
JK, 1409.0012

L. Berezhiani & JK,  1506.07877 + 1507.01019  

Dark Matter Superfluidity
Justin Khoury (U. Penn)

Ongoing work with 

B. Famaey, T. Lubensky, V. Miranda, A. Sharma, A. Solomon, J. Wang




 Most clear-cut evidence for DM comes from large (linear) scales

The coarse-grained evidence



 Most clear-cut evidence for DM comes from large (linear) scales

 On these scales, only use the hydrodynamical limit of DM

The coarse-grained evidence

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫



 Most clear-cut evidence for DM comes from large (linear) scales

 On these scales, only use the hydrodynamical limit of DM

=� Any perfect fluid with           and          does the job.cs ' 0

The coarse-grained evidence

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫

P ' 0







Actual galaxies are remarkably regular

 Baryonic Tully-Fisher relation McGaugh (2011)

Mb ⇠ v4c
Figure 3: The Baryonic Tully–Fisher (mass–rotation velocity) relation for galaxies with well mea-
sured outer velocities Vf . The baryonic mass is the combination of observed stars and gas:
Mb = M∗+Mg. Galaxies have been selected that have well observed, extended rotation curves from
21 cm interferrometric observations providing a good measure of the outer, flat rotation velocity.
The dark blue points are galaxies with M∗ > Mg [273]. The light blue points have M∗ < Mg [278]
and are generally less precise in velocity, but more accurate in terms of the harmlessness on the
result of possible systematics on the stellar mass-to-light ratio. For a detailed discussion of the
stellar mass-to-light ratios used here, see [273, 278]. The dotted line has slope 4 corresponding to
a constant acceleration parameter, 1.2× 10−10 ms−2. The dashed line has slope 3 as expected in
ΛCDM with the normalization expected if all of the baryons associated with dark matter halos
are detected. The difference between these two lines is the origin of the variation in the detected
baryon fraction in Figure 2.
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Figure 23. Tully-Fisher relations. Left panel: Baryonic Tully-Fisher relation for the 42 disk galaxies shown in Figure 20. We compare to observational mean
trends (solid lines) with 1� scatter bands (Avila-Reese et al. 2008; Hall et al. 2012; McGaugh 2012). We note that this is only a small sub-sample of well-
resolved simulated disk galaxies. Our simulation contains, for example, 4, 177 Milky Way halo analogs with virial masses in the range 1011.5�12.5

M� which
are resolved similarly well as the galaxies presented here. We also include simulation points from a recent sample of high-resolution zoom-in simulations
from Aumer et al. (2013). Right panel: Stellar Tully-Fisher relation for the same sample compared to observations (Verheijen 2001; Pizagno et al. 2007;
Courteau et al. 2007; Dutton et al. 2011). We also show the theoretical predictions of Marinacci et al. (2014a) for the Aquila haloes.

Reese et al. 2008; Hall et al. 2012; McGaugh 2012). We measure
the total baryonic mass within r?, and for the circular velocity we
take the total mass within that radius and calculate the associated
circular velocity (see also Scannapieco et al. 2012). The r? radii
are shown as dashed brown lines in the circular velocity curves of
Figure 22, demonstrating that this radius lies already within the flat
regime of the circular velocity curve. Our results for the TFR are
therefore not very sensitive to this choice.

The BTFR of the disk galaxies in our simulation (represented
here by this small sample) agrees well with the overall observa-
tional constraints, demonstrating that the internal structure of the
stellar disks are characterised reasonably well, and that CDM mod-
els can reproduce the observed BTFR. Interestingly, our model
predicts a BTFR which is closer to the tightest observational con-
straints (McGaugh 2012) than recent state-of-the-art zoom-in sim-
ulations (Aumer et al. 2013) although our numerical resolution for
these galaxies is significantly below the resolution of the zoom-in
results. The very tight and steep BTFR is observed for a gas-rich
galaxy sample, which is expected to give a more accurate mea-
sure of the slope and the normalisation of the BTFR than obtained
from star-dominated spiral galaxies. Although our simulation re-
sults agree with the predicted scatter of Avila-Reese et al. (2008);
Hall et al. (2012) the spread of our BTFR is still much larger than
the results of McGaugh (2012). Also the slope is not as steep as
predicted by that study. We note that a more detailed exploration of
the BTFR has to take into account the full sample of well-resolved
spiral galaxies, and also take into account the actual rotation veloc-
ities.

The right panel of Figure 23 shows the stellar TFR for the
same selected disk galaxy sample compared to different observa-
tions (Verheijen 2001; Pizagno et al. 2007; Courteau et al. 2007;

Dutton et al. 2011); i.e. we plot the same velocity as in the left
panel now as a function of stellar mass instead of total baryonic
mass. We also show the theoretical predictions of Marinacci et al.
(2014a) for the Aquila haloes. Our galaxies follow a similar trend
as the high-resolution Aquila haloes: we recover the correct slope
and amount of scatter in the relation. However, it seems that our re-
sults indicate slightly too high circular velocities. This is also true
for the Aquila galaxies of Marinacci et al. (2014a).

The blue and red galaxy samples discussed so far were se-
lected “by eye” to be representative for distinct classes of galaxies.
In the following we would like to characterise in more detail the
morphological galaxy mix as a function of stellar mass. However,
we are severely limited by our mass resolution to properly model
and characterise galaxy types of systems that are only resolved by a
few tens of thousands of stellar resolution elements. In fact, reliably
identifying the type of a galaxy requires substantially more parti-
cles, and we will not attempt to quantify the morphological type of
galaxies for systems that are resolved with less than ⇠ 105 stellar
particles resulting in a lowest stellar mass of about ⇠ 1011 M�.
Automatically classifying galaxy types for less well-resolved ob-
jects is rather difficult and the obtained results are highly uncertain.

For the well-resolved objects with M? > 1011 M� we will
apply a kinematic bulge-to-disk decomposition. Specifically, we
follow Abadi et al. (2003) and define for every star particle with
specific angular momentum jz around a selected z-axis a circular-
ity parameter jz/j(E), where j(E) is the maximum specific an-
gular momentum possible at the specific binding energy E of the
star. We define a z-axis based on the star-forming gas, or the stars,
if there is no star-forming gas in the system, which can occur in
more massive and heavily quenched systems. Having the circular-
ities of all stellar particles of the system we can then determine

© 0000 RAS, MNRAS 000, 000–000
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Modified Newtonian Dynamics (MOND)

a =
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<

:

aN aN � a0

p
aNa0 aN ⌧ a0

Consider test mass orbiting galaxy in MOND regime,

=�

Baryonic Tully-Fisher=�

Flat rotation curve

Milgrom (1983)
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a0 ' 1
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Scalar MOND

The MOND regime is described by the effective theory:

Bekenstein & Milgrom (1984)
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Scalar MOND

The MOND regime is described by the effective theory:
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Poor fit to galaxy clusters:

Relativistic extensions are rather frightening…

L = �1
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DM-MOND hybrids

 Occam’s razor?  Common origin?

How about MOND and DM together?

Blanchet (2006); Bruneton et al. (2008); Ho, 
Minic & Ng (2009); JK (2014)…

 Different regimes

Mostly DM Mostly DM

Mostly MOND No MOND



MOND phenomenon from DM superfluidity 

Unified approach: 
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Two-fluid model

N
cond

N
= 1�

✓
T

T
c

◆
3/2

Free bose gas:

M [h�1M�]

N
cond

N

1011 1012 1013 1014 1015

0.2

0.4

0.6

0.8

1.0
m = 0.4 eV

m = 0.6 eV

m = 0.8 eV Galaxies are mostly condensed

 Galaxy clusters are in mixed phase

Can generalize to include interactions.
Khoury, Lubensky, Miranda & Sharma (to appear)
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A superfluid phase is defined as:

 Global U(1) symmetry, spontaneously broken

✓ ! ✓ + cGoldstone boson=�

 State has finite charge density, 

By redefining field, can set

hJ0i ⇠ h✓̇i 6= 0

✓ = µt+ �

chemical potential phonons

✓

Greiter, Wilczek & Witten (1989)

Hence, at lowest order in derivatives the EFT of phonons is

L = P (X) ; X = µ+ �̇� (~r�)2

2m



Phonons
At lowest order in derivatives, the zero temperature 
effective action is

Greiter, Wilczek & Witten (1989); Son and Wingate (2005)

L = P (X) ; X = µ+ �̇� (~r�)2

2m



Phonons
At lowest order in derivatives, the zero temperature 
effective action is

Greiter, Wilczek & Witten (1989); Son and Wingate (2005)

Conjecture: DM superfluid phonons are governed by MOND action
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2⇤(2m)3/2

3
X
p

|X|

Phonons couple to baryons: L
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(Match to MOND scale)

.
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invariant under                       . Symmetry group is             . hij ! ⌦2(x)hij SO(4, 1)

 Unitary Fermi Gas

Son & Wingate (2005)

LUFG ⇠ m3/2X5/2

Milgrom (2008)
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Condensate properties
Action uniquely fixes properties of the condensate through 
standard thermodynamics
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 Number density: n
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Sin (1994), Goodman (2000), Peebles (2000), Boehmer & Harko (2007)

 Polytropic equation of state, with index n = 1/2

 Different than BEC DM, where 



Density profile
Assuming hydrostatic equilibrium,
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Phonon force is indistinguishable from MOND…
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rotation curves

lensing

… but there is also dark matter.
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Validity of effective theory

Satisfied for r ⇠> kpc
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Validity of effective theory

Satisfied for r ⇠> kpc

=� Quasi-particle production (DM-like behavior) in inner 
regions of galaxies

Solar system

A MOND scalar acc’n,             ,

albeit small in the solar system, is ruled out.

.

�a

aN
=

r
a0
aN

=� must we complicate the theory?

No need to! Above criterion is satisfied only for

=� superfluid description breaks down in solar system. 
DM behaves as ALPs.

=� Good news for ALP searches.
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m

< vc ⇠
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m4

⌘1/3

r ⇠> 1000 AU



Gravitational Lensing without DM 

Claim: Conformal coupling                      not enough.

Proof: Null geodesics are invariant under Weyl transf’ns, 
hence photons are oblivious to    .
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Gravitational Lensing without DM 

Claim: Conformal coupling                      not enough.

Proof: Null geodesics are invariant under Weyl transf’ns, 
hence photons are oblivious to    .

g̃µ⌫ = e�2�gµ⌫

�

TeVeS solution:
Saunders (1997)

Bekenstein (2004)

 Introduce unit, time-like vector

 Couple to matter in a very specific way

gTeVeS
µ⌫ = e�2�gµ⌫ � 2AµA⌫ sinh 2�

=� Lensing mass estimates = Dynamical estimates

Aµ



 Normal DM component already provides a 
time-like vector

 DM contributes to lensing, can consider more general metric
.

g̃µ⌫ ' gµ⌫ � 2�
⇣
�gµ⌫ + (1 + �)uµu⌫

⌘

.

Maybe even conformal coupling (         ) is allowed?� = �1

Gravitational Lensing (cont’d)

Our case is much simpler:

uµ

Relative velocity between normal and superfluid 
components



Observational Signatures
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Bullet-Like Clusters

Harvey et al. (2015)
�

m ⇠< 0.5
cm2

g



Superfluid cores should pass through 
each other with negligible dissipation if

vinfall ⇠< cs

We find:

 Sub-cluster:

 Main cluster:

i.e., comparable to the infall velocity: vinfall ' 2700 km/s
Springel & Farrar (2007)

=� Dissipative processes between superfluid cores should be 
suppressed

cs ' 1400 km/s

cs ' 3500 km/s

(Landau’s criterion)
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Vortices

When spun faster than critical velocity, 
superfluid develops vortices.

!cr ⇠
1

mR2
⇠ 10�41s�1

For a halo of density    ,⇢

! ⇠ �
p

GN⇢ ⇠ 10�18� s�1 ; 0.01 < � < 0.1

=� Vortex formation is unavoidable

Line density: �v ⇠ m! ⇠ 102� AU�2

Observational consequences?

cf. Silverman & Mallett (2002); 
Rindler-Daller & Shapiro (2012)



Galaxy mergers

 Force between galaxies same as 
in CDM (MOND confined to galaxies)

=� “Encounter rate” as in CDM

What happens then?

 If                              , then negligible 
dynamical friction between superfluids

vinfall < cs ⇠ 200 km/s

 If                 , then encounter will excite DM particles 
out of the condensate, which will result in dynamical friction

vinfall > cs
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Merged halo thermalize and settle back to condensate

JK, Mota & Winther, in progress
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When superfluids collide



No DM          No MOND=�

Globular clusters Tidal dwarf galaxies



Conclusions

 DM superfluidity:

- Can we find a precise CM analogue?

- No DM          no MOND.   Helpful?

- How does dark energy fit into this picture?

- DM and MOND as different phases of same substance

- All scales are comparable: m ⇠ eV ⇤ ⇠ meV

 Open questions:

P ⇠ ⇢3 =� 3-body interactions

=�

 Small scales present greatest challenge to ⇤CDM


