can set $\theta = \mu t + \phi$

chemical potential

phonons

Hence, at lowest order in derivatives the EFT of phonons is

$$\mathcal{L} = P(X); \qquad X = \mu + \dot{\phi} - \frac{(\vec{\nabla}\phi)^2}{2m}$$

Phonons

At lowest order in derivatives, the zero temperature effective action is

$$\mathcal{L} = P(X);$$
 $X = \mu + \dot{\phi} - \frac{(\nabla \phi)^2}{2m}$

Greiter, Wilczek & Witten (1989); Son and Wingate (2005)

Phonons

At lowest order in derivatives, the zero temperature effective action is

$$\mathcal{L} = P(X);$$
 $X = \mu + \dot{\phi} - \frac{(\nabla \phi)^2}{2m}$

Greiter, Wilczek & Witten (1989); Son and Wingate (2005)

Conjecture: DM superfluid phonons are governed by MOND action

$$P_{\text{MOND}}(X) = \frac{2\Lambda(2m)^{3/2}}{3} X\sqrt{|X|}$$

Phonons couple to baryons:

$$\mathcal{L}_{\text{coupling}} = \frac{\Lambda}{M_{\text{Pl}}} \phi \rho_{\text{b}}$$

 $\Lambda = \sqrt{a_0 M_{\rm Pl}} \simeq 0.8~{
m meV}$ (Match to MOND scale)

Weyl symmetry Milgrom (2008)

$$\mathcal{L}_{\text{MOND}} \sim \sqrt{h} \left(h^{ij} \partial_i \phi \partial_j \phi \right)^{3/2}$$

invariant under $h_{ij} \to \Omega^2(x) h_{ij}$. Symmetry group is SO(4,1) .

Weyl symmetry Milgrom (2008)

$$\mathcal{L}_{\mathrm{MOND}} \sim \sqrt{h} \left(h^{ij} \partial_i \phi \partial_j \phi \right)^{3/2}$$

invariant under $h_{ij}
ightarrow \Omega^2(x) h_{ij}$. Symmetry group is SO(4,1) .

Unitary Fermi Gas

 $\mathcal{L}_{\rm UFG} \sim m^{3/2} X^{5/2}$

Son & Wingate (2005)

Condensate properties

Action uniquely fixes properties of the condensate through standard thermodynamics

Pressure:
$$P_{
m cond} = rac{2\Lambda}{3} (2m\mu)^{3/2}$$

Number density:
$$n_{\rm cond} = \frac{\partial P_{\rm cond}}{\partial \mu} = \Lambda (2m)^{3/2} \mu^{1/2}$$

Condensate properties

Action uniquely fixes properties of the condensate through standard thermodynamics

Pressure:
$$P_{\mathrm{cond}} = \frac{2\Lambda}{3} (2m\mu)^{3/2}$$

Number density:
$$n_{
m cond} = rac{\partial P_{
m cond}}{\partial \mu} = \Lambda (2m)^{3/2} \mu^{1/2}$$

In the non-relativistic approx'n, $ho_{
m cond}=mn_{
m cond}$, therefore:

$$P_{\rm cond} = \frac{\rho_{\rm cond}^3}{12\Lambda^2 m^6}$$

Polytropic equation of state, with index n = 1/2

• Different than BEC DM, where $P_{
m cond} \sim
ho_{
m cond}^2$ Sin (1994), Goodman (2000), Peebles (2000), Boehmer & Harko (2007)

Density profile

Assuming hydrostatic equilibrium,

 $\frac{1}{\rho_{\text{cond}}(r)} \frac{\mathrm{d}P_{\text{cond}}(r)}{\mathrm{d}r} = -\frac{4\pi G_{\text{N}}}{r^2} \int_0^r \mathrm{d}r' r'^2 \rho(r')$

Using equation of state $\,P_{ m cond}\sim ho_{ m cond}^3$, find:

Cored density profile

Remarkably, have realistic-size halos with $\,m \sim {
m eV}$ and $\,\Lambda \sim {
m meV}$.

Phonon force is indistinguishable from MOND...

... but there is also dark matter.

$$\frac{a_{\rm DM}}{a_{\phi}} \simeq \begin{cases} 0.4 \frac{r}{r_{\star}} & (r \ll r_{\star}) \text{ rotation curves} \\ 0.5 \left(\frac{r}{r_{\star}}\right)^2 & (r \gg r_{\star}) \text{ lensing} \end{cases}$$

$$r_{\star} \simeq \left(\frac{M_{\rm b}}{10^{11} M_{\odot}}\right)^{1/10} \left(\frac{M_{\rm DM}}{M_{\rm b}}\right)^{-2/5} \left(\frac{m}{\rm eV}\right)^{-8/5} \left(\frac{\Lambda}{\rm meV}\right)^{-8/15} 28 \ \rm kpc$$

Validity of effective theory

$$v_{\rm s} = \frac{|\nabla \phi|}{m} < v_{\rm c} \sim \left(\frac{\rho}{m^4}\right)^{1/3}$$

Satisfied for
$$r \gtrsim {
m kpc}$$

Quasi-particle production (DM-like behavior) in inner regions of galaxies

Validity of effective theory

$$v_{\rm s} = \frac{|\nabla \phi|}{m} < v_{\rm c} \sim \left(\frac{\rho}{m^4}\right)^{1/3}$$

Satisfied for
$$r \gtrsim {
m kpc}$$

Quasi-particle production (DM-like behavior) in inner regions of galaxies

Solar system

A MOND scalar acc'n, $\frac{\Delta a}{a_N} = \sqrt{\frac{a_0}{a_N}}$, albeit small in the solar system, is ruled out.

 \implies

must we complicate the theory?

Validity of effective theory

$$v_{\rm s} = \frac{|\nabla \phi|}{m} < v_{\rm c} \sim \left(\frac{\rho}{m^4}\right)^{1/3}$$

Satisfied for
$$\, r \gtrsim {
m kpc}$$

Quasi-particle production (DM-like behavior) in inner regions of galaxies

Solar system

A MOND scalar acc'n, $\frac{\Delta a}{a_N} = \sqrt{\frac{a_0}{a_N}}$, albeit small in the solar system, is ruled out.

$$\implies$$

must we complicate the theory?

<u>No need to!</u> Above criterion is satisfied only for $~r\gtrsim 1000~{ m AU}$

superfluid description breaks down in solar system. DM behaves as ALPs.

Gravitational Lensing without DM

Claim: Conformal coupling ${ ilde g}_{\mu
u}=e^{-2\phi}g_{\mu
u}$ not enough.

<u>Proof:</u> Null geodesics are invariant under Weyl transf'ns, hence photons are oblivious to ϕ .

Gravitational Lensing without DM

Claim: Conformal coupling $\tilde{g}_{\mu\nu} = e^{-2\phi}g_{\mu\nu}$ not enough.

<u>Proof:</u> Null geodesics are invariant under Weyl transf'ns, hence photons are oblivious to ϕ .

TeVeS solution: Introduce unit, time-like vector A^{μ} Saunders (1997) Bekenstein (2004) Couple to matter in a very specific way

$$g_{\mu\nu}^{\rm TeVeS} = e^{-2\phi}g_{\mu\nu} - 2A_{\mu}A_{\nu}\sinh 2\phi$$

Lensing mass estimates = Dynamical estimates

Gravitational Lensing (cont'd)

Our case is much simpler:

Normal DM component already provides a time-like vector u^{μ}

DM contributes to lensing, can consider more general metric

 $\tilde{g}_{\mu\nu} \simeq g_{\mu\nu} - 2\phi \Big(\gamma g_{\mu\nu} + (1+\gamma)u_{\mu}u_{\nu}\Big)$

Maybe even conformal coupling ($\gamma = -1$) is allowed?

Observational Signatures

Bullet-Like Clusters

Bullet-Like Clusters

Bullet-Like Clusters

 $\frac{\sigma}{m} \lesssim 0.5 \, \frac{\mathrm{cm}^2}{g}$

Harvey et al. (2015)

Superfluid cores should pass through each other with negligible dissipation if

 $v_{
m infall} \lesssim c_s$ (Landau's criterion)

We find:

Sub-cluster: $c_s \simeq 1400 \ \mathrm{km/s}$

Main cluster: $c_s \simeq 3500 \ \mathrm{km/s}$

i.e., comparable to the infall velocity: $v_{infall} \simeq 2700 \text{ km/s}$ Springel & Farrar (2007)

Dissipative processes between superfluid cores should be suppressed

The Counter-Bullet

The Counter-Bullet

The Counter-Bullet

Vortices

When spun faster than critical velocity, superfluid develops vortices.

$$\omega_{\rm cr} \sim \frac{1}{mR^2} \sim 10^{-41} {\rm s}^{-1}$$

For a halo of density ho ,

$$\omega \sim \lambda \sqrt{G_{\rm N}\rho} \sim 10^{-18} \lambda \,\mathrm{s}^{-1} \,; \qquad 0.01 < \lambda < 0.1$$

Vortex formation is unavoidable

Line density:

$$\sigma_{\rm v} \sim m\omega \sim 10^2 \lambda \ {\rm AU}^{-2}$$

Observational consequences?

cf. Silverman & Mallett (2002); Rindler-Daller & Shapiro (2012)

Galaxy mergers

JK, Mota & Winther, in progress

Force between galaxies same as in CDM (MOND confined to galaxies)

 \implies "Encounter rate" as in CDM

What happens then?

• If $v_{\rm infall} < c_s \sim 200 \ {\rm km/s}$, then negligible dynamical friction between superfluids

 \implies Longer merger time scale + multiple encounters

• If $v_{infall} > c_s$, then encounter will excite DM particles out of the condensate, which will result in dynamical friction

 \Rightarrow Merged halo thermalize and settle back to condensate

Fornax

When superfluids collide

When superfluids collide

No DM \implies No MOND

Globular clusters

Tidal dwarf galaxies

Conclusions

 $^{ heta}$ Small scales present greatest challenge to ΛCDM

- DM superfluidity:
- DM and MOND as different phases of same substance
- All scales are comparable: $m \sim {
 m eV}$ $\Lambda \sim {
 m meV}$
- Open questions:
- Can we find a precise CM analogue?

$$P \sim
ho^3 \implies$$
 3-body interactions

- No DM \implies no MOND. Helpful?
- How does dark energy fit into this picture?

