Gluino Coannihilation

Feng Luo

w／John Ellis，Jason Evans and Keith Olive，1503．07142，1510．03498

DSU 2015，Kyoto

Kavli Institute for the Physics and Mathematics of the Universe東京大学 国際高等研究所 カブリ数物連携宇宙研究機構

Framework of this talk

- Consider R-parity conserving Minimal Supersymmetric extension of the Standard Model (MSSM)
- The lightest supersymmetric particle (LSP) is the lightest neutralino, χ
- χ is the dark matter particle
- Obtain χ relic abundance through thermal freeze-out mechanism

Background

- $\sim 3 \mathrm{TeV}$ Wino or $\sim 1 \mathrm{TeV}$ Higgsino can give thermal relic abundance consistent with the observational value $\Omega_{C D M} h^{2}=0.1193 \pm 0.0014$ (Planck 1- $\sigma, 1502.01589$)
- Pure Bino is a gauge singlet. Bino does not directly couple to another Bino, and it only directly couples to sleptons, squarks and Higgsinos
- Typically $\langle\sigma v\rangle_{\text {ann }}$ decreases with the increase of the annihilating particle masses

Background

Then
> 3 TeV Wino LSP, or, $>1 \mathrm{TeV}$ Higgsino LSP, or, almost no self-annihilating Bino LSP (for large $m_{\tilde{l}, \tilde{q}, \tilde{H}}$)
\Rightarrow necessarily leads to a too large dark matter relic density?

Not necessarily. One possibility is to have coannihilation.
(Griest and Seckel, Phys. Rev. D 43, 3191)

Conditions for coannihilation to reduce LSP relic density

If there is another R -odd species χ_{2} almost degenerate in mass with the LSP χ_{1},

Conditions for coannihilation to reduce LSP relic density

If there is another R-odd species χ_{2} almost degenerate in mass with the LSP χ_{1},
and if χ_{2} has a big annihilation cross section with itself and/or with χ_{1},

Conditions for coannihilation to reduce LSP relic density

If there is another R-odd species χ_{2} almost degenerate in mass with the LSP χ_{1},
and if χ_{2} has a big annihilation cross section with itself and/or with χ_{1},
and if χ_{1} can efficiently convert to χ_{2},

Conditions for coannihilation to reduce LSP relic density

If there is another R-odd species χ_{2} almost degenerate in mass with the LSP χ_{1},
and if χ_{2} has a big annihilation cross section with itself and/or with χ_{1},
and if χ_{1} can efficiently convert to χ_{2},
then χ_{1} and χ_{2} can freeze out together at a lower temperature resulting in a smaller dark matter abundance than if without the existence of χ_{2}.

$$
\begin{aligned}
\chi_{1} \chi_{1} & \leftrightarrow S M, \chi_{1} \chi_{2} \leftrightarrow S M, \chi_{2} \chi_{2} \leftrightarrow S M \\
\chi_{1} S M & \leftrightarrow \chi_{2} S M, \chi_{2} \leftrightarrow \chi_{1} S M
\end{aligned}
$$

$$
\begin{aligned}
\chi_{1} \chi_{1} & \leftrightarrow S M, \chi_{1} \chi_{2} \leftrightarrow S M, \chi_{2} \chi_{2} \leftrightarrow S M \\
\chi_{1} S M & \leftrightarrow \chi_{2} S M, \chi_{2} \leftrightarrow \chi_{1} S M
\end{aligned}
$$

efficient conversion: $\langle\Gamma\rangle_{1 S M \rightarrow 2 S M}+\langle\Gamma\rangle_{1 S M \rightarrow 2} \gg H$
$\Rightarrow n_{1} / n_{2} \approx n_{1}^{\text {eq }} / n_{2}^{\text {eq }}$ (this can be checked by explicitly solving for n_{1} and n_{2})

$$
\begin{aligned}
\chi_{1} \chi_{1} & \leftrightarrow S M, \chi_{1} \chi_{2} \leftrightarrow S M, \chi_{2} \chi_{2} \leftrightarrow S M \\
\chi_{1} S M & \leftrightarrow \chi_{2} S M, \chi_{2} \leftrightarrow \chi_{1} S M
\end{aligned}
$$

efficient conversion: $\langle\Gamma\rangle_{1 S M \rightarrow 2 S M}+\langle\Gamma\rangle_{1 S M \rightarrow 2} \gg H$

$\Rightarrow n_{1} / n_{2} \approx n_{1}^{\text {eq }} / n_{2}^{e q}$ (this can be checked by explicitly solving for n_{1} and n_{2})

$$
\frac{d n}{d t}+3 H n=-\sum_{i, j=1}^{2}\langle\sigma v\rangle_{i j \rightarrow S M} \frac{n_{i}^{e q} n_{j}^{e q}}{n_{e q}^{2}}\left[n^{2}-n_{e q}^{2}\right]
$$

(Recall w/o coannihilation: $\frac{d n_{\chi}}{d t}+3 H(T) n_{\chi}=-\langle\sigma v\rangle_{\chi \chi \rightarrow S M^{\prime} s}\left[n_{\chi}^{2}-\left(n_{\chi}^{e q}\right)^{2}\right]$)

$$
\begin{aligned}
\chi_{1} \chi_{1} & \leftrightarrow S M, \chi_{1} \chi_{2} \leftrightarrow S M, \chi_{2} \chi_{2} \leftrightarrow S M \\
\chi_{1} S M & \leftrightarrow \chi_{2} S M, \chi_{2} \leftrightarrow \chi_{1} S M
\end{aligned}
$$

efficient conversion: $\langle\Gamma\rangle_{1 S M \rightarrow 2 S M}+\langle\Gamma\rangle_{1 S M \rightarrow 2} \gg H$
$\Rightarrow n_{1} / n_{2} \approx n_{1}^{e q} / n_{2}^{e q}$ (this can be checked by explicitly solving for n_{1} and n_{2})

$$
\frac{d n}{d t}+3 H n=-\sum_{i, j=1}^{2}\langle\sigma v\rangle_{i j \rightarrow S M} \frac{n_{i}^{e q} n_{j}^{e q}}{n_{e q}^{2}}\left[n^{2}-n_{e q}^{2}\right]
$$

(Recall w/o coannihilation: $\frac{d n_{\chi}}{d t}+3 H(T) n_{\chi}=-\langle\sigma v\rangle_{\chi \chi \rightarrow S M^{\prime} s}\left[n_{\chi}^{2}-\left(n_{\chi}^{\text {eq }}\right)^{2}\right]$)
Note that $n_{i}^{e q}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} e^{-m_{i} / T}$ for $T \ll m_{i}$

- if $m_{2} \gg m_{1}, \Rightarrow n_{e q} \approx n_{1}^{e q}, \bullet \approx\langle\sigma v\rangle_{11 \rightarrow S M}$

$$
\begin{aligned}
\chi_{1} \chi_{1} & \leftrightarrow S M, \chi_{1} \chi_{2} \leftrightarrow S M, \chi_{2} \chi_{2} \leftrightarrow S M \\
\chi_{1} S M & \leftrightarrow \chi_{2} S M, \chi_{2} \leftrightarrow \chi_{1} S M
\end{aligned}
$$

efficient conversion: $\langle\Gamma\rangle_{1 S M \rightarrow 2 S M}+\langle\Gamma\rangle_{1 S M \rightarrow 2} \gg H$ $\Rightarrow n_{1} / n_{2} \approx n_{1}^{e q} / n_{2}^{e q}$ (this can be checked by explicitly solving for n_{1} and n_{2})

$$
\frac{d n}{d t}+3 H n=-\sum_{i, j=1}^{2}\langle\sigma v\rangle_{i j \rightarrow S M} \frac{n_{i}^{e q} n_{j}^{e q}}{n_{e q}^{2}}\left[n^{2}-n_{e q}^{2}\right]
$$

(Recall w/o coannihilation: $\frac{d n_{\chi}}{d t}+3 H(T) n_{\chi}=-\langle\sigma v\rangle_{\chi \chi \rightarrow S M^{\prime} s}\left[n_{\chi}^{2}-\left(n_{\chi}^{e q}\right)^{2}\right]$)
Note that $n_{i}^{\text {eq }}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} e^{-m_{i} / T}$ for $T \ll m_{i}$

- if $m_{2} \gg m_{1}, \Rightarrow n_{e q} \approx n_{1}^{e q}, \bullet \approx\langle\sigma v\rangle_{11 \rightarrow S M}$
- if $m_{2}=m_{1}, \Rightarrow \bullet=\frac{g_{1}^{2}\langle\sigma v\rangle_{11 \rightarrow S M}+g_{2}^{2}\langle\sigma v\rangle_{22 \rightarrow S M}+2 g_{1} g_{2}\langle\sigma v\rangle_{12 \rightarrow S M}}{\left(g_{1}+g_{2}\right)^{2}}$

$$
\frac{d n}{d t}+3 H n=-\sum_{i, j=1}^{2}\langle\sigma v\rangle_{i j \rightarrow S M} \frac{n_{i}^{e q} n_{j}^{e q}}{n_{e q}^{2}}\left[n^{2}-n_{e q}^{2}\right]
$$

- if $\left.m_{2} \gg m_{1}, \Rightarrow n_{e q} \approx n_{1}^{\text {eq }}, \bullet \bullet \approx \sigma v\right\rangle_{11 \rightarrow S M}$
- if $m_{2}=m_{1}, \Rightarrow \bullet \bullet=\frac{g_{1}^{2}\langle\sigma v\rangle_{11 \rightarrow S M}+g_{2}^{2}\langle\sigma v\rangle_{22 \rightarrow S M}+2 g_{1} g_{2}\langle\sigma v\rangle_{12 \rightarrow S M}}{\left(g_{1}+g_{2}\right)^{2}}$

些㹲

How Heavy could neutralino dark matter be in the gluino-neutralino coannihilation scenario in the MSSM?

In this talk:

- Gluino bound-state effect (how does this effect help to achieve the largest DM mass?)

How Heavy could neutralino dark matter be in the gluino-neutralino coannihilation scenario in the MSSM?

In this talk:

- Gluino bound-state effect (how does this effect help to achieve the largest DM mass?)
- Breakdown of coannihilation by large squark masses (how do large squark masses prevent from achieving the largest DM mass?)

How Heavy could neutralino dark matter be in the gluino-neutralino coannihilation scenario in the MSSM?

In this talk:

- Gluino bound-state effect (how does this effect help to achieve the largest DM mass?)
- Breakdown of coannihilation by large squark masses (how do large squark masses prevent from achieving the largest DM mass?)
- Results based on simplified supersymmetric spectra defined at the weak scale and from more complete CMSSM-like models
(CMSSM = Constrained MSSM, with the soft supersymmetry-breaking parameters constrained to be universal at the input GUT scale)

Gluino bound-state effect

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g, \\
& \tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Bound-state effects: $\tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g$

Gluino bound-state effect

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g, \\
& \tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Bound-state effects: $\tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g$
Explanation:
(1) Similar to $e^{-} p \leftrightarrow H \gamma$, the attractive Coulomb like potential between the $\tilde{g}^{\prime} s$ can make the formation of gluino-gluino bound state \tilde{R} possible.

Gluino bound-state effect

(2) \tilde{R} annihilation decay, $\tilde{R} \rightarrow g g$, removes two R-odd particles, and therefore helps to decrease the final R-odd particle number density (i.e., dark matter density) (note that the \tilde{R} annihilation decay rate is much larger than the single gluino decay rate for $m_{\tilde{q}}>m_{\tilde{g}}: \sim \alpha_{s}^{5} m_{\tilde{g}}$ vs. $\left.\sim\left(m_{\tilde{g}}-m_{\chi}\right)^{5} m_{\tilde{q}}^{-4}\right)$

Gluino bound-state effect

(2) \tilde{R} annihilation decay, $\tilde{R} \rightarrow g g$, removes two R-odd particles, and therefore helps to decrease the final R -odd particle number density (i.e., dark matter density) (note that the \tilde{R} annihilation decay rate is much larger than the single gluino decay rate for $m_{\tilde{q}}>m_{\tilde{g}}: \sim \alpha_{s}^{5} m_{\tilde{g}}$ vs. $\sim\left(m_{\tilde{g}}-m_{\chi}\right)^{5} m_{\tilde{q}}^{-4}$)
(3) $\tilde{R} \rightarrow g g$ beats $\tilde{R} g \rightarrow \tilde{g} \tilde{g}$ with the decrease of temperature, otherwise R-odd particle number density does not decrease

Gluino bound-state effect

(2) \tilde{R} annihilation decay, $\tilde{R} \rightarrow g g$, removes two R-odd particles, and therefore helps to decrease the final R-odd particle number density (i.e., dark matter density) (note that the \tilde{R} annihilation decay rate is much larger than the single gluino decay rate for $m_{\tilde{q}}>m_{\tilde{g}}: \sim \alpha_{s}^{5} m_{\tilde{g}}$ vs. $\left.\sim\left(m_{\tilde{g}}-m_{\chi}\right)^{5} m_{\tilde{q}}^{-4}\right)$
(3) $\tilde{R} \rightarrow g g$ beats $\tilde{R} g \rightarrow \tilde{g} \tilde{g}$ with the decrease of temperature, otherwise R-odd particle number density does not decrease Result:

$$
\begin{aligned}
\frac{d n}{d t}+3 H n \approx & -\sum_{i, j=\chi, \tilde{g}}\langle\sigma v\rangle_{i j \rightarrow S M}\left[n_{i} n_{j}-n_{i}^{e q} n_{j}^{e q}\right] \\
& -\langle\sigma v\rangle_{\tilde{g} \tilde{g} \rightarrow \tilde{R} g} \frac{\langle\Gamma\rangle_{\tilde{R} \rightarrow g g}}{\langle\Gamma\rangle_{\tilde{R} \rightarrow g g}+\langle\Gamma\rangle_{\tilde{R} g \rightarrow \tilde{g} \tilde{g}}}\left[n_{\tilde{g}} n_{\tilde{g}}-n_{\tilde{g}}^{e q} n_{\tilde{g}}^{e q}\right]
\end{aligned}
$$

Gluino bound-state effect

(2) \tilde{R} annihilation decay, $\tilde{R} \rightarrow g g$, removes two R-odd particles, and therefore helps to decrease the final R-odd particle number density (i.e., dark matter density) (note that the \tilde{R} annihilation decay rate is much larger than the single gluino decay rate for $m_{\tilde{q}}>m_{\tilde{g}}: \sim \alpha_{s}^{5} m_{\tilde{g}}$ vs. $\left.\sim\left(m_{\tilde{g}}-m_{\chi}\right)^{5} m_{\tilde{q}}^{-4}\right)$
(3) $\tilde{R} \rightarrow g g$ beats $\tilde{R} g \rightarrow \tilde{g} \tilde{g}$ with the decrease of temperature, otherwise R-odd particle number density does not decrease Result:

$$
\begin{aligned}
\frac{d n}{d t}+3 H n \approx & -\sum_{i, j=\chi, \tilde{g}}\langle\sigma v\rangle_{i j \rightarrow S M}\left[n_{i} n_{j}-n_{i}^{e q} n_{j}^{e q}\right] \\
& -\langle\sigma v\rangle_{\tilde{g} \tilde{g} \rightarrow \tilde{R} g} \frac{\langle\Gamma\rangle_{\tilde{R} \rightarrow g g}}{\langle\Gamma\rangle_{\tilde{R} \rightarrow g g}+\langle\Gamma\rangle_{\tilde{R} g \rightarrow \tilde{g} \tilde{g}}}\left[n_{\tilde{g}} n_{\tilde{g}}-n_{\tilde{g}}^{e q} n_{\tilde{g}}^{e q}\right]
\end{aligned}
$$

In the $v \rightarrow 0$ limit,

$$
\frac{(\sigma v)_{\tilde{g} \tilde{g} \rightarrow \tilde{R} g}}{\text { Sommerfeld enhanced }(\sigma v)_{\tilde{g} \tilde{g} \rightarrow g g}} \approx 1.44
$$

Breakdown of coannihilation by a large squark mass

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g, \\
& \tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Breakdown of coannihilation by a large squark mass

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g, \\
& \tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Explanation:
\tilde{g} only has colour charge, while χ does not have colour charge, so
χ can only interact with \tilde{g} through vertices involving a \tilde{q} in the propagator: $\chi-q-\tilde{q}$ and $\tilde{q}-\tilde{g}-q$

Breakdown of coannihilation by a large squark mass

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g, \\
& \tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Explanation:
\tilde{g} only has colour charge, while χ does not have colour charge, so
χ can only interact with \tilde{g} through vertices involving a \tilde{q} in the propagator: $\chi-q-\tilde{q}$ and $\tilde{q}-\tilde{g}-q$
\Rightarrow when $m_{\tilde{q}}$ is very large, $\chi q \leftrightarrow \tilde{g} q$ and $\tilde{g} \leftrightarrow \chi q \bar{q}$ are ineffective

Breakdown of coannihilation by a large squark mass

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g, \\
& \tilde{g} \tilde{g} \leftrightarrow \tilde{R} g, \tilde{R} \leftrightarrow g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Explanation:
\tilde{g} only has colour charge, while χ does not have colour charge, so
χ can only interact with \tilde{g} through vertices involving a \tilde{q} in the propagator: $\chi-q-\tilde{q}$ and $\tilde{q}-\tilde{g}-q$
\Rightarrow when $m_{\tilde{q}}$ is very large, $\chi q \leftrightarrow \tilde{g} q$ and $\tilde{g} \leftrightarrow \chi q \bar{q}$ are ineffective \Rightarrow coannihilation mechanism breaks down, $\tilde{g} \tilde{g} \rightarrow q \bar{q}$ or $g g$ and bound-state effects cannot reduce the χ number density even if they are large and even if \tilde{g} and χ are degenerate in mass

Results based on simplified supersymmetric spectra

To illustrate the physics, let's first see results based on simplified supersymmetric spectra, assuming degenerate squark masses, and that χ is a pure state of either a Bino, Wino, or Higgsino.

Therefore, the free parameters are simply the neutralino mass, m_{χ}, the gluino mass, $m_{\tilde{g}}$ and the common squark masses, $m_{\tilde{q}}$.

Result: Bino

Result: Bino

Result: Bino

$$
m_{\tilde{g}}-m_{\chi}=0,3-\sigma \text { Planck band. }
$$

Result: Wino

Result: Higgsino

A remark

Why the maximum LSP mass is smaller for a Wino ($\sim 7 \mathrm{TeV}$) or a Higgsino ($\sim 6 \mathrm{TeV}$) compared to a Bino ($\sim 8 \mathrm{TeV}$) ?

Because there are more inert degrees of freedom for Wino (=6) or Higgsino (=8) compared to Bino (=2) at large mass when $\chi \chi$ annihilation cross section is negligible compared to $\tilde{g} \tilde{g}$ annihilation cross section.

Results from CMSSM-like models

The possibility of gluino coannihilation does not arise in the CMSSM. However, gluino coannihilation can become important in variants of the MSSM such as a one-parameter extension of the CMSSM by allowing a restricted form of non-universality in the gaugino sector with $M_{1}=M_{2} \neq M_{3}$ at the input GUT scale.

Therefore, the results depend on M_{1} and M_{3} as well as the usual CMSSM parameters $m_{0}, A_{0}, \tan \beta$ and the sign of μ.

Gluino coannihilation can become important in other models as well, and in 1510.03498 we show results in models with pure gravity mediation of supersymmetry breaking with additional vector multiplets.

This choice of m_{0} corresponds to values of $m_{\tilde{q}} / m_{\tilde{g}}$ along the plateau.
In the left panel, the dark blue strip shows where $\Omega_{\chi} h^{2}=0.1193 \pm 0.0042$, and gluino is the LSP in the brick-red shaded region.
In the right panel, the blue line shows the gluino-neutralino mass difference and the red line shows the neutralino mass, both along the dark blue strip in the left panel and as functions of M_{3}.

This choice of m_{0} corresponds to values of $m_{\tilde{q}} / m_{\tilde{g}}$ extending from beyond the right-end of the plateau at small M_{3} to values along the plateau at large M_{3}.

The gluino coannihilation strip therefore has two end-points where $\Delta M \rightarrow 0$.

Summary

- There could be a largest possible LSP mass achievable in the neutralino-gluino coannihilation scenario.
- Gluino-Gluino bound states effectively enhance the gluino annihilation cross section, and they help to achieve the largest DM mass.
- The neutralino-gluino coannihilation mechanism can be broken by large squark masses.
- Gluino coannihilation can become important in variants of the MSSM such as CMSSM-like models with non-universality in the gaugino sector.
backup: the reason why the dm vs. m plot has the shape

$$
\frac{d n}{d t}+3 H n=-\sum_{i, j=1}^{2}\langle\sigma v\rangle_{i j \rightarrow S M} \frac{n_{i}^{e q} n_{j}^{e q}}{n_{e q}^{2}}\left[n^{2}-n_{e q}^{2}\right]
$$

Note that $n_{i}^{e q}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} e^{-m_{i} / T}$ for $T \ll m_{i}$

backup: Sommerfeld enhancement

$$
\begin{aligned}
& \chi \chi \leftrightarrow S M, \chi \tilde{g} \leftrightarrow q \bar{q}, \tilde{g} \tilde{g} \leftrightarrow q \bar{q} \text { or } g g \\
& \chi q \leftrightarrow \tilde{g} q, \tilde{g} \leftrightarrow \chi q \bar{q}
\end{aligned}
$$

Sommerfeld enhancement (and suppression) for $\tilde{g} \tilde{g} \rightarrow q \bar{q}$ or $g g$
Explanation:
depends on the colour configuration of the initial $\tilde{g} \tilde{g}$, the long range Coulomb like potential between $\tilde{g} \tilde{g}$ can be attractive (or repulsive)
\Rightarrow modify the otherwise free initial particle wave function
\Rightarrow enhance (or suppress) the $\tilde{g} \tilde{g}$ annihilation cross sections
(Baer, Cheung, Gunion, hep-ph/9806361; De Simone, Giudice, Strumia, 1402.6287; Harigaya, Kaneta, Matsumoto, 1403.0715)

