DSU 2015, Kyoto, December 15th

SIMULATIONS OF STRUCTURE FORMATION AT LOW AND HIGH-REDSHIFTS

Naoki Yoshida (U-Tokyo/Kavli IPMU)

CONTENTS

The particle nature of dark matter

- mass, cross-section, charge
- γ -ray cosmic shear cross-correlation

FIR line emitters at high-z

- ALMA detection of z=7 [OIII] line

Beyond $N = 10^{12}$, to N = 0(!)

References Shirasaki, Horiuchi, NY, 2014; 2015 PRD Osato, Shirasaki, NY, 2015, ApJ Hirano, Zhu, NY, Spergel, Yorke, 2015, ApJ Inoue, Shimizu, Okamoto, NY, 2014, ApJ Inoue et al. in prep.

M. Boylan-Kolchin

Cores in dwarf galaxies ?

Revived interest in SIDM

- Sommefeld enhancement and self-interaction (Buckley and Fox 2010)
- Yukawa-type interaction (Loeb and Weiner 2011)
- Dark matter atom and radiation (Cyr-Racine and Sigurdson 2012)
- Dark force and dwarf cores (Tulin, Yu and Zurek 2012, 2013)
- Partially interacting DM and galactic disks (Fan, Katz, Randall, Reece 2013)
- Effective theory (Bellazzini, Cliche, Tanedo 2013)

SIDM can resolve the TBTF problem

Vogelsberger et al. 2012

Velocity-dependent cross-section ?

Long-lived charged particles

Plasma interaction prevents CHAMPs from falling into the bottom of gravitational potential. Effectively a WDM-like density fluctuations are generated.

Small structures in alternative models

10 Mpc

Quite similar structure in Long-Lived CHAMP model and WDM models

Rapid growth of early blackholes

Gravo-thermal collapse of a SIDM halo

Pollack, Steinhardt, Spergel 2015 Log Base 10 of Dimensionless SIDM Density After a few relaxation time, the SIDM halo core goes gravo-thermal collapse, to produce 5 a blackhole with mass of ~ 1% of M_{halo} 400300 200 t ftr,c 100 time (t ftr,c $Log B_{ase} \stackrel{-3}{10} \stackrel{-2}{of} \stackrel{-1}{Dimensionless} \stackrel{1}{R} \stackrel{2}{adius}$ 0

Blue P(k) and very early object

Hirano, Zhu, NY, Spergel, Yorke, 2015, ApJ

A 300 Msun star at z=186 !

Indirect search for dark matter

Visualizing dark matter

Small distortion of galaxy shapes \rightarrow Grav. potential

Recent snapshot from HSC survey

When we have two maps...

Dark matter distribution from CFHTLenS survey

Fermi all-sky γ-ray

The first "cosmological" constraints on the annihilation cross-section

All-sky gamma-ray map

Fermi sat. Ackermann et al. 2014 Circles indicate the locations of 25 Milky Way satellite galaxies

Annihilation cross-section

Fermi 4-year data Search for excess y-emission from dwarf galaxies No detection Constraints on the annihilation cross-section

The "local" constraints

Dark matter distribution in a CFHT field

Number of source galaxies per grid (grid size=0.15 arcmin)

Lensing analysis

Shear - γ cross-correlation

CFHT-Fermi cross-correlation

All-sky simulation

Extra-galactic γ -ray ($\theta_{pix} \sim 0.2 \text{ deg}$) Weak lensing($\theta_{pix} \sim 1 \text{ arcmin}$)

100 GeV, thermal cross section bb channel

Many HSC mocks

We'll use HSC!!!

With LSST...

DETECTION with 3-5 σ confidence is possible ! ! !

Galaxy distribution at high redshift

ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O III] EMISSION LINES

A. K. INOUE¹, I. SHIMIZU^{1,2}, Y. TAMURA³, H. MATSUO⁴, T. OKAMOTO⁵, AND N. YOSHIDA^{6,7}

¹ College of General Education, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530, Japan; akinoue@las.osaka-sandai.ac.jp

² Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

³ Institute of Astronomy, The University of Tokyo, Mitaka, Tokyo 181-0015, Japan

⁴ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

⁵ Department of Cosmosciences, Graduate School of Science, Hokkaido University, N10 W8, Kitaku, Sapporo 060-0810, Japan

⁶ Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan

⁷ Kavli Institute for the Physics and Mathematics of the Universe, TODIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan Received 2013 October 2; accepted 2013 November 25; published 2013 December 16

ABSTRACT

We investigate the potential use of nebular emission lines in the rest-frame far-infrared (FIR) for determining spectroscopic redshift of z > 8 galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). After making a line emissivity model as a function of metallicity, especially for the [O III] 88 μ m line which is likely to be the strongest FIR line from H II regions, we predict the line fluxes from high-z galaxies based on a cosmological hydrodynamics simulation of galaxy formation. Since the metallicity of galaxies reaches at ~0.2 Z_{\odot} even at z > 8 in our simulation, we expect the [O III] 88 μ m line as strong as 1.3 mJy for 27 AB objects, which is detectable at a high significance by <1 hr integration with ALMA. Therefore, the [O III] 88 μ m line would be the best tool to confirm the spectroscopic redshifts beyond z = 8.

Key words: cosmology: observations - galaxies: evolution - galaxies: high-redshift

Online-only material: color figures

Hydrogen Ly-α

No sample at z > 8 (IGM abs.?)

UV/optical line

Target of JWST/TMT. Bright lines such as [OII]3727, [OIII]4959,5007. Recent success of CIII]1909@z=2.

[CII] 158µm

ALMA detection@high-z. From PDR.

[OIII] 88µm

From HII regions, simple emission process.

Submm lines

Cosmological simulations

Reproduce SMF at z < 4

Figure 3. The spectral energy distributions of a simulated galaxy without the IGM attenuation.

OIII emitters

Cosmo. simulation (Inoue, Shimizu, NY 2014, ApJL)

Submm galaxies on the light-cone

Discovery by ALMA!

Figure 1: The [O III] 88 μ m and Ly α emission images and spectra of SXDF-NB1006-2. (A) ALMA [O III] 88 μ m image (contours) is overlaid on Subaru narrow-band Ly α image.

In near future, with JWST [OIII]4959 & [OIII]5007

[OIII]4959, [OIII]5007 $\rightarrow \sim$ 5 micron for z \sim 9

Summary

On going and planned wide surveys can be used to map dark matter distribution, to probe the nature of dark matter and dark energy. Multi-wave correlation analysis will be a key technique.

Line emitters as new tracer of large-scale structure at high redshift (ALMA, SPICA)