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Axion scale hierarchy problem
(in natural inflation & relaxion mechanism)

Natural inflation

* Inflationary early universe

- solves the horizon and flatness problems
- provides a robust mechanism to generate the primordial density

perturbation

* Large field (chaotic) inflation
- realize the slow roll inflation with a less constrained form of
the inflaton potential and initial conditions
- predict a relatively large tensor perturbation, which might be

detectable in the near future



For a large field inflation, one needs to keep the inflaton potential flat
over a field range comparable to the Planck scale:
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In view of the UV sensitivity of the scalar field potential, this suggests
an approximate shift symmetry along the inflaton direction:
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In effective QFT, the most natural realization of such shift symmetry is
through a periodic pseudo-Nambu-Goldstone boson:
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Natural inflation Freese, Frieman, Olinto, ‘90

Inflaton corresponds to a pseudo-Nambu-Goldstone boson with
super-Planckian decay constant and the simplest periodic potential:
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Weak Gravity Conjecture
Arkani-Hamed, Motl, Nicolis, Vafa '‘06; Brown, Cottrell, Shiu, Soler, ‘15

There should exist an instanton which couples to the corresponding axion
with a strength stronger than the gravity:
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= Axion scale hierarchy in natural inflation:
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An immediate consequence of this axion scale hierarchy in natural inflation
is a subleading modulation of the inflaton potential:

Modulation induced by

I, b , an Instanton
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Nonperturbative dynamics
incorporating a mechanism (=alignment, exponentiated clockwork,...)

to enlarge the axion decay constant

For the consistency,

foi

= Integer



Relaxion mechanism

* Gauge hierarchy problem:

* l
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This requires a fine tuning if Agyy >> weak scale.

* Possible solutions:

- New physics to regulate the quadratic divergence near the weak scale

SUSY, composite Higgs, extra dim, ...

- Multiverse

Anthropic selection for m,; << Asm

- Cosmological relaxation

Cosmological evolution of a scalar field (=relaxion) to select my << Asm



Relaxion mechanism Graham, Kaplan, Rajendran ‘15

* Higgs boson mass is a dynamical field depending on the relaxion field ¢:

my(d) = M* + g + ...
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* Physical Higgs mass is small as ¢ is stabilized by V() at near ¢,
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weak scale Higgs mass cutoff



Stabilizing ¢ at near the critical value ¢, :
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One can design Vy and V4, to make ¢ stabilized

right after passing through .
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Naturalness conditions
* should be stable against power-law-divergent radiative corrections
* no fine tuning of the initial condition for the relaxion cosmology
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Back reaction potential from QCD:

Back reaction potential from hidden color:



Small slope parameter g is technically natural, i.e. stable against radiative
corrections, as it corresponds to tiny breaking of the shift symmetry:
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However the resulting axion scale hierarchy is so large, therefore calls for an
explanation.

Axion scale hierarchy in relaxion mechanism:
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f = relaxion scale in Vi, (¢).

fo = relaxion scale in Vy(o) and m ().
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Back reaction potential from hidden color: a ™ O(_m_l - 10_3)

Q: What is the origin of this big axion scale hierarchy?



Axion scale hierarchy in natural inflation & relaxion mechanism

Natural inflation

Relaxion
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Clockwork mechanism to generate hierarchical axion scales
KC, Im, arXiv:1511.00132; Kaplan, Rattazzi, arXiv:1511.01827
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Single rotation of the 1st wheel induces

a multiple rotation of the 2nd wheel,

leading to a longer collective rotation.
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(This particular form of axion mass-mixing has been applied recently for large field
inflation: KC, Kim, Yun, '14; Tye, Wong, '14; Ben-Dayan, Pedro, Westphal, '14; Harigaya, Ibe, '14;

Bai, Stefanek, '15; de la Fuente, Saraswat, Sundrum, ‘15; ... )



Clockwork mechanism for hierarchical axion scales
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There are two axion scales in the effective theory, which are split by
an integer n:
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We need a big hierarchy: f;ﬁ

* Alignment of two axion couplings:
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Kim, Nilles, Peloso ‘05
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* Exponentiation with more (N > 2) axions: K¢, Kim, Yun 14

Exponentially many rotation of the last wheel

= Exponentially long field space for the collective rotation

(= Relaxion ¢ with an exponentially large effective decay constant )
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Exponentiated clockwork mechanism for relaxion
KC, Im, arXiv:1511.00132; Kaplan, Rattazzi, arXiv:1511.01827
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Effective potential of the collective rotation angle (=relaxion):
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Observable consequence of modulation in natural inflation
KC, Kim, ArXiv:1511.07201

Natural inflation compatible with the WGC generically involves a small

modulation of the inflaton potential:

Vo= A [1 — COS (i)] + ;"Lim [l — COS (f—))]
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(Previous works on natural inflation with modulation:
Kobayashi, Takahashi, '10; Abe, Kobayashi, Otsuka, '15; Kappl, Nilles, Winkler, 15 )

In the presence of modulation, one needs a new parametrization of the
scalar curvature power spectrum: Flauger et al, ‘09; Flauger and Pajer, "10
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¢ = inflaton value when the CMB scale £ exits the horizon



For natural inflation with modulation «c kim, Arxiv:1511.07201
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In which case can the effect of modulation be described by the standard
form of the curvature power spectrum?
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therefore we need to use the parametrization
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CMB (Planck) constraints on the modulation
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UV model of the exponentiated clockwork for relaxion

Supersymmetric model with (next talk for the details)

+ Higgs mass cutoff = mgyusy > weak scale

* N global U(1) symmetries spontaneously broken by (®;) ~ f; ~ /msyusy Mp

. , o, o b [,
V(d;) = —m%USY@iF—F—' "niﬂL = N axions: (®;) = fie'? fi (fl- ~ ﬁm.sugv&rﬂi{p)
1V P

*  Hidden sector gaugino condensation by Ghigden = H:‘:El SU (p;) with

a confinement scale A; > mgyusy
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Conclusion

Two of the major applications of axion-like field for cosmology and
particle physics, i.e. natural inflation and relaxion mechanism, requires

a hierarchy structure of the involved axion scales. (Typically a big hierarchy
for the relaxion case!)

We propose a scheme (= exponentiated clockwork) to generate
an exponential hierarchy between the effective axion scales within
an EFT of multiple axions, where all fundamental axion scales are
comparable to each other and well below the Planck scale.

Axion scale hierarchy in natural inflation, suggested by the weak gravity
conjecture, implies that generically there is a small modulation of the
inflaton potential, which can lead to an interesting consequence in the
primordial density perturbation.

Our scheme for hierarchical relaxion scales can have a natural UV
completion in SUSY models with m¢ oy, >> weak scale.
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