Probing gaugino coannihilation with displaced vertex searches

Natsumi Nagata

Univ. of Minnesota

Dark Side of the Universe 2015 Dec. 17, 2015 YITP, Kyoto University

Based on N. Nagata, H. Otono, and S. Shirai JHEP **1510**, 086 (2015) [arXiv:1506.08206]; Phys. Lett. **B748**, 24 (2015) [arXiv:1504.00504].

Dark Matter (DM)

Clowe et. al. (2006)

Weakly-Interacting Massive Particles (WIMPs)

- have masses roughly between 10 GeV and a few TeV.
- interact only through weak and gravitational interactions.
- explain the observed DM density with their thermal relic.
- appear in models beyond the Standard Model.

Supersymmetry (SUSY)

SUSY offers a WIMP DM candidate.

(with R-parity conservation)

Mixed state of bino, wino and Higgsino.

Current constraints on SUSY

- Null results for SUSY searches
- 125 GeV Higgs mass

SUSY scale may be much higher than the EW scale.

Neutralino DM is still promising?

Can we probe the neutralino DM??

High-scale SUSY

L. J. Hall, Y. Nomura, S. Shirai (2012) M. Ibe, S. Matsumoto, T. T. Yanagida (2012) A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro (2012) N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner, and T. Zorawski (2012)

If the Kahler potential has a generic form and there is no singlet field in the SUSY breaking sector;

Gaugino masses are induced at loop level.

- Anomaly mediation
 G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi (1998)
- Threshold corrections (Higgsinos, extra matters, ...)

DM in High-scale SUSY

This scenario accommodates neutralino DM.

Wino DM

Bino DM

• Thermal relic of 3 TeV wino accounts for the DM density.

J. Hisano, S. Matsumoto, M. Nagai, O. Saito, M. Senami (2006)

In general, its thermal relic abundance is too large.

Coannihilation!

In our setup, there are two possibilities:

Bino-gluino coannihilation

S. Profumo, C. Yaguna (2004), D. Feldman, Z. Liu, P. Nath (2009), A. De Simone, G. F. Giudice, A. Strumia, K. Harigaya, K. Kaneta, S. Matsumoto (2014), J. Ellis, F. Luo, K. A. Olive (2015)

Bino-wino coannihilation

H. Baer, T. Krupovnickas, A. Mustafayev, E. K. Park, S. Profumo et. al. (2005), M. Ibe, A. Kamada, S. Matsumoto (2013), K. Harigaya, K. Kaneta, S. Matsumoto (2014)

Today's topic

These scenarios require the lightest and the next-to-lightest particles to be degenerate in mass.

- Hard to probe with traditional LHC searches. (Decay products are too soft.)
- Hard to probe with other DM searches.

(Interactions are too weak.)

- In both scenarios, the next-to-lightest particle becomes long-lived.
- Displaced vertex (DV) searches can probe the scenario.

ATLAS has searched for DVs in the region of |z|<30 cm and r < 30 cm. Sensitive to $1~{\rm mm} \lesssim c\tau \lesssim 1~{\rm m}$.

We will reinterpret this result, considering the small mass difference required by the coannihilation scenarios.

ATLAS, Phys. Rev. D92, 072004 (2015) [arXiv: 1504.05162]

Our strategy

To take into account the small mass difference,

- Simulate the reduction of trigger efficiencies using public codes.
- Reconstruction efficiency of DVs is estimated from the plots in the ATLAS paper and our ignorance is shown as theoretical uncertainty.

Bino-gluino coannihilation

Contour for mass difference Δm which achieves $\Omega h^2 = 0.12$.

 $\Delta m \sim 100 \text{ GeV}$ yields the correct DM abundance.

We expect $c\tau_{\widetilde{g}} > \mathcal{O}(1) \text{ mm}$

Bino-gluino coannihilation

Contour for mass difference Δm which achieves $\Omega h^2 = 0.12$.

 $\Delta m \sim 100 \text{ GeV}$ yields the correct DM abundance.

We expect $c\tau_{\widetilde{g}} > \mathcal{O}(1) \text{ mm}$

Prospects for the long-lived gluino search

The sensitivity is better than the existing searches based on jets plus missing energy.

N. Nagata, H. Otono, S. Shirai, Phys. Lett. **B748**, 24 (2015) [arXiv: 1504.00504]

Mass spectrum and decay chains

Neutral wino decay

A neutral wino can decay into the bino LSP via Higgsino mixing.

The decay rate is suppressed for a large Higgsino mass.

When Higgsino mass is quite large, the neutral wino \widetilde{W}^0 becomes long-lived.

Decay length of neutral wino

Neutral wino has a decay length of > 1 cm over parameter region motivated by coannihilation.

Prospects for the long-lived wino search

400 GeV (800 GeV) wino can be probed at 8 (14) TeV LHC.

N. Nagata, H. Otono, S. Shirai, JHEP **1510**, 086 (2015) [arXiv: **1506.08206**]

Conclusion

- We discuss bino DM in the high-scale SUSY scenario.
- The observed DM density is accounted for by the bino DM if gluino/wino is degenerate with the DM in mass.
- The displaced vertex searches at the LHC are quite promising for probing these scenarios.
- For the bino-gluino coannihilation, the 14 TeV LHC can reach a gluino mass of ~ 2 TeV.
- In the case of the bino-wino coannihilation, the expected reach for the wino mass is ~ 800 GeV.

ATLAS long-lived gluino search

DV + missing transverse energy $E_{\rm T}^{\rm miss}$

- Displaced vertex
 - should be accompanied with more than four tracks
 - invariant mass should be more than 10 GeV
 - Two jets with $p_T > 50$ GeV.
- Missing transverse energy
 - $E_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$

ATLAS long-lived gluino search

DV + missing transverse energy $E_{\rm T}^{\rm miss}$

Event-level efficiency for DV + MET

Bino-gluino coannihilation

- Bino self-annihilation
- Bino-gluino annihilation
- Gluino self-annihilation

 \widetilde{B}

 \widetilde{q}

Very small cross section

Large cross section (due to strong coupling)

For bino-gluino coannihilation to work effectively, chemical equilibrium between bino and gluino is required.

$$\Gamma(\widetilde{B}q \to \widetilde{g}q) \sim T^3 \cdot \frac{T^2}{\widetilde{m}^4} \gg H \sim \frac{T^2}{M_{\rm Pl}} \qquad {\rm for} \ T\gtrsim M_{\widetilde{B}}/20$$

This condition gives an upper bound on the sfermion mass scale \widetilde{m}

Gluino decay length

We expect $c\tau_{\widetilde{g}} > \mathcal{O}(1) \text{ mm}$

Re-interpretation of the ATLAS result

We reinterpret the ATLAS DV + MET search result considering the small bino-gluino mass difference in our scenario.

- 8 TeV LHC with 20 fb⁻¹
 - $E_{\rm T}^{\rm miss} > 100 {\rm ~GeV}$
 - Trigger efficiency is simulated to be 40%.

HERWIG 6 ACERDET

- 14 TeV LHC with 300 fb⁻¹
 - $E_{\rm T}^{\rm miss} > 200 {\rm ~GeV}$
 - Trigger efficiency is simulated to be 15%.

Re-interpretation of the ATLAS result

We reinterpret the ATLAS DV + MET search result to optimize it for the bino-wino coannihilation scenario.

- 8 TeV LHC with 20 fb⁻¹
 - $E_{\rm T}^{\rm miss} > 100 {\rm ~GeV}$
 - Acceptance rate is simulated to be 3%.
- \odot 14 TeV LHC with 300 fb⁻¹
 - $E_{\rm T}^{\rm miss} > 200 {\rm ~GeV}$
 - Acceptance rate is simulated to be 1%.

MADGRAPH5 PYTHIA6 DELPHES3 PROSPINO2

 $M_{\widetilde{W}} = 400 \text{ GeV}$ $M_{\widetilde{B}} = 370 \text{ GeV}$

The Network of Contract Set and Set up and Set of Set and Set up and Set up

MET comes from the back reaction of ISR.

ATLAS long-lived gluino search

Full theory

Gaugino-Higgsino-Higgs interactions

$$\begin{split} \mathcal{L}_{\text{int}} &= -\frac{1}{\sqrt{2}} \{ g_{1u} H^{\dagger} \widetilde{H}_{u} + g_{1d} \epsilon^{\alpha\beta} (H)_{\alpha} (\widetilde{H}_{d})_{\beta} \} \widetilde{B} \\ &- \sqrt{2} \{ g_{2u} H^{\dagger} T^{A} \widetilde{H}_{u} - g_{2d} \epsilon^{\alpha\beta} (H)_{\alpha} (T^{A} \widetilde{H}_{d})_{\beta} \} \widetilde{W}^{A} + \text{h.c.} , \end{split}$$

with

$$g_{1u} = g' \sin \beta, \qquad g_{1d} = g' \cos \beta ,$$

$$g_{2u} = g \sin \beta, \qquad g_{2d} = g \cos \beta ,$$

Mass terms

$$\mathcal{L}_{\text{mass}} = -\frac{M_1}{2} \widetilde{B} \widetilde{B} - \frac{M_2}{2} \widetilde{W}^A \widetilde{W}^A - \mu \ \epsilon^{\alpha\beta} (\widetilde{H}_u)_{\alpha} (\widetilde{H}_d)_{\beta} + \text{h.c.} ,$$

Effective interactions

$$\Delta \mathcal{L}_{int} = \sum_{i=1,2} C_i^{(5)} \mathcal{O}_i^{(5)} + \sum_{i=1,2} \widetilde{C}_i \mathcal{Q}_i + C^{(6)} \mathcal{O}^{(6)} + h.c.$$

Effective operators

$$\mathcal{O}_{1}^{(5)} = \widetilde{B}\widetilde{W}^{A}H^{\dagger}T^{A}H , \qquad \mathcal{O}^{(6)} = \widetilde{B}^{\dagger}\overline{\sigma}^{\mu}\widetilde{W}^{A}H^{\dagger}T^{A}i\overleftarrow{D}_{\mu}H ,$$
$$\mathcal{O}_{2}^{(5)} = \widetilde{B}\sigma^{\mu\nu}\widetilde{W}^{A}W^{A}_{\mu\nu} ,$$
$$\mathcal{Q}_{1} = \frac{1}{2}\widetilde{B}\widetilde{B}|H|^{2} ,$$
$$\mathcal{Q}_{2} = \frac{1}{2}\widetilde{W}^{A}\widetilde{W}^{A}|H|^{2} ,$$

Wilson coefficients

$$\begin{split} C_{1}^{(5)} &= \frac{1}{\mu} (g_{1u}g_{2d} + g_{1d}g_{2u}) + \frac{1}{2|\mu|^{2}} [(g_{1u}^{*}g_{2u} + g_{1d}^{*}g_{2d})M_{1} + (g_{1u}g_{2u}^{*} + g_{1d}g_{2d}^{*})M_{2}] , \\ C^{(6)} &= -\frac{1}{2|\mu|^{2}} (g_{1u}^{*}g_{2u} - g_{1d}^{*}g_{2d}) , \\ \widetilde{C}_{1} &= \frac{g_{1u}g_{1d}}{\mu} + \frac{M_{1}}{2|\mu|^{2}} (|g_{1u}|^{2} + |g_{1d}|^{2}) , \\ \widetilde{C}_{2} &= \frac{g_{2u}g_{2d}}{\mu} + \frac{M_{2}}{2|\mu|^{2}} (|g_{2u}|^{2} + |g_{2d}|^{2}) . \end{split} \\ C^{(5)} &= + \frac{g}{2(4\pi)^{2}\mu} (g_{1u}g_{2d} - g_{1d}g_{2u}) \\ &- \frac{g}{8(4\pi)^{2}} \left[(g_{1u}^{*}g_{2u} - g_{1d}^{*}g_{2d}) \frac{M_{1}}{|\mu|^{2}} - (g_{1u}g_{2u}^{*} - g_{1d}g_{2d}) \frac{M_{2}}{|\mu|^{2}} \right] \end{split}$$

Charged wino decay

Charged wino decays promptly for $|\mu| < O(10^4)$ TeV.

Decay length of neutral wino

Realize 125 GeV Higgs mass when sfermion masses are equal to the Higgsino mass.

Vertex-level efficiency

Winos from gluino decay

Distributions of m_{DV}

Vertex-level efficiency

Event selection cuts			
	Num events	Relative Efficiency (%)	Overall Efficiency (%)
All evts	26563830	100.	100.
GRL	24923461	93.8	93.8
EventCleaning	24737381	99.2	93.1
Trigger	8640339	34.9	32.5
PassesDESD	19279	0.22	0.07
PV_n	19261	99.9	0.07
PV_z	19221	99.7	0.07
PV_nTrk	19089	99.3	0.07
METCut	6485	33.9	0.02
Vertex selection cuts			
	Num events	Relative Efficiency (%)	Overall Efficiency (%)
hasDV	1647	25.3	0.00
DV_fid	1165	70.7	0.00
DV_PVdist	1140	97.8	0.00
DV_chisq	1106	97.0	0.00
DV_material	720	65.0	0.00
DV_nTrk	0	0.0	0.0
DV_mass	0	0.0	0.0

Table 19: Cutflow table for DV+ E_T^{miss} channel on the 2012 dataset.