

Running Non-Minimal Inflation with Stabilized Potential

Digesh Raut University of Alabama

"Running Non-Minimal Inflation with Stabilized Potential,"

By Nobuchika Okada and Digesh Raut.

Arxiv: 1509.04439 (PRD Under Review)

Outline

- Outline of Single Field Inflationary Scenario
- Non-Minimal Inflation Scenario
- Inflaton in Particle Physics Context
- Motivation

Inflationary Physics Correlations 2 Low Energy Phenomenology

 Discuss general feature of RGE Improved Gauged Higgs type Inflation with Yukawa sector and analyze the issue of Potential Instability

Model

Non-Minimally Coupled B-L Higgs Inflation

Standard Big-Bang Cosmology and Inflation

- Flatness Problem (Fine-tuning Problem)
 - Our universe is very flat today. : $\Omega(t_0) = 1.02 \pm 0.02$.
 - Requires Extreme Fine-Tuning : 10⁻⁴ (recombination) and 10⁻¹⁶ (BBN)
- <u>Horizon Problem</u>
 - Angular size of causally connected patches at CMB $\,\simeq\,1.6^{\,0}$
- Inflationary Solution
 - Phase of accelerated expansion before BBN era

Inflation:
$$a(t_E) = a(t_I) e^{-60}$$

- Primordial Density Fluctuation

 $\frac{\delta T}{T} \cong 10^{-5}$ (Planck +WMAP)

- Standard Big Bang Cosmology does not explain the origin of these fluctuations
- Inflation scenario naturally generates such density fluctuation

Single Scalar Field: Slow Roll Inflation Scenario

Slow Roll (Inflation Regime)

<u>Reheating (Decay Of Inflaton)</u>

$$\ddot{\phi} + 3H\dot{\phi} + \Gamma\dot{\phi} + m_{\phi}^2\phi = 0 \ . \label{eq:phi}$$

- <u>Decay width</u> (**Γ**): **φ** SM particles
- Themalization of decay products recreates Standard Big Bang Scenario.

Non-Minimal $\lambda \varphi^4$ Inflation Scenario

Jordan Frame

$$\mathcal{S}_J = \int \mathrm{d}^4 x \; \sqrt{-g} \left[-\frac{1}{2} f(\phi) \mathcal{R} - \frac{1}{2} (\nabla \phi)^2 - V_J(\phi) \right] \left(V_J = \frac{\lambda}{4} \phi^4 \right)$$

• <u>Conformal Transformation</u> :

$$\left(g^{E}_{\mu\nu} \equiv f(\phi) \ g_{\mu\nu}\right) \left(f(\phi) = 1 + \xi \phi^{2}\right)$$

<u>Einstein Frame</u>

Canonical Variables

Einstein Frame : O

Non-Minimal Inflation Scenario

<u>Slow-Roll Parameters and E-holding Number</u>

$$\begin{split} \epsilon(\phi) &= \frac{1}{2}m_P^2 \left(\frac{V'_E}{V_E \sigma'}\right)^2, \\ \eta(\phi) &= m_P^2 \left[\frac{V''_E}{V_E (\sigma')^2} - \frac{V'_E \sigma''}{V_E (\sigma')^3}\right], \\ \zeta^2(\phi) &= m_P^4 \left(\frac{V'_E}{V_E \sigma'}\right) \left(\frac{V'''_E}{V_E (\sigma')^3} - 3\frac{V''_E \sigma''}{V_E (\sigma')^4} + 3\frac{V'_E (\sigma'')^2}{V_E (\sigma')^5} - \frac{V'_E \sigma''}{V_E (\sigma')^4}\right) \\ \end{split}$$

Slow Roll Conditions

$$\{\epsilon, \ |\eta|, \ \zeta^2\} \ll 1$$

Observables

$$n_s \simeq 1 - 6\epsilon + 2\eta,$$

$$r \simeq 16\epsilon,$$

$$\frac{dn_s}{d\ln k} \simeq 16\epsilon\eta - 24\epsilon^2 - 2\zeta^2.$$

$$n_s \simeq 0.9603 \pm 0.0073$$

$$r \leq 0.11$$

$$\frac{dn_s}{d \ lnk} \simeq -0.0084 \pm 0.0082$$
Planck 2015 Measurements

Inflationary Predictions for Non-Minimal $\lambda \varphi^4$ inflation, Tree-level vs. Planck 2015

Non-Minimal B-L Inflation Scenario

- Minimal B-L(Baryon-Lepton) Extension of Standard Model
 - 3 generation of right handed Neutrinos (N_i) to make theory free of gauge anomaly.
 - B-L Higgs Field (φ) to break the B-L gauge symmetry.
 - B-L symmetry breaking generates Z' boson mass and Majorana mass for N_i.

$$\mathcal{L} \supset -\frac{1}{2} \sum_{i=1}^{3} Y \varphi \,\overline{N^c} N + \text{h.c.}$$

See-Saw Mechanism

	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-L}$
q_L^i	3	2	+1/6	+1/3
u_R^i	3	1	+2/3	+1/3
d_R^i	3	1	-1/3	+1/3
ℓ_L^i	1	2	-1/2	-1
NR^i	1	1	0	-1
e_R^i	1	1	-1	-1
Н	1	2	-1/2	0
φ	1	1	0	+2

Model: NR with degenerate mass spectrum

• Mass Spectrum : $m_{NR} = \frac{1}{\sqrt{2}} Y_N v_{BL}, \ m_{Z'} = 2g v_{BL}, \ m_{\phi}^2 = 2\lambda v_{BL}^2$

Non-Minimal B-L Inflation Scenario

• Relevant Tree Level Jordan Lagrangian and Masses

$$\left(\mathcal{S}_{J}^{tree} = \int \mathrm{d}^{4}x \sqrt{-g} \left[-\frac{1}{2} f(|\varphi|) \mathcal{R} + (D_{\mu}\varphi)^{\dagger} g^{\mu\nu} (D_{\nu}\varphi) - V(|\varphi|) \right] \right) \left[D_{\mu} = \partial_{\mu} - i2g Z_{\mu}' \right]$$

- B-L Higgs (ϕ) \longrightarrow Inflaton $\varphi = (v_{BL} + \phi)/\sqrt{2}$
- RGE Improved Non-minimal Potential

$$V_E(\phi) = \frac{1}{4}\lambda(\Phi) \ \Phi^4 \quad \Phi \equiv \phi/\sqrt{1+\xi\phi^2}$$

B-L RGE Running

$$\begin{split} & \overline{16\pi^2 \mu \frac{dg}{d\mu}} = 12g^3, \\ & 16\pi^2 \mu \frac{dY}{d\mu} = -6g^2Y + \frac{5}{2}Y^3, \\ & 16\pi^2 \mu \frac{d\lambda}{d\mu} = 20\lambda^2 - (48g^2 - 6Y^2)\lambda + 96g^4 - 3Y^4. \end{split}$$

Frame Independence $\mu \Leftrightarrow \Phi$

RGE Improvement And Potential Instability

• RGE improved quartic coupling (λ)

$$\beta_{\lambda}(\Phi_{I}) = \frac{1}{16\pi^{2}} \Big[20\lambda^{2} - 48g^{2}\lambda + 96g^{4} + 6\lambda Y^{2} - 3Y^{4} \Big]$$

- Instability of RGE improved potential
 - Tree-level $\longrightarrow \lambda(\Phi_{I})$
 - Sufficiently large g and Y

 $\lambda (\Phi) \propto \{g^4(\Phi_I), Y^4(\Phi_I)\}$

• Potential Instability Possibility of Negative running of λ after RGE improvement.

RGE Improvement And Potential Instability

$$\beta_{\lambda}(\Phi_{I}) = \frac{1}{16\pi^{2}} \Big[20\lambda^{2} - 48g^{2}\lambda + 96g^{4} + 6\lambda Y^{2} - 3Y^{4} \Big]$$

RGE Improvement And Potential Instability

Low Energy Predictions • $m_{z'} = 3 \text{ TeV} (fixed)$ 50 20 $\xi = 0.003$ $m_{\phi}(\text{GeV})$ 10 $\xi = 0.01$ $\xi = 0.1$ 5 ξ, m_{ϕ} 2 1 $5 \times 10^{-5} 1 \times 10^{-4}$ 5×10^{-4} 0.001 0.005 0.01 g ξ < 1 $\xi > 1$ Inflationary Predictions same as $m_{z'} / m_{NR} \simeq 0.84$ tree level **Outside our interest**

Inflationary Predictions & constraint on g

 n_s

Inflationary Predictions & low energy correlations

 $\xi < 0.01$: Inflationary constraint on g_{max} more severe than theoretical constraint $\xi > 1$: Inflationary predictions same as tree-level

Conclusions

- We considered $\lambda \phi^4$ inflation with non-minimal gravitational coupling in context of B-L extension of SM with identification of B-L Higgs as Inflaton.
- The instability of the RGE improved potential due to small quartic coupling was solved by imposing the stability condition on the beta function of B-L Higgs quartic coupling.
- The RGE running gave correlations between the physics at very high energies(Inflation) and low energy physics observables.
- We analyzed the slow-roll inflation scenario, and showed that the spectral index (n_s) deviating from tree-level value.
- Interestingly, Planck 2015 constraint for gauge coupling and hence the low energy observable is more severe than the theoretical constraint we imposed to avoid second minimum.

Thank You

arxiv: 1509.04439

Inflationary Prediction Running of Spectral Index

g

Low Energy Predictions $\xi > 1$

• m_{z'} = 3 TeV (fixed)

VEV (φ)

Left to Right $\xi = \{1, 10, 50, 150, 500, 1000\}$

• Minimum m_{ϕ} increases with increased ξ

SM Higgs Mixing

$$\mathcal{L} \supset -\lambda' \left(H^{\dagger} H \right) \left(\varphi^{\dagger} \varphi \right)$$

Diagonalization

$$\begin{bmatrix} h \\ \phi \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}$$

$$2v_{BL}v_{SM}\lambda' = (m_h^2 - m_\phi^2)\tan 2\theta$$

B-L RGE <u>Running and consistency</u> condition

SM Higgs Decay

$$\mathcal{L} \supset Y h \bar{\Psi}_L \Psi_R$$

$$h \simeq \phi_1 + \theta \phi_2$$

$$\theta << 1$$

$$h \simeq \phi_1 (SM \text{ Higgs})$$

$$\phi \simeq \phi_2 (B-L \text{ Higgs})$$

$$\Gamma_{\phi_2} = \sin^2 \theta \times \Gamma_h(m_{\phi_2})$$

SM Higgs Decay Width with mass of SM Higgs Replaced by $m_{\phi 2}$

Reheating

• Reheating Temperature

