

Dark matter signatures in a mostly unexplored gamma-ray energy window

Carlotta Pittori, ASDC & INFN on behalf of the ASTROGAM Collaboration

DSU2015 – Kyoto, Dec 15th

The next gamma-ray MeV-GeV mission: the e-Astrogam project

MeV - GeV astrophysics MeV - GeV community

+

47

•

Proposed for the ESA M4 call; currently under study for enhancement and reconfiguration for the ESA M5 call. ASTROGAM is focused on gamma-ray astrophysics in the range 0.3-100 MeV with excellent capability also at GeV energies.

Proposal for the ESA M4 Mission Programme

ASTROGAM

Lead Proposer: M. Tavani Co-Lead Proposer: V. Tatischeff

This proposal is the result of the merging of the ASTROMEV and GAMMA-LIGHT groups that submitted two separate Lols. The proposal is presented on behalf of the ASTROGAM Collaboration by:

M. Tavani (INAF and University of Rome Tor Vergata, Italy)

- V. Tatischeff (CSNSM, France)
- P. von Ballmoos (IRAP, France)
- C. Budtz-Jorgensen (DTU Space, Lyngby, Denmark)
- A. Bykov (loffe Institute, St. Petersburg, Russia)
- L. Hanlon (University College Dublin, Ireland)
- D. Hartmann (Clemson University, USA)
- M. Hernanz (ICE/CSIC-IEEC, Barcelona, Spain)
- J. Isern (ICE/CSIC-IEEC, Barcelona, Spain)
- G. Kanbach (MPI, Garching, Germany)

P. Laurent (APC, France) J. McEnery (NASA, USA) S. Mereghetti (INAF-IASF, Milano, Italy) A. Morselli (INFN, Italy) K. Nakazawa (The University of Tokyo, Japan) U. Oberlack (Univ. of Mainz, Germany) R. Walter, (Univ. of Geneva, Switzerland) A. Zdziarski (NCAC, Poland) A. Zoglauer (UC Berkeley, USA)

ASTROGAM: a unified proposal from the entire gamma-ray community

ASTROGAM Collaboration

INAF, INFN, University of Rome 2 CSNSM, IRAP, APC, CEA, LUPM, IPNO ICE (CSIC-IEEC), IMB-CNM (CSIC) University College Dublin MPI, Universität Mainz DTU University of Geneva **KTH** University of Tokyo loffe Institute NASA GSFC, NRL, Clemson Un., UC at Berkeley

A single instrument for a complete coverage of the spaceborne gamma-ray domain

An instrument ingeniously combining two well-mastered detection techniques

ASTROGAM Measurement principle

- Tracker Double sided Si strip detectors (DSSDs) for fine 3-D position resolution (No high-Z)
- Calorimeter High-Z material for an efficient absorption of the scattered photon ⇒ CsI(TI) scintillation crystals readout by Si Drift Diodes for better energy resolution
- Anticoincidence detector to veto charged-particle induced background ⇒ plastic scintillator
- Heritage: AGILE, Fermi/LAT, AMS-02, INTEGRAL, LHC/ALICE...

ASTROGAM

Detail of the detector-ASIC bonding in the AGILE Si Tracker

Payload Tracker: 70 layers of 6×6 DSSDs (= 2520) of 400 μm

thickness and 240 μ m pitch. **NO HEAVY CONVERTER**

10

- DSSDs bonded strip to strip to form 2-D ladders
- Light and stiff mechanical structure
- Ultra low-noise front end electronics

- Calorimeter: 12544 CsI(Tl) bars coupled at both ends to low-noise Silicon Drift Detectors
- ACD: segmented plastic scintillators coupled to SiPM by optical fibers
- Heritage: AGILE, Fermi/LAT, AMS-02, INTEGRAL, LHC/ ALICE...

ASTROGAM Payload

 ○ ESA guidelines for the M4 Call interpreted at face value ⇒ ASTROGAM payload (single instrument) designed to be 300 kg

2478

748

ASTROGAM Mission profile

- Orbit Equatorial (inclination *i* < 2.5°, eccentricity *e* < 0.01) low-Earth orbit (altitude in the range 550 - 600 km)
- Launcher standard VEGA
- Satellite communication –
 ESA ground station at Kourou
 + ASI Malindi station (Kenya)
- Telemetry via X-band (available downlink of 10 Mbps), the average data acquisition rate being of 1.2 Mbps
- Observation modes (i) zenith-pointing sky-scanning mode, (ii) nearly inertial pointing, and (iii) fast repointing to avoid the Earth in the field of view
- In-orbit operation 3.5 years duration + provisions for a 2+ year extension (with 1 month of in-flight calibration)

ASTROGAM Performance assessment

- ASTROGAM performance evaluated with MEGAlib and Bogemms (both based on Geant4) and a detailed mass model of the instrument
- Background environment in an equatorial (inclination *i* < 2.5°, eccentricity *e* < 0.01) low-Earth orbit (altitude 550 600 km) now well-known thanks to the Beppo-SAX and AGILE missions

Angular resolution

ASTROGAM imaging capability:

Cygnus region chosen as an illustrative example since source population and diffuse emission from this region is well known contrary to the GC

Simulation of the Cygnus region in the 1 – 3 MeV energy band using the ASTROGAM PSF, from an **extrapolation of the 3FGL source spectra to low energies**

ASTROGAM Energy Resolution

Energy resolution up to 10 MeV (becomes 20-30% above 30 MeV)

ASTROGAM Sensitivity

Adapted from Takahashi et al. (2013)

- ASTRO-H/SGD: S(3 σ) for 100 ks exposure of an isolated point source
- **COMPTEL** and **EGRET**: sensitivities accumulated during the whole duration of the CGRO mission (9 years)
- Fermi/LAT: 5σ sensitivity for a high Galactic latitude source and after 1 year observation in survey mode
- ASTROGAM $3\sigma/5\sigma$ sensitivity for a 1-year effective exposure of a high Galactic latitude source

ASTROGAM Line Sensitivity

Gamma-ray line sensitivity: ASTROGAM will gain a factor 10 - 30 in line sensitivity compared to INTEGRAL/SPI

E (keV)	FWHM (keV)	Origin	SPI sensitivity (ph cm ⁻² s ⁻¹)	ASTROGAM sens. (ph cm ⁻² s ⁻¹)
511	1.3	Narrow line component of the e+/e- annihilation radiation from the GC region	5.2×10^{-5}	8.0 × 10 ⁻⁶
847	35	⁵⁶ Co line from thermonuclear SN	2.3×10^{-4}	8.7 × 10 ⁻⁶
1157	15	⁴⁴ Ti line from core-collapse SN remnants	9.6 × 10 ⁻⁵	8.4×10^{-6}
1275	20	²² Na line from classical novae of the <u>ONe</u> type	1.1×10^{-4}	1.1 × 10 ⁻⁵
2223	20	Neutron capture line from accreting neutron stars	1.1×10^{-4}	1.2×10^{-5}

ASTROGAM Scientific motivation

- Focused on the mostly unexplored energy range (0.5 100 MeV). Continuum & line detection.
- It combines, for the first time, Compton and pair production events with an extended energy range (0.3 MeV - 3 GeV), excellent PSF and optimal sensitivity (better than ~ 20 compared to COMPTEL), much improving AGILE and Fermi below 1 GeV.
- Access to completely new "science window" for Galactic, extragalactic & fundamental science.

ASTROGAM Core science

- Tracing the formation of heavy elements and propagation of cosmic rays to star forming regions
- Anti-matter in our Galaxy and beyond
- Galactic Center: central black hole, "Fermi bubbles", dark matter studies
- Supermassive black holes, the extragalactic and cosmic gamma-ray backgrounds
- Jet formation, extreme accelerators, gamma-ray bursts

ASTROGAM Science summary

Galactic Radioactivities

²⁶AI, ⁶⁰Fe, ⁴⁴Ti lines, star formation

Inner Galaxy and Antimatter

resolving the mystery of the GC, e+ sources

Compact Sources

binaries, µ-quasars, AGNs, polarization !

Gamma-Ray Bursts

localization, spectroscopy, polarization !

Cosmic gamma-ray background MeV background

Dark Matter & Fundamental Physics

DM signatures, fundamental physics, linked with Athena, GWs, TeV, neutrino astronomy

What's special about the medium-energy gamma-ray domain?

- Nuclear spectroscopy (independent of T° and ionization state)
- Thermal/non thermal transition (variety of cosmic accelerators)
- Positron annihilation
- Dark matter

Predicted gamma-ray emission from the inner Galaxy due to nuclear interactions of CRs containing a low-energy component adjusted to reproduce the observed mean CR ionization rate

ASTROGAM Positron annihilation

Despite the fact that electron-positron annihilation is the brightest gamma-ray line in the sky the source of the Galaxy's bulge positrons remains a mystery!

ASTROGAM Dark Matter studies

- Dark Matter explored in an unique way
 - -Galactic Center
 - **–Dwarf spheroids**

DM mass range unachievable by other means, unique

ASTROGAM Dark Matter studies

The bulk of the emission even for high WIMP masses is in the energy range 5 - 100 MeV. Decaying DM can also produce a detectable line in the ASTROGAM energy range that might be detectable out of the continuum

ASTROGAN Dark Matter in the Galactic Center

Solar System

High DM density at the Galactic center

 \rightarrow WIMP annihilation radiation from the GC

A.Lapi, A.Paggi, A.Cavaliere, A.Lionetto, A.Morselli, V.Vitale. A&A 510, A90 (2010) [arXiv:0912.1766]

Slide adapted from A. Morselli

The GeV excess from the GC

Claims of evidence for dark matter in the Galactic Center in Fermi data (outside the Fermi Collaboration): i.e. Calore et al., JCAP 2015 and arXiv:1409.0042v1

Gamma-ray excess from the GC?

Possible explanations:

- signal from WIMP dark matter annihilation
- gamma-ray emission from a population of millisecond pulsars,
- emission from cosmic rays injected (burst-like events or continuously) at the GC

Large uncertainties: very crowded region, extremely difficult subtraction of the Galactic diffuse emission and contribution of unresolved sources.

ASTROGAM will provide:

- precise source identification above a few hundreds MeV
- a much improved analysis (factor of 10 in resolving power) of the diffuse gamma-ray background

 \rightarrow It will be possible to distinguish between astrophysical sources and a signal that follows a Dark Matter halo distribution

Gamma-ray excess from the GC?

The inner Galaxy seen by AGILE (E > 100 MeV) (work in progress)

Galactic Center Region ASTROGAM simulated data

Left: ASTROGAM simulated sky map of the GC using the 3FGL catalogue for a 1.5-year integration. Right: Fermi-LAT (pass 7) data for a 6-year exposure (Gomez-Vargas and Morselli)

Galactic Center Region ASTROGAM simulated data

Left: ASTROGAM simulated sky map of the GC using the 3FGL catalogue for a 1.5-year integration. Right: Fermi-LAT (pass 7) data for a 6-year exposure (Gomez-Vargas and Morselli)

Together with Fermi and CTA, **ASTROGAM** will probe most of the space of WIMP models with thermal relic annihilation cross section

ASTROGAM Extragalactic gamma-ray background

36

EGB now measured over 9 orders of magnitudes in energy

- Largest uncertainties in the 1 MeV 100 MeV range
- Origin of the EGB in the 0.3 100 MeV range?? Dark matter contribution?

ASTROGAM Conclusions

- e-ASTROGAM will change our view of the nearby and distant Universe!
- Next chance: ESA M5
- Open to discussion and collaboration