Self-interacting dark matter and monochromatic lines

Takashi Toma

Laboratoire de Physique Théorique d’Orsay

Dark Side of the Universe 2015

in collaboration with Yann Mambrini (LPT Orsay)
Outline

1. Evidences and features of dark matter
2. Self-interacting dark matter and monochromatic lines
 - Offset of the cluster Abell 3827
 - Monochromatic lines from DM annihilations
3. Simple model with pseudo-scalar dark matter
 - Self-interacting cross section
 - Monochromatic lines with constraints
 - Direct detection
4. Summary
Evidences of dark matter

There are many evidences of dark matter.

- Rotation curves of spiral galaxies
- Observation of CMB \((\Omega h^2 = 0.12)\)
- Gravitational lensing effect
- Large scale structure of the universe
- Collision of the bullet cluster

- Existence of dark matter is crucial.
- But its mass and interactions are not known yet.
- The evidences are all indirect through gravitational force.
Cluster Abell3827

- $z = 0.099 \, (\sim 430 \, \text{Mpc from the Earth})$.
- Four galaxies (N1, N2, N3, N4) are localized.
- Offset between center of DM sub-halo and stars is suggested.
- N1 $\Delta = 1.62^{+0.47}_{-0.49} \, \text{kpc offset (3.3 } \sigma \text{ significance)}$
- Consistent between two independent approaches.
Cluster Abell3827

- Drag force is induced by self-interaction of DM
- 1.62 kpc offset may be interpreted as DM self-interaction
 \[\sigma/m \sim 1.7 \times 10^{-4} \left(\frac{10^9 \text{yrs}}{t_{\text{infall}}} \right)^2 \text{ cm}^2/\text{g} \]
 \[\gtrsim 10^{-4} \text{ cm}^2/\text{g} \quad \text{arXiv:1504.03388} \]
 \[\sigma/m \sim 1.5 \text{ cm}^2/\text{g} \quad \text{arXiv:1504.06576} \]
- Not easy to understand by WIMP with \(\mathcal{O}(100) \) GeV.
 \[\rightarrow \sigma/m \lesssim 10^{-11} \text{ cm}^2/\text{g} \]
 \[\rightarrow \text{other scenarios: } \mathbb{Z}_3 \text{ SIMP, Sommerfeld enhancement with light mediator, hidden sector DM etc} \]
Monochromatic lines can be a smoking-gun signature of DM.

- Flux measured by HEAO-1, INTEGRAL, COMPTEL, EGRET.
- 3.5 keV X-ray excess observed in Perseus cluster and Andromeda galaxy. This may be interpreted by DM decay or annihilation.
- Non-detection from smaller galaxies.

- Milky Way \(\text{arXiv:1405.7943}\),
- stacked galaxies \(\text{arXiv:1408.4115}\)

In the case of 7.1 keV decaying DM

We discuss correlation between self-interacting dark matter and monochromatic lines.
The simple model

- add a SM singlet $\Phi = \frac{s + ia}{\sqrt{2}}$

- Self-interaction $\frac{\lambda}{4} |\Phi|^4$ is always allowed for a scalar DM.

- CP-odd particle a is massless under the exact global $U(1)$ symmetry. But at some high energy, $U(1) \to \mathbb{Z}_N$ breaking is expected by non-perturbative effect. $\to m_a \ll m_s$

Scalar potential

$$V = -\mu^2 |\Phi|^2 + \frac{\lambda}{4} |\Phi|^4 + \lambda_{H\Phi} |H|^2 |\Phi|^2$$

After symmetry breaking ($m_s = \sqrt{\lambda \langle \Phi \rangle}$)

$$V = m_s^2 s^2 + \frac{m_a^2}{2} a^2 + \frac{1}{2} \sqrt{\frac{\lambda}{2}} m_s s (s^2 + a^2) + \frac{\lambda}{16} (s^2 + a^2)^2$$
Self-interacting cross section

\[
\frac{\sigma_{aa}}{m_a} = \frac{\lambda^2 m_a}{32\pi \left(4m_a^2 - m_s^2\right)^2} \approx \frac{\lambda^2 m_a}{32\pi m_s^4} \quad \text{for} \quad m_a \ll m_s
\]

Features

- The cross section \(\sigma_{aa}\) is proportional to \(m_a^2\).

- This is unusual behaviour (cf: \(\sigma_{aa} \propto 1/m_a^2\)) because of nature of pseudo-Goldstone boson DM.
Annihilation into photons

Effective interaction with photon

\[\mathcal{L}_\gamma = \frac{s}{\Lambda} F_{\mu\nu} F^{\mu\nu} \]

The cross section

\[\rightarrow \sigma_{\gamma\gamma} = \frac{\lambda m_a^2 m_s^2}{\pi \Lambda^2 (m_s^2 - 4m_a^2)^2} \approx \frac{\lambda m_a^2}{\pi \Lambda^2 m_s^2} \]

- The cross section is proportional to \(m_a^2\).
- The cut-off scale \(\Lambda\) is constrained by observations.

Combine with the self-interacting cross section

\[\sigma_{v\gamma\gamma} = \sqrt{\frac{2}{\pi}} \frac{4m_a^{3/2}}{\Lambda^2} \sqrt{\frac{\sigma_{aa}}{m_a}} \]

\[\approx 1.3 \times 10^{-33} \left(\frac{100 \text{ TeV}}{\Lambda} \right)^2 \left(\frac{m_a}{3 \text{ keV}} \right)^{3/2} \left(\frac{\sigma_{aa}/m_a}{1 \text{ cm}^2/\text{g}} \right)^{1/2} [\text{cm}^3/\text{s}] \]
Constraints on Λ

- Horizontal Branch stars
 The mediator particle s can be produced in stars helium burning lifetime in stars is shortened \rightarrow give a constraint.

- Mono-photon plus missing energy (ASP and LEP bounds)
 $e^+e^- \rightarrow \gamma \rightarrow s\gamma$

 s decays outside the detector $\Gamma_s = \frac{m_s^3}{4\pi\Lambda^2} < \text{a few m}$

- Perturbativity of self-coupling $\lambda \leq 4\pi$

- DM annihilations into photons
 HEAO-1, INTEGRAL, COMPTEL, EGRET, FERMI
 keV \rightarrow GeV scale of DM mass is constrained.
DM mass is bounded by HB and perturbativity.

For $\sigma_{aa}/m_a = 1.7 \times 10^{-4}$ cm2/g, 10 keV $\lesssim m_a \lesssim 10$ MeV and $\Lambda \gtrsim 10^5$ GeV

For $\sigma_{aa}/m_a = 1.5$ cm2/g, 10 keV $\lesssim m_a \lesssim 1$ MeV and $\Lambda \gtrsim 10^6$ GeV
To fit to the 3.5 keV X-ray line

- m_a is fixed to $m_a = 3.5$ keV.
- J_{astro} is astrophysical uncertainty
- 10 TeV $\lesssim \Lambda \lesssim 1000$ TeV is favoured to fit the excess.
Non-detection of the X-ray excess

\[\sigma v_{\gamma\gamma} \lesssim 2.5 \times 10^{-36} \text{ cm}^3/\text{s} \text{ from stacked dwarf galaxies.} \]

- Interpretation by DM annihilation (decay) is excluded (NFW).
- Other scenarios like an excited DM model can evade.
Direct detection of light DM

- Future experiment with superconductors
- Exploring scattering event with electron
- DM mass target range: 10 keV — 1 GeV
- Expected sensitivity of recoil energy is up to $\mathcal{O}(\text{meV})$

arXiv:1504.07237
Direct detection of light DM

When the interaction with electron $\mathcal{L} = g_e s \bar{e} e$ is concerned (generated from Higgs mixing)

$$\sigma^{e}_{\text{DD}} = \frac{\lambda^2 g_e^2}{2\pi m_s^4} \frac{m_a^2 m_e^2}{(m_a + m_e)^2} \frac{m_s^2}{4m_a^2}$$

- Coupling up to $g_e \gtrsim 10^{-7}$ can be testable (1kg·year exposure).
- $g_e \lesssim 10^{-7}$ is excluded by perturbativity of λ.

Takashi Toma (LPT Orsay)

Dark Side of the Universe 2015

18th December 2015
Summary

1. Observation of Abell3827 may imply self-interacting DM.
2. We considered a simple pseudo-scalar DM model.
3. Allowed DM mass scale is keV — MeV in order to have self-interacting cross section being comparable with Abell.
4. This range of DM mass may be searched by future direct detection experiment with superconductors and future gamma-ray experiments like ASTROGAM.