Supersymmetric Dark Matter or Not

1) With CMSSM-like models pushed to high mass scales, can we still guarantee Supersymmetry's discovery at the LHC. Viable dark matter models in the CMSSM tend to lie in strips (co-anninilation funhel focus point), how far up in energy do these strips extend?
2) Non-Supersymmetric $S O(10)$-gauge coupling unification; neutrino masses, AND DARK MATTER.

$\Delta \chi^{2}$ map of $\mathrm{m}_{0}-\mathrm{m}_{1 / 2}$ plane

Mastercode

- CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer Isidori, Olive, Ronga, Weiglein

Elastic scaterring cross-section

Mastercode

- CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer Isidori, Olive, Ronga, Weiglein

$\mathrm{m}_{1 / 2}$ - mo planes incl. LHC

Δx^{2} nap of $m_{0}-m_{1 / 2}$ plane

Mastercode
2015

Low mass

 spectrum still observable at LHC$14 \mathrm{TeV} 3000 \mathrm{fb}^{-1}$
$\begin{array}{rlllllllll}500 & & & & & & & & & \\ 0 & 1000 & 2000 & 3000 & 4000 & 5000 & 6000\end{array}$ $m_{0}[\mathrm{GeV}]$

stau coann.
A/H funnel
hybrid
$\tilde{\chi}_{1}^{ \pm}$coann.
stop coann. focus point
h funnel
Z funnel

Elastic scaterring cross-section

The Strips:

* Stau-coannhilation Strip
\because extends only out to 11 ieV

Siau stirip (end poinis)

The Strips:

* Stau-coannhilation Strip
- extends only out to 11 TeV
- Stop-coannihilation Strip

Sitop strip

Buchmueller, Citron, Ellis, Guha, Marrouche, Olive, de Vries, Zheng

Stop strip

$$
A=3 m_{0}, \Omega_{\chi} h^{2}=0.12, \tan \beta=20
$$

The Strips:

* Stau-coannhilation Strip
" extends only out to 11 TeV
- Stop-coanninilation Strip
\checkmark Funnel
- associated with high tan β, problems with $B \rightarrow \mu \mu$
\checkmark Focus Point

Focus Poinit

Buchmueller, Citron, Ellis, Guha, Marrouche, Olive, de Vries, Zheng

Direct detiectabillity

The Strips:

* Stau-coannhilation Strip
" extends only out to 11 TeV
- Stop-coannihilation Strip
ω Funnel
- associated with high tan β, problems with $B \rightarrow \mu \mu$
- Focus Point
- Gluino-coanninilation Strip

Gluilno Surips $\left(M_{3} \neq \mathbb{M}_{1}=\mathbb{M}_{2} @ \operatorname{Mg}\right.$ @ur $)$

Gluilno Stirips $\left(M_{3} \neq \mathbb{M}_{1}=\mathbb{M}_{2} @(\mathbb{M}\right.$ Gurv $)$

May require more general models which are concordant with LHC MET; Higgs; and $B_{s} \rightarrow \mu H$, and Dark Matter

Other Possibilities

- uand/orma mree
- subGUTmodels:Mn MaU
- with or without mSUGRA

Why Supersymmetry (stil))?

* Gauge Coupling Unification
* Gauge Hierarchy Problem
- Stabilization of the Electroweak Vacuin
- Radiative Electroweak Symmetry Breaking
- Dark Matter
-Improvement to low energy phenomenology?
but, mh $\sim 126 \mathrm{GeV}$, and no SUSY?

So(10) GUT?

* Gauge Coupling Unification
\because Stabilization of the Electroweak Vacuum?
- Dark Matter
- Improvement to low energy phenomenology?

Neutrino masses....

Recipe for constructing an SO(10) DM model

0. Get a copy of Slansky's review (Phys Rep 79 (1981) 1) (or something equivalent)

$16 \times 10=16+144$
$16 \times 16=10_{5}+120_{3}+126_{3}$
$16 \times 16=1+45+210$
$45 \times 10=10+120+320$
$45 \times 16=16+1144+5560$
$45 \times 45=1_{\mathrm{s}}+45_{\mathrm{a}}+54_{\mathrm{s}}+210_{\mathrm{s}}+770_{\mathrm{s}}+9945_{\mathrm{s}}$
$54 \times 10=10+210^{\prime}+32$
$54 \times 16=144+720$
$54 \times 45=45+54+945+1386$
$\begin{aligned} 54 \times 54 & =1_{s}+45_{\mathrm{s}}+54_{\mathrm{s}}+660_{\mathrm{s}}+770_{\mathrm{s}}+1386_{s} \\ 120 \times 10 & =45+210+945\end{aligned}$
$120 \times 10=45+210+9945$
$120 \times \overline{16}=16+144+560+1 \frac{1200}{126}+320+1728+2970$
$120 \times 45=10+120+126+\overline{126}+320+1728+2970$
$120 \times 54=120+320+1728+4312$
$120 \times 120=1_{s}+45_{\mathrm{a}}+54 \mathrm{~s}+210_{\mathrm{s}}+210_{\mathrm{a}}+770_{\mathrm{s}}+945_{\mathrm{a}}+1050_{\mathrm{s}}+\overline{1050_{\mathrm{s}}}+4125_{\mathrm{s}}+5940_{\mathrm{s}}$
$126 \times 10=210+1050$
$\overline{126} \times \overline{16}=144+672+1200$
$126 \times \overline{16}=16+560+14440$
$126 \times 45=120+126+1728+3696$
$126 \times 54=\overline{126}+1728+4950$
$126 \times 120=45+210+945+1050+5940+6930$
$126 \times 126=54_{\mathrm{s}}+945_{\mathrm{s}}+1050_{\mathrm{s}}+2772_{\mathrm{s}}+4125_{\mathrm{s}}+6930_{\mathrm{s}}$
$126 \times 126=54_{\mathrm{s}}+94 \mathrm{~s}_{\mathrm{a}}+1055_{\mathrm{s}}+272_{\mathrm{s}}+412 \mathrm{~s}_{\mathrm{s}}$
126
$\frac{120}{144} \times 10=16+1144+560+720$
$\frac{144}{144} \times 16=45+54+210+945+1050$
$144 \times \frac{16}{144} \times \frac{16}{16}=10+54+2120+995+1050$
$=120+126+320+1728$
$144 \times 16=10+120+126+320+128$
$144 \times 45=16+144_{1}+144_{2}+560+720+1200+3696$
$144 \times 45=16+144_{1}+144_{2}+560+720+1200$
$144 \times 54=16+144+560+720+2640+3696^{\prime}$
$\frac{144 \times 54}{144 \times 120}=16+144+144_{1}+144_{2}+560_{1}+560_{2}+720+1200+1440+3696^{\prime}+8800$
$\overline{144} \times \underline{126}=144+560+720+1200+1440+5280+8800$
$\overline{144} \times \overline{126}=16+144+560+1200+1440+3696^{\prime}+11088$
$144 \times 144=10_{\mathrm{s}}+120_{\mathrm{a} 1}+120_{\mathrm{a} 2}+126_{\mathrm{s}}+\overline{126_{\mathrm{s}}}+210_{\mathrm{s}}^{\prime}+320_{\mathrm{s}}+320_{\mathrm{a}}+1728_{\mathrm{s}}+1728_{\mathrm{a}}+2970_{\mathrm{s}}+3696_{\mathrm{a}}+4312_{\mathrm{a}}+4950$
$144 \times 144=1+45_{1}+45_{2}+54+210_{1}+210_{2}+770+945_{1}+945_{2}+1050+\overline{1050}+1386+5940+8085$
$210 \times 10=120+126+126+1728$
$210 \times 16=16+144+560+1200+1440$
$210 \times 45=45+210_{1}+210_{2}+945+1050+\overline{1050}+5940$
$210 \times 54=210+945+\overline{1050}+1050+8085$
$210 \times 120=10+120_{1}+120_{2}+126+\overline{126}+320+1728_{1}+1728_{2}+2970+3696+\overline{3696}+10560$
$210 \times 126=10+120+126+320+1728+2970+3696+6930^{\prime}+10560$
$210 \times 144=16+144_{1}+144_{2}+560_{1}+560_{2}+672+720+1200_{1}+1200_{2}+1440+3696^{\prime}+8800+11088$

GROUP THEORY FOR UNIFIED MODEL BUILDING

Georgi, Nanopoulos; Vayonakis; Masiero; Shafi, Sondermann, Wetterich; del Aguila, Ibanez;
Mohapatra, Senjanovic; Mambrini, Nagata, Olive, Quevillon, Zheng; Nagata, Olive, Zheng

Recipe for constructing an SO(10) DM model

0. Get a copy of Slansky's review (Phys Rep 79 (1981) 1) (or something equivalent)
1. Pick an Intermediate Scale Gauge Group
R_{1}

$$
\mathrm{SO}(10) \longrightarrow G_{\mathrm{int}}
$$

$G_{\text {int }}$	R_{1}
$\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$	$\mathbf{2 1 0}$
$\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes D$	$\mathbf{5 4}$
$\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{R}$	$\mathbf{4 5}$
$\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B-L}$	$\mathbf{4 5}$
$\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B-L} \otimes D$	$\mathbf{2 1 0}$
$\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{R} \otimes \mathrm{U}(1)_{B-L}$	$\mathbf{4 5 , 2 1 0}$
$\mathrm{SU}(5) \otimes \mathrm{U}(1)$	$\mathbf{4 5}, \mathbf{2 1 0}$
Flipped $\mathrm{SU}(5) \otimes \mathrm{U}(1)$	$\mathbf{4 5}, \mathbf{2 1 0}$

Recipe for constructing an SO(10) DM model

0. Get a copy of Slansky's review (Phys Rep 79 (1981) 1) (or something equivalent)
1. Pick an Intermediate Scale Gauge Group
2. Use 126 to break $\mathrm{G}_{\text {int }}$ to SM

$$
\mathrm{SO}(10) \xrightarrow{\mathrm{R}_{1}} G_{\mathrm{int}} \xrightarrow{\mathrm{R}_{2}} G_{\mathrm{SM}} \otimes \mathbb{Z}_{2}
$$

$$
R_{2}=126+\ldots
$$

Neutrino see-saw: Majorana mass for V_{R} from $1616126 \rightarrow \mathrm{~m}_{\mathrm{vR}} \sim \mathrm{M}_{\text {int }}$

Recipe for constructing an SO(10) DM model

0. Get a copy of Slansky's review (Phys Rep 79 (1981) 1) (or something equivalent)
1. Pick an Intermediate Scale Gauge Group
2. Use 126 to break $\mathrm{G}_{\text {int }}$ to SM
3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content

Remnant Z_{2} symmetry

Fermions from 10,45, $54,120,126$, or 210 representations;

Scalars from 16, 144

Kadastik, Kannike, Raidal;
Frigerio, Hambye;
Mambrini, Nagata,
Olive, Quevillon, Zheng;
Nagata, Olive, Zheng

Model	$B-L$	$\mathrm{SU}(2)_{L}$	Y	$\mathrm{SO}(10)$ representations
$\mathrm{F}_{\mathbf{1}}^{0}$		$\mathbf{1}$	0	$\mathbf{4 5}, \mathbf{5 4}, \mathbf{2 1 0}$
$\mathrm{~F}_{2}^{1 / 2}$		$\mathbf{2}$	$1 / 2$	$\mathbf{1 0}, \mathbf{1 2 0}, \mathbf{1 2 6}, \mathbf{2 1 0}^{\prime}$
$\mathrm{F}_{\mathbf{3}}^{0}$		$\mathbf{3}$	0	$\mathbf{4 5}, \mathbf{5 4}, \mathbf{2 1 0}$
$\mathrm{~F}_{\mathbf{3}}^{1}$	0	$\mathbf{3}$	1	$\mathbf{5 4}$
$\mathrm{~F}_{4}^{1 / 2}$		$\mathbf{4}$	$1 / 2$	$\mathbf{2 1 0}$
$\mathrm{~F}_{\mathbf{4}}^{3 / 2}$		$\mathbf{4}$	$3 / 2$	$\mathbf{2 1 0} 0^{\prime}$
S_{1}^{0}		$\mathbf{1}$	0	$\mathbf{1 6}, \mathbf{1 4 4}$
$\mathrm{~S}_{2}^{1 / 2}$		$\mathbf{2}$	$1 / 2$	$\mathbf{1 6}, \mathbf{1 4 4}$
$\mathrm{~S}_{\mathbf{3}}^{0}$	1	$\mathbf{3}$	0	$\mathbf{1 4 4}$
$\mathrm{~S}_{\mathbf{3}}^{1}$		$\mathbf{3}$	1	$\mathbf{1 4 4}$
$\widehat{\mathrm{~F}}_{\mathbf{1}}^{0}$		$\mathbf{1}$	0	$\mathbf{1 2 6}$
$\widehat{\mathrm{~F}}_{2}^{1 / 2}$	2	$\mathbf{2}$	$1 / 2$	$\mathbf{2 1 0}$
$\widehat{\mathrm{~F}}_{\mathbf{3}}^{1}$		$\mathbf{3}$	1	$\mathbf{1 2 6}$

Recipe for constructing an SO(10) DM model

0. Get a copy of Slansky's review (Phys Rep 79 (1981) 1) (or something equivalent)
1. Pick an Intermediate Scale Gauge Group
2. Use 126 to break $\mathrm{G}_{\text {int }}$ to SM
3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content
4. Use RGEs to obtain Gauge Coupling Unification

Recipe for constructing an SO(10) DM model

4. Use RGEs to obtain Gauge Coupling Unification

Fixes Mgut, $M_{\text {int }}$, agut

Examples:

Scalars

Model	$R_{\text {DM }}$	$\mathrm{S}_{\mathrm{n}}^{\mathrm{Y}}$	$\mathrm{SO}(10)$ representation
$G_{\mathrm{int}}=\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}(\otimes D)$			
$\mathrm{SA}_{422 \text { (D) }}$	4, 1, 2	S_{1}^{0}	16, 144
$\mathrm{SB}_{422 \text { (D) }}$	4, 2, 1	$\mathrm{S}_{2}^{1 / 2}$	16, 144
$\mathrm{SC}_{422 \text { (D) }}$	4, 2, 3	$\mathrm{S}_{2}^{1 / 2}$	144
$\mathrm{SD}_{422 \text { (D) }}$	4, 3, 2	S_{3}^{1}	144
$\mathrm{SE}_{422 \text { (D) }}$	4, 3, 2	S_{3}^{0}	144
$G_{\text {int }}=\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{R}$			
SA_{421}	4, 1, -1/2	S_{1}^{0}	16, 144
SB_{421}	4, 2, 0	$\mathrm{S}_{2}^{1 / 2}$	16, 144
SC_{421}	4, 2, 1	$\mathrm{S}_{2}^{1 / 2}$	144
SD_{421}	4,3,1/2	S_{3}^{1}	144
SE_{421}	4, 3, -1/2	S_{3}^{0}	144
$G_{\mathrm{int}}=\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B-L}(\otimes D)$			
$\mathrm{SA}_{3221 \text { (D) }}$	1, 1, 2, 1	S_{1}^{0}	16, 144
$\mathrm{SB}_{3221 \text { (D) }}$	1,2,1, -1	$\mathrm{S}_{2}^{1 / 2}$	16, 144
$\mathrm{SC}_{3221 \text { (D) }}$	1,2,3, -1	$\mathrm{S}_{2}^{1 / 2}$	144
$\mathrm{SD}_{3221 \text { (D) }}$	1, 3, 2, 1	S_{3}^{1}	144
$\mathrm{SE}_{3221(\mathrm{D})}$	1,3,2,1	S_{3}^{0}	144

Examples:

Scalars

Higgs portal models
 Inert Higgs doublet models

Model	$\log _{10} M_{\mathrm{GUT}}$	$\log _{10} M_{\mathrm{int}}$	α_{GUT}	$\log _{10} \tau_{p}\left(p \rightarrow e^{+} \pi^{0}\right)$
$G_{\mathrm{int}}=\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$				
SA_{422}	16.33	11.08	0.0218	36.8 ± 1.2
SB_{422}	15.62	12.38	0.0228	34.0 ± 1.2
$G_{\text {int }}=\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B-L}$				
SA_{3221}	16.66	8.54	0.0217	38.1 ± 1.2
SB_{3221}	16.17	9.80	0.0223	36.2 ± 1.2
SC_{3221}	15.62	9.14	0.0230	34.0 ± 1.2
$G_{\mathrm{int}}=\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B-L} \otimes D$				
$\mathrm{SA}_{3221 \mathrm{D}}$	15.58	10.08	0.0231	33.8 ± 1.2
$\mathrm{SB}_{3221 \mathrm{D}}$	15.40	10.44	0.0233	33.1 ± 1.2

other models have MGut too low
mass splitting:

$$
\begin{aligned}
-\mathcal{L}_{\mathrm{int}} & =M^{2}\left|R_{\mathrm{DM}}\right|^{2}+\kappa_{1} R_{\mathrm{DM}}^{*} R_{\mathrm{DM}} R_{1}+\left\{\kappa_{2} R_{\mathrm{DM}} R_{\mathrm{DM}} R_{2}^{*}+\text { h.c. }\right\} \\
& +\lambda_{1}^{1}\left|R_{\mathrm{DM}}\right|^{2}\left|R_{1}\right|^{2}+\lambda_{2}^{1}\left|R_{\mathrm{DM}}\right|^{2}\left|R_{2}\right|^{2}+\left\{\lambda_{12}^{126}\left(R_{\mathrm{DM}} R_{\mathrm{DM}}\right)_{\mathbf{1 2 6}}\left(R_{1} R_{2}^{*}\right)_{\overline{\mathbf{1 2 6}}}+\text { h.c. }\right\} \\
& +\lambda_{1}^{\mathbf{4 5}}\left(R_{\mathrm{DM}}^{*} R_{\mathrm{DM}}\right)_{\mathbf{4 5}}\left(R_{1}^{*} R_{1}\right)_{\mathbf{4 5}}+\lambda_{1}^{210}\left(R_{\mathrm{DM}}^{*} R_{\mathrm{DM}}\right)_{\mathbf{2 1 0}}\left(R_{1}^{*} R_{1}\right)_{\mathbf{2 1 0}} \\
& +\lambda_{2}^{45}\left(R_{\mathrm{DM}}^{*} R_{\mathrm{DM}}\right)_{\mathbf{4 5}}\left(R_{2}^{*} R_{2}\right)_{\mathbf{4 5}}+\lambda_{2}^{\mathbf{2 1 0}}\left(R_{\mathrm{DM}}^{*} R_{\mathrm{DM}}\right)_{\mathbf{2 1 0}}\left(R_{2}^{*} R_{2}\right)_{\mathbf{2 1 0}},
\end{aligned}
$$

Examples:

SM Fermion Singlets: Produced thermally out of equilibrium \Rightarrow Fermionic candidates (NETDM)

Mambrini, Olive, Quevillon, Zaldivar

To aid in gauge coupling unification, DM should be a SM singlet but a non-singlet under the Intermediate gauge group. Requires splitting multiplets

$G_{\text {int }}$	R_{DM}	$\mathrm{SO}(10)$
$\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{3})$	$\mathbf{4 5}$
	$(\mathbf{1 5}, \mathbf{1}, \mathbf{1})$	$45, \mathbf{2 1 0}$
	$(\mathbf{1 0}, \mathbf{1}, \mathbf{3})$	$\mathbf{1 2 6}$
	$(\mathbf{1 5}, \mathbf{1}, \mathbf{3})$	$\mathbf{2 1 0}$
$\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{R}$	$(\mathbf{1 5}, \mathbf{1}, 0)$	$\mathbf{4 5}, \mathbf{2 1 0}$
	$(\mathbf{1 0}, \mathbf{1}, 1)$	$\mathbf{1 2 6}$
$\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B-L}$	$(\mathbf{1}, \mathbf{1}, \mathbf{3}, 0)$	$45, \mathbf{2 1 0}$
	$(\mathbf{1}, \mathbf{1}, \mathbf{3},-2)$	$\mathbf{1 2 6}$
$\mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{R} \otimes \mathrm{U}(1)_{B-L}$	$(\mathbf{1}, \mathbf{1}, 1,-2)$	$\mathbf{1 2 6}$

Gauge Coupling Unification

Also fix particle content below Mgut

$\left.\begin{array}{llccc}\hline \hline \mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \\ \hline R_{\mathrm{DM}} & R_{2} & \log _{10}\left(M_{\mathrm{int}}\right) & \log _{10}\left(M_{\mathrm{GUT}}\right) & g_{\mathrm{GUT}} \\ \hline(\mathbf{1}, \mathbf{1}, \mathbf{3})_{W} & (\mathbf{1 0}, \mathbf{1}, \mathbf{3})_{C} \\ (\mathbf{1}, \mathbf{1}, \mathbf{3})_{R}\end{array}\right)$

Examples:

SM Fermion Singlets: Produced thermally out of equilibrium \Rightarrow Fermionic candidates (NETDM)

For mass splittings:

$$
\begin{aligned}
& \mathcal{L}_{\text {int }}=-\frac{M_{45_{W}}}{2} \mathbf{4 5} 45_{W}-\frac{y_{54}}{2} 45_{W} 45_{W} 54_{R}-\frac{y_{210}}{2} 45_{W} 45_{W} 210_{R}+\text { h.c. }, \\
& 15=8+3+\overline{3}+1 \\
& M_{15} \sim M_{45 W}-y_{54} V_{54} \sim M_{\text {int }} ;
\end{aligned}
$$

$$
\begin{aligned}
& (10,1,3)_{C},(10,3,1)_{C} \in \mathbf{1 2 6 ;} ;(15,1,1)_{R} \in 210
\end{aligned}
$$

Examples:

Non-Singlets: Fermions

Model	$B-L$	$\mathrm{SU}(2)_{L}$	Y	$\mathrm{SO}(10)$ representations
F_{1}^{0}		$\mathbf{1}$	0	$\mathbf{4 5}, \mathbf{5 4}, \mathbf{2 1 0}$
$\mathrm{~F}_{2}^{1 / 2}$		$\mathbf{2}$	$1 / 2$	$\mathbf{1 0}, \mathbf{1 2 0}, \mathbf{1 2 6}, \mathbf{2 1 0}$
$\mathrm{~F}_{3}^{0}$		$\mathbf{3}$	0	$\mathbf{4 5}, \mathbf{5 4}, \mathbf{2 1 0}$
$\mathrm{~F}_{3}^{1}$	0	$\mathbf{3}$	1	54
$\mathrm{~F}_{4}^{1 / 2}$		4	$1 / 2$	$\mathbf{2 1 0}$
$\mathrm{~F}_{4}^{3 / 2}$		$\mathbf{4}$	$3 / 2$	$\mathbf{2 1 0}$

$\mathrm{SO}(10)$ representation		$\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$	
45		$(1,3,1)$	
54		iplets (Wino) $\quad(1,3,3)$	
210		$(15,3,1)$	
$\mathrm{SO}(10)$ representation	SU	(4) ${ }_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$	$B-L$
10, 120, 210		(1,2)	0
120, 126		$(15,2,2)$	0
$210 \quad \begin{aligned} & \text { SM Doublets } \\ & \text { (Higgsino) }\end{aligned}$		$(\mathbf{0}, \mathbf{2}, \mathbf{2}) \oplus(\overline{\mathbf{1 0}}, \mathbf{2}, \mathbf{2})$	± 2
210^{\prime}		(1,4,4)	0
54, 210		(1,1)	0
45 SM Singlets for mixing		1,3)	0
45, 210 (Bino)		$(5,1,1)$	0
210		(5, 1, 3)	0
126		(0, 1, 3)	2

Examples:

Non-Singlets: Fermions

$R_{\text {DM }}$	Additio in	nal Higgs R_{1}	$\log _{10} M_{\mathrm{int}}$	$\log _{10} M_{\mathrm{GUT}}$	$\alpha_{\text {GUT }}$	$\log _{10} \tau_{p}$	$\left.\rightarrow e^{+} \pi^{0}\right)$
$G_{\text {int }}=\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$							
$(15,1,3)$							
Model	$R_{\text {DM }}$	$R_{\text {DM }}^{\prime}$	Higgs	$\log _{10} M_{\text {int }}$	$\log _{10} M_{\mathrm{GUT}}$	$\alpha_{\text {GUT }}$	$\log _{10} \tau_{p}$
$G_{\text {int }}=\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{R}$							
FA_{421}	$(\mathbf{1 , 2 , 1 / 2})_{D}$	$(15,1,0)_{W}$	$\begin{aligned} & (15,1,0)_{R} \\ & (15,2,1 / 2)_{C} \end{aligned}$	3.48		0.0320	40.9 ± 1.2
$G_{\text {int }}=\mathrm{SU}(4)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$							
FA_{422}	$(1,2,2)_{W}$	$(\mathbf{1}, \mathbf{3}, \mathbf{1})_{W}$	$\begin{aligned} & (\mathbf{1 5}, \mathbf{1}, \mathbf{1})_{R} \\ & (\mathbf{1 5}, \mathbf{1}, \mathbf{3})_{R} \end{aligned}$	9.00	15.68	0.0258	34.0 ± 1.2
FB_{422}	$(1,2,2)_{W}$	$(\mathbf{1}, \mathbf{3}, \mathbf{1})_{W}$	$\begin{aligned} & (\mathbf{1 5}, 1,1)_{R} \\ & (\mathbf{1 5}, 2,2)_{C} \\ & (\mathbf{1 5}, \mathbf{1}, \mathbf{3})_{R} \end{aligned}$	5.84	17.01	0.0587	38.0 ± 1.2

Examples:

Non-Singlets: Fermions

Summary Plot

Summary

* LHC susy and Higgs searches have pushed CMSSM位e models to "corners"

4 Though some phenomenological solutions are stil vable typically along strios in parameter space

- NUH models withow histil promising as are subGUT models PGM (with wino DM or Higgsino DM)
- Several possibilities in non-SUSY SO(10) models
- Challenge lies in detection strategies

