GUTs, Inflation, and Phenomenology

Qaisar Shafi

Bartol Research Institute Department of Physics and Astronomy University of Delaware

in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada, B. Kyae, K.Pallis, M. Rehman, N. Senoguz, J. Wickman, A. Vilenkin, M. Bastero-Gil, S. Antusch, S. King, S.Boucenna, S. Morisi, J.Valle

DSU 2015, Kyoto, Japan.

December 2015

Introduction

• GUTs, Inflation & Primordial Monopoles

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

- Supersymmetry & Inflation
- Low Energy Predictions
- Summary

Physics Beyond the Standard Model

- Neutrino Physics: SM + Gravity suggests $m_{\nu} \lesssim 10^{-5}$ eV, which disagrees with neutrino data;
- Dark Matter: SM offers no plausible DM candidate;
- Origin of matter in the universe:
- Electric Charge Quantization: Unexplained in the SM;
- CMB Isotropy / Anisotropy, Origin of Structure require ideas beyond Hot Big Bang Cosmology (which comes from SM + General Relativity.)
- Strong CP Problem.

イロト 不良 とうほう 不良 とうほ

Grand Unified Theories (GUTs)

- Unification of SM / MSSM gauge couplings;
- Unification of matter/quark-lepton multiplets;
- Electric charge quantization; Magnetic monopoles.
- Seesaw physics / neutrino oscillations;
- Quark-Lepton mass relations;
- New source for baryo-leptogenesis;
- Inflation / Observable gravity waves (Planck)

イロト イポト イヨト イヨト ニヨー わらの

Magnetic Monopoles in Unified Theories

Any unified theory with electric charge quantization predicts the existence of topologically stable ('tHooft-Polyakov) magnetic monopoles. Their mass is about an order of magnitude larger than the associated symmetry breaking scale.

Examples:

$$\bigcirc SU(5) \rightarrow SM (3-2-1)$$

Lightest monopole carries one unit of Dirac magnetic charge even though there exist fractionally charged quarks;

2 $SU(4)_c \times SU(2)_L \times SU(2)_R$ (Pati-Salam)

Electric charge is quantized with the smallest permissible charge being $\pm (e/6);$

Lightest monopole carries two units of Dirac magnetic charge;

Magnetic Monopoles in Unified Theories

Examples:

 $\bigcirc SO(10) \rightarrow 4\text{-}2\text{-}2 \rightarrow 3\text{-}2\text{-}1$

Two sets of monopoles:

First breaking produces monopoles with a single unit of Dirac charge.

Second breaking yields monopoles with two Dirac units.

• E_6 breaking to the SM can yield 'lighter' monopoles carrying three units of Dirac charge.

The discovery of primordial magnetic monopoles would have far-reaching implications for high energy physics & cosmology.

Tree Level Gauge Singlet Higgs Inflation

[Kallosh and Linde, 07; Rehman, Shafi and Wickman, 08]

• Consider the following Higgs Potential:

$$V\left(\phi
ight) = V_0 \left[1 - \left(rac{\phi}{M}
ight)^2
ight]^2 \quad \longleftarrow ext{(tree level)}$$

Here ϕ is a gauge singlet field.

 n_s vs. r for Higgs potential, superimposed on Planck and Planck+BKP 68% and 95% CL regions taken from arXiv:1502.01589. The dashed portions are for $\phi > v$. N is taken as 50 (left curves) and 60 (right curves).

 n_s vs. r for Coleman–Weinberg potential, superimposed on Planck and Planck+BKP 68% and 95% CL regions taken from arXiv:1502.01589. The dashed portions are for $\phi > v$. N is taken as 50 (left curves) and 60 (right curves).

Coleman-Weinberg Potential		Higgs Potential		
$M_X \sim 2 V_0^{1/4} (\text{GeV})$	$ au(p o \pi^0 e^+)$ (years)	$M_X \sim V_0^{1/4} (\text{GeV})$	$ au(p o \pi^0 e^+)$ (years)	
5.0×10^{15}	1.8×10^{34}	1.0×10^{16}	2.8×10^{35}	
1.0×10^{16}	2.8×10^{35}	1.2×10^{16}	5.8×10^{35}	
1.2×10^{16}	5.8×10^{35}	1.4×10^{16}	1.1×10^{36}	
1.8×10^{16}	2.9×10^{36}	1.6×10^{16}	1.8×10^{36}	
2.2×10^{16}	6.6×10^{36}	1.8×10^{16}	2.9×10^{36}	
2.7×10^{16}	1.5×10^{37}	2.1×10^{16}	5.5×10^{36}	
3.5×10^{16}	4.2×10^{37}	2.4×10^{16}	9.3×10^{36}	
6.0×10^{16}	3.6×10^{38}	2.9×10^{16}	2.0×10^{37}	

Table: Superheavy gauge bosons masses and corresponding proton lifetimes with $\alpha_G = \frac{1}{35}$ in the CW and Higgs models. Note that since the lifetime depends only on M_X , the results shown here apply equally well to the BV and AV branches in each model.

 n_s vs. H for Coleman–Weinberg potential, superimposed on Planck TT+lowP+BKP 95% CL region taken from arXiv:1502.02114. The dashed portions are for $\phi > v$. N is taken as 50 (left curves) and 60 (right curves).

Higgs Potential:

・ロト (部) (言) (言) (言) (12/34

Primordial Monopoles

- Let's consider how much dilution of the monopoles is necessary. $M_I \sim 10^{13}$ GeV corresponds to monopole masses of order $M_M \sim 10^{14}$ GeV. For these intermediate mass monopoles the MACRO experiment has put an upper bound on the flux of 2.8×10^{-16} cm⁻² s⁻¹ sr⁻¹. For monopole mass $\sim 10^{14}$ GeV, this bound corresponds to a monopole number per comoving volume of $Y_M \equiv n_M/s \lesssim 10^{-27}$. There is also a stronger but indirect bound on the flux of $(M_M/10^{17} \text{ GeV})10^{-16} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ obtained by considering the evolution of the seed Galactic magnetic field.
- At production, the monopole number density n_M is of order H_x^3 , which gets diluted to $H_x^3 e^{-3N_x}$, where N_x is the number of *e*-folds after $\phi = \phi_x$. Using

$$Y_M \sim \frac{H_x^3 e^{-3N_x}}{s} \,,$$

where $s = (2\pi^2 g_S/45)T_r^3$, we find that sufficient dilution requires $N_x \gtrsim \ln(H_x/T_r) + 20$. Thus, for $T_r \sim 10^9$ GeV, $N_x \gtrsim 30$ yields a monopole flux close to the observable level.

SUSY Higgs (Hybrid) Inflation

[Dvali, Shafi, Schaefer; Copeland, Liddle, Lyth, Stewart, Wands '94] [Lazarides, Schaefer, Shafi '97][Senoguz, Shafi '04; Linde, Riotto '97]

- \bullet Attractive scenario in which inflation can be associated with symmetry breaking $G \longrightarrow H$
- Simplest inflation model is based on

$$W = \kappa S \left(\Phi \,\overline{\Phi} - M^2 \right)$$

S= gauge singlet superfield, $(\Phi\,,\overline{\Phi})$ belong to suitable representation of G

• Need $\Phi, \overline{\Phi}$ pair in order to preserve SUSY while breaking $G \longrightarrow H$ at scale $M \gg$ TeV, SUSY breaking scale.

• R-symmetry

$$\Phi \overline{\Phi} \to \Phi \overline{\Phi}, \ S \to e^{i\alpha} S, \ W \to e^{i\alpha} W$$

 \Rightarrow W is a unique renormalizable superpotential

• Tree Level Potential

$$V_F = \kappa^2 \left(M^2 - |\Phi^2| \right)^2 + 2\kappa^2 |S|^2 |\Phi|^2$$

• SUSY vacua

$$|\langle \overline{\Phi} \rangle| = |\langle \Phi \rangle| = M, \ \langle S \rangle = 0$$

 Tree level + radiative corrections + minimal Kähler potential yield:

$$n_s = 1 - \frac{1}{N} \approx 0.98.$$

- $\delta T/T$ proportional to M^2/M_p^2 , where M denotes the gauge symmetry breaking scale. Thus we expect $M \sim M_{\rm GUT}$ for this simple model.
- Since observations suggest that n_s lie close to 0.97, there are at least two ways to realize this slightly lower value:
 (1) include soft SUSY breaking terms, especially a linear term in S;
 - (2) employ non-minimal Kähler potential.

$U(1)_R$ symmetry prevents a direct μ term but allows the superpotential coupling

$\lambda H_u H_d S$

Since $\langle S\rangle$ acquires a non-zero VEV $\propto m_{3/2}$ from supersymmetry breaking, the MSSM μ term of the desired magnitude is realized.

μ -Term Inflation

• U(1) R-symmetry yields the following unique renormalizable superpotential:

$$W = S(\kappa \overline{\Phi} \Phi - \kappa M^2 + \lambda H_u H_d).$$

Include SUSY breaking/SUGRA, the inflationary potential is

$$V(\phi) = m^4 \left(1 + A \ln \left[\frac{\phi}{\phi_0} \right] \right) - 2\sqrt{2}m_G m^2 \phi,$$

$$\phi = \sqrt{2} \operatorname{Re}[S], \ m \equiv \sqrt{\kappa}M,$$

$$A = \frac{1}{4\pi^2} \left(\lambda^2 + \frac{N_\Phi}{2} \kappa^2 \right).$$

• Successful inflation/gauge symmetry breaking requires $\lambda > \kappa$.

• MSSM $\mu\text{-term}$ $\mu=\frac{\lambda}{\kappa}m_G\equiv\gamma m_G.$ $n_s\simeq 1-\frac{2}{N_0}f(B),\ B=\frac{2\sqrt{2}\ m_G\ \phi_0}{A\ m^2}$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

• For
$$N_0=60$$
:
1) $B = 0 \Rightarrow f(B) = 1/2 \Rightarrow n_s \simeq 0.98$.
2) $B = 0.7 \Rightarrow f(B) = 1.03 \Rightarrow n_s \simeq 0.966$.

Figure: Spectral index n_s vs. B. The region between the two dotted (dashed) lines corresponds to 1σ (2σ) limit obtained by Planck 2015.

$$\Gamma(\phi \to \tilde{H}_u \tilde{H}_d) = \frac{\lambda^2}{8\pi} m_{\phi}.$$

$$\Rightarrow T_r \gtrsim 3.2 \times 10^{11} \,\text{GeV}.$$

• Cosmology with gravitinos:

1) LSP gravitino not realized.

2) If m_G is sufficiently large, LSP is still in thermal equilibrium when inflaton/gravitino decay

$$\Rightarrow m_G \gtrsim \left(4.6 \times 10^7 \text{ GeV}\right) \left(\frac{m_{\text{LSP}}}{2 \text{TeV}}\right)^{2/3}$$

 $\begin{array}{l} \mbox{Minimal scenario yields Split Susy} \\ m_0 \sim m_G \sim \mu (\Rightarrow \tan\beta \approx 2, m_h \approx 125 \mbox{GeV}) \\ M_{1/2} \sim \mbox{TeV} \Rightarrow \mbox{Wino dark matter} \end{array}$

Figure: Soft scalar mass m_0 as a function of $\tan \beta$.

Non-minimal Kähler potential

Figure: The region in the κ and κ_S plane satisfying $\mathcal{R} = 4.86 \times 10^{-5}$

Non-minimal Kähler potential

In some cases, $n_s \approx 0.98 - 2\kappa_s$.

Figure: n_s as a function of κ for different values of κ_S ($\mathcal{N} = 1$). The red and pink bands correspond to the WMAP 1σ and 2σ range [?].

μ term, axion and hybrid inflation

Consider the superpotential:

$$W = \kappa S(\bar{H}^{c}H^{c} - M^{2}) - \beta S \frac{(\bar{H}^{c}H^{c})^{2}}{M_{S}^{2}} + \lambda_{1} \frac{N^{2}h^{2}}{M_{S}} + \lambda_{2} \frac{N^{2}\bar{N}^{2}}{M_{S}} + \lambda_{ij}F_{i}^{c}F_{j}h + \gamma_{i}\frac{\bar{H}^{c}\bar{H}^{c}}{M_{S}}F_{i}^{c}F_{i}^{c} + aGH^{c}H^{c} + bG\bar{H}^{c}\bar{H}^{c}$$

$$\begin{split} R: H^c(0), \bar{H}^c(0), S(1), G(1), F(1/2), F^c(1/2), N(1/2), \bar{N}(0), h(0); \\ PQ: H^c(0), \bar{H}^c(0), S(0), G(0), F(-1), F^c(0), N(-1), \bar{N}(1), h(1). \end{split}$$

$$V_{PQ} = 2|N|^2 m_{3/2}^2 \left(4\lambda_2^2 \frac{|N|^4}{m_{3/2}^2 M_S^2} - |A|\lambda_2 \frac{|N|^2}{m_{3/2} M_S} + 1 \right)$$
$$|\langle N \rangle| = |\langle \bar{N} \rangle| = (m_{3/2} M_S)^{1/2} \left(\frac{|A| + \sqrt{|A|^2 - 12}}{12\lambda_2} \right)^{1/2}.$$

μ term, axion and hybrid inflation

- The inflaton potential contains, in addition to the desired minimum at f_a , a local minimum at the origin, with a barrier separating the two.
- One should make sure that the desired minimum is reached after inflation, without generating excessive amount of entropy.
- In this case the subsequent reheating and leptogenesis proceeds in a more conventional way and the μ term $\sim m_{3/2} \sim {\rm TeV}.$

SUSY SO(10)

- Fermion families reside in 16_i (*i*=1,2,3);
- predicts 'right handed' neutrino \Rightarrow non-zero neutrino masses through seesaw mechanism.
- Automatic Z_2 'matter' parity if $SO(10) \rightarrow MSSM$ using only tensor repsns. Also means stable cosmic strings (in addition to monopoles)
- Yukawa couplings include

 $16_i 16_i 10, 16_i 16_i 126, etc.$

• 16_316_310 yields $t - b - \tau$ unification

 $Y_t = Y_b = Y_{\tau} = Y_{\nu} \text{ (not so in non-SUSY SO(10))}$

 In the 'old days' (B. Ananthanarayan, G. Lazarides and Q. Shafi, 1991) it was used to predict the top quark mass

イロト (部) (日) (日) (日) (日)

- Nowadays, one employs $t b \tau$ unification to make predictions, such as sparticle masses, which can be tested at the LHC (Baer et al., Raby et al.,);
- $t b \tau$ Yukawa unification can also be realized in $SU(4)_c \times SU(2)_L \times SU(2)_R$, a maximal subgroup of SO(10);

t-b- τ Yukawa Unification at LHC

$$m_{16}, m_{H_u}^2, m_{H_d}^2, m_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$$

 $\begin{array}{l} 0 \leq m_{16} \leq 30 \, {\rm TeV} \\ 0 \leq m_{H_u} \leq 35 \, {\rm TeV} \\ 0 \leq m_{H_d} \leq 35 \, {\rm TeV} \\ 0 \leq m_{1/2} \leq 5 \, {\rm TeV} \\ 30 \leq \tan\beta \leq 60 \\ -3 \leq A_0/m_0 \leq 3 \end{array}$

In order to quantify Yukawa coupling unification, we define the quantity

$$R_{tb\tau} = \frac{\max(y_t, y_b, y_\tau)}{\min(y_t, y_b, y_\tau)}.$$

29/34

	Point 1	Point 2	Point 3	Point 4
m ₁₆	21370	20230	18640	26130
$m_{1/2}$	93.41	364	579	1021
A_0/m_{16}	-2.43	-2.13	-2.09	-2.11
$\tan \beta$	57.2	51	50	52
m_{H_d}	22500.0	26770	24430	34210
$m_{H_{u}}^{u}$	13310.0	23260	21780	30590
m_h	126.7	125	124	124
m_H	9389	3192	3145	4066
m_A	9328	3171	3125	4040
$m_{H^{\pm}}$	9390	3193	3147	4067
$m_{\tilde{q}}$	750	1375	1853	2991
$m_{\tilde{\chi}_{1}^{0}}$	122, 285	232, 491	323,661	557,1114
$m_{\tilde{\chi}^0_{3}}$	19295, 19295	6048,6048	4570,4571	6315,6315
$m_{\tilde{\chi}^{\pm}_{1,2}}$	286, 19330	493,6021	664,4542	1118,6275
m _{ũL} B	21389,21132	20230,20115	18653,18574	26187,26079
$m_{\tilde{t}_{1,2}}$	7389,8175	3465,5356	3089,5447	4376,7901
m _d _L _B	21389,21513	20230,20333	18653,18742	26187,26304
$m_{\tilde{b}_{1,2}}$	7836,8234	5417,6047	5534,6584	8038,9652
$m_{\tilde{\nu}_1}$	21196	20128	18565	26037
$m_{\tilde{\nu}_3}$	15502	15066	14032	19441
$m_{\tilde{e}_{L,R}}$	21193,21717	20123,20416	18559,18779	26027,26319
$m_{\tilde{\tau}_{1,2}}$	7490,15463	8048,15079	7796,14042	9984,19455
$\Omega_{CDM}h^2$	12642	190	972	1377
R _{tb} _τ	1.06	1.00	1.05	1.07
$BF(\rightarrow b\bar{b}_i)$	0.33	0.13	0.07	0.06
$BF(\rightarrow t\bar{t}_i)$	0.15	0.15	0.69	0.75
$BF(\rightarrow t\bar{b}_j + c.c.)$	0.45	0.33	0.22	0.18

・ロト・日本・日本・日本・日本・日本

SO(10) $t - b - \tau$ YU with NUGM

Consider $M_3: M_2: M_1 = -2: 3: 1.$

	Point 1	Point 2	Point 3
μ	3729	2913	2526
m_h	125	124	123
m_H	747	572	558
m_A	742	568	554
$m_{H^{\pm}}$	753	580	567
$m_{\tilde{\chi}^0_{1,2}}$	895, 3739	848, 2932	709, 2540
$m_{\tilde{\chi}^0_{3,4}}$	3742, 4822	2935, 4562	2543, 3849
$m_{\tilde{\chi}^{\pm}_{1,2}}$	3789,4774	2978,4516	2579,3809
$m_{\tilde{q}}^{1,2}$	7694	7266	6239
m _ũ _L _B	7667, 6824	7219,6415	6295, 5635
$m_{\tilde{t}_{1,2}}$	5331,6560	5239, 6367	4390, 5370
m _{d̃r} p	7668, 6814	7220, 6406	6296, 5628
$m_{\tilde{b}_{1,2}}$	5553, 6526	5434, 6333	4591, 5341
$m_{\tilde{\nu}_{1,2}}$	4148	3870	3487
$m_{\tilde{\nu}_3}$	3898	3641	3243
$m_{\tilde{e}_{L,B}}$	4153, 2234	3875,2009	3491,2068
$m_{\tilde{\tau}_{1,2}}$	1094,3875	881, 3620	1061, 3225
$\Delta(g-2)_{\mu}$	3.11×10^{-11}	3.71×10^{-11}	4.97×10^{-11}
$\sigma_{SI}(pb)$	1.59×10^{-11}	7.08×10^{-11}	1.00×10^{-10}
$\sigma_{SD}(\text{pb})$	4.69×10^{-10}	11.60×10^{-9}	2.89×10^{-9}
$\Omega_{CDM}h^2$	6.5	0.8	4.0
$R_{tb\tau}$	1.02	1.03	1.04

◆□> ◆□> ◆目> ◆目> ◆目> = 三 のへで

b- τ YU in $SU(4) \times SU(2)_L \times SU(2)_R$ (422)

- $m_{16}, m_{H_i}, M_i, A_0, \tan\beta, sign(\mu)$
- $m_{16} \equiv$ Universal soft SUSY breaking (SSB) sfermion mass
- $m_{H_d,H_u} \equiv$ Universal SSB MSSM Higgs masses.
- $M_i \equiv SSB$ gaugino masses.

$$M_1 = \frac{3}{5}M_2 + \frac{2}{5}M_3$$

• $A_0 \equiv$ Universal SSB trilinear interaction

•
$$\tan \beta = \frac{v_u}{v_d}$$

• $\mu \equiv SUSY$ bilinear Higgs parameter $\mu > 0$

Random scans for the following parameter range (NUHM2):

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

	Point 1	Point 2	Point 3	Point 4	Point 5
m ₁₆	12730	9839	17640	7477	11940
M_1	1172	1903	1462	1496	1700
M_2	1820	2881	2327	2335	2660
M_3	550	435.3	165	237	260
m_{H_d}, m_{H_u}	11720, 14690	5967, 7279	12890, 5640	6624, 1513	3111, 5478
$\tan \beta$	36.3	41.3	52.9	32.4	39.0
A_0/m_0	-2.07	-2.41	-2.62	-2.56	-2.63
m_t	173.3	173.3	173.3	173.3	173.3
μ	4957	9186	19086	8552	13149
$\Delta(g-2)_{\mu}$	0.82×10^{-11}	0.72×10^{-11}	0.28×10^{-11}	0.97×10^{-11}	0.45×10^{-11}
m_h	126.4	125.9	123.9	125	123.3
m_H	2262	2157	1799	7900	3058
m_A	2247	2144	1788	7849	3039
$m_{H^{\pm}}$	2264	2160	1802	7901	3061
$m_{\tilde{\chi}^0_{1,2}}$	<mark>641</mark> ,1682	918, 2585	770,2276	715, 2087	837, 2441
$m_{\tilde{\chi}^{0}_{3,4}}$	4973, 4974	9137, 9137	18924, 18924	8537, 8537	13101, 13101
$m_{\tilde{\chi}_{1,2}^{\pm}}$	1697, 4979	2604, 9133	2281, 18927	2104, 8534	2457, 13090
mã	1625	1314	879	790	943
m _{ũ L B}	12743, 12860	9988, 9900	17708, 17538	7616, 7393	12019, 11977
$m_{\tilde{t}_{1,2}}$	<mark>689</mark> , 6131	1042, 4668	5577, 7056	781 , 4077	<mark>901</mark> , 5263
$m_{\tilde{d}_{L,R}}$	12743, 12715	9988, 9853	17708, 17721	7617, 7525	12019, 11933
$m_{\tilde{b}_{1,2}}$	6234, 8566	4706, 5997	6884, 7646	4125, 5259	5293, 7047
$m_{\tilde{\nu}_1}$	12859	10035	17634	7562	12091
$m_{\tilde{\nu}_3}$	11262	8267	12950	6496	10076
$m_{\tilde{e}_{L,R}}$	12846, 12581	10027, 9814	17630, 17854	7554, 7623	12081, 11906
$m_{\tilde{\tau}_{1,2}}$	9129, 11263	5711, 8239	5525, 12875	5399, 6519	7366, 10045
$\sigma_{SI}(pb)$	0.71×10^{-13}	0.16×10^{-13}	0.70×10^{-14}	0.62×10^{-14}	0.27×10^{-13}
$\sigma_{SD}(pb)$	0.18×10^{-9}	0.19×10^{-11}	0.14×10^{-14}	0.41×10^{-12}	0.59×10^{-16}
$\Omega_{CDM}h^2$	0.13	0.86	0.45	∢ _0.09 ∢ →	< ≥ → 0,123 → =
R	1.06	1.18	1.04	1.19	1.09

うくで

	Point 1	Point 2	Point 3
m_{16}	19100	19550	19680
M_1	1799.48	1910.12	1978.2
M_2	2853	3025	3129
M_3	219.2	237.8	240.01
m_{H_d}	15940	16270	17000
$m_{H_{u}}$	10530	10350	10810
A_0/m_0	-2.584	-2.586	-2.554
$\tan \beta$	50.2	49.93	50.81
m_h	124	124	125
m_H	2586	4277	4647
m_A	2571	4250	4617
$m_{H^{\pm}}$	2590	4278	4649
$m_{\tilde{\chi}_{1,2}^0}$	932, 2741	987, 2895	1018, 2988
$m_{\tilde{\chi}_{3,4}^0}$	19309, 19309	19995, 19995	19758, 19758
$m_{\tilde{\chi}_{1,2}^{\pm}}$	2748, 19326	2903, 2001	2996, 19770
$m_{\tilde{q}}$	1019	1069	1075
m _{ũL} B	19187, 19003	19646, 19446	19784, 19566
$m_{\tilde{t}_{1,2}}$	4640, 6790	4777, 7082	5174, 7283
$m_{\tilde{d}_{L,R}}$	19187, 19185	19646, 19640	19784, 19776
$m_{\tilde{b}_{1,2}}$	6664, 7659	6954, 8070	7137, 8091
$m_{\tilde{\nu}_1}$	19117	19569	19696
$m_{\tilde{\nu}_3}$	14107	14428	14478
$m_{\tilde{e}_{L,R}}$	19111, 19274	19562, 19738	19690, 19884
$m_{\tilde{\tau}_{1,2}}$	6372, 14039	6521, 14348	6388, 14399
$\sigma_{SI}(pb)$	1.21×10^{-14}	1.92×10^{-14}	1.85×10^{-14}
$\sigma_{SD}(\text{pb})_{-}$	1.05×10^{-14}	4.54×10^{-14}	9.64×10^{-14}
$\Omega_{CDM}h^2$	0.108	0.083	0.035
$R_{tb\tau}$	1.07	1.09	1.09

Summary

- If $r \sim 0.1 0.02$, then inflation models based on the Higgs / Coleman-Weinberg potentials can provide simple / realistic frameworks for inflation, with minimal coupling to gravity.
- There is a lower bound on H (Hubble constant) in these models. This is important for topological defects in GUT models involving intermediate scales.
- If $r \lesssim 0.01$, then supersymmetric hybrid inflation models are especially interesting. These work with inflaton field values below $M_{\rm Planck}$, and supergravity corrections are under control. The simplest versions employ TeV scale SUSY, and hopefully LHC 14 will find it.
- μ -term assisted hybrid inflation consistent with Wino dark matter and a 125 GeV SM-like Higgs. Gluino mass in the TeV range.
- Susy hybrid inflation compatible with axion physics.
- $b-\tau$ YU in 4-2-2: NLSP Gluino, NLSP Stop
- t-b-τ YU in 4-2-2 (NUHM2): Gluino lightest colored particle (can be ~ 2-3 TeV)