Implications of AMS-02 results for dark matter and Cosmic-ray propagation

Yu-Feng Zhou

Institute of Theoretical Physics, Chinese Academy of Sciences

H.B.Jin, Y.L.Wu, YFZ, Phys.Rev. D92 (2015) 5, 055027 [arXiv:1504.04601]
H.B.Jin, Y.L.Wu, YFZ, JCAP 1509 (2015) 09, 049 [arXiv:1410.0171]
H.B.Jin, Y.L.Wu, YFZ, JCAP 1311, 026 (2013) [arXiv:1304.1997[]

DSU2015, YITP, Tyoto

DM indirect detections

Advantages

- Tiny cross section compensated by huge volume of Galactic DM halo
- Distinct spectral feature and morphology line vs. continuum,

peaky vs. featureless power law,

extended signal in space vs. point-like source.

A number of anomalies observed:

CR positrons, GC gamma-rays, X-rays

Difficulties

- Information loss during CR propagation spectrum change du to E-dependent propagation, convection, re-acceleration, E-loss anisotropic source -->isotropic signals
- Large uncertainties in Theoretical predictions propagation models, Solar modulation
 - Always difficult to rule out astrophysical contributions

AMS-02 is measuring the CRs with unprecedented precisions

The CR positron excess

Phys.Rev.Lett. 113 (2014) 121101

- Positron fraction rises and reaches the maximal at energy ~270 GeV (expected to fall with energy, as secondaries)
- The high energy points set the scale of DM mass and annihilation cross section decay life-time

Positron flux and anisotropy

Phys.Rev.Lett. 113 (2014) 121102

- The rise in positron fraction is due to more positrons rather than less electrons
- Limits on the amplitude of a dipole anisotropy <0.03 at 95% C.L consistent with DM interpretation, cannot ruled astrophysical contributions</p>

Antiproton/proton ratio

CR antiproton flux

- Less likely to be created by pulsars
- much less energy losses during propagation
- More sensitive to propagation parameters, and DM profile

S.Ting "AMS-02 days at CERN", April 15-17, CERN

PAMELA, 0810.4994

The background modeling

Background modeling is data driven

- Simplest approach: assume a "known" background (power-law in source term or flux after propagation)
- Fit the background to some "non-anomalous" cosmic-ray data ("assume" no significant dark matter: p, e⁻, B/C, ¹⁰Be/⁹Be, etc.) and make predictions for DM contribution
- Fit simultaneously the "background" and DM contributions. (treat background as "unknown" as well)
 - e⁺ /(e⁺+e⁻) actually has an impact on BG determination

Uncertainties in propagation parameters crucial for DM prediction

- Significant prop. parameter degeneration in B/C, not in DM → e⁺ and pbar
- Primary source terms degenerate with prop. Parameters

Origin and propagation of CRs

Cosmic-ray transportation equation

Sources of CRs

- Primary sources from SNR, pulsars
- Primary sources from WIMP
- Secondary source from CR fragmentation

Processes in Propagation

- Diffusion (random B field)
- Convection (galactic wind)
- Reacceleration (turbulence)
- Energy loss: Ionization, IC, Synchrotron, bremsstrahlung
- Fragmentation (inelastic scattering)
- Radioactive decay (unstable species)

Solar modulation

Uncertainties

- Distribution of primary sources
- Parameters in the diffusion equation
- Cross sections for nuclei fragmentation
- Distribution of B field
- Distribution of gas

Approaches

- Semi-analytical, two-zone diffusion model.
- Numerical solution using realistic astrophysical data. GALPROP/Dragon code

Sources of cosmic rays

,

• **Primary sources (SNR)**

Assume power low in rigidity

$$\frac{dq_A(p)}{dp} \propto \left(\frac{\rho}{\rho_{As}}\right)^{\gamma_A}$$

Spatial distribution (pulsar survey)

$$q_0 \left(\frac{R}{R_{\odot}}\right)^{\eta} \exp\left[-\frac{R}{\xi} - \frac{R}{R_{\odot}} - \frac{|z|}{0.2 \text{ kpc}}\right]$$

• Secondary sources (cross sections)

$$q(p) = \beta c n_i \sum_{i=\mathrm{H,He}} \int dp' \sigma_i(p,p') n_p(p')$$

only a few, very old pp-,pA-collision data

• Primary DM sources (spectrum)

$$q(\boldsymbol{r},p) = \frac{\rho(\boldsymbol{r})^2}{2m_{\chi}^2} \sigma v \sum_{X} \eta_X \frac{dN^{(X)}}{dp},$$

DM profiles (N-body simulations)

$$\rho_{\odot} \left(\frac{r}{r_{\odot}}\right)^{-\gamma} \left(\frac{1 + (r_{\odot}/r_s)^{\alpha}}{1 + (r/r_{\odot})^{\alpha}}\right)^{(\beta - \gamma)/\alpha}$$

	α	β	γ	$r_s(\mathrm{kpc})$
NFW	1.0	3.0	1.0	20
Isothermal	2.0	2.0	0	3.5
Moore	1.5	3.0	1.5	28.0

Cosmic-ray propagation processes

Diffusion (constant)

 $\hat{\mathcal{L}}_D \psi = \nabla (D_{xx} \nabla \psi)$ Main source of uncertainty $D_{xx} = \beta \overline{D_0} \left(\frac{\rho}{\rho_0}\right)^{\delta_1, \delta_2},$

In general D₀ should be spatial dependent (Dragon code) e.g, larger diffusion const. at higher energy,

Kolmogorov: $\delta = 1/3$

Boundary Condition

flux vanishes at (R_h,Z_h)

Main source of uncertainty Convection

$$\nabla V_c \psi(r,z) - \frac{\nabla V_c}{3} \frac{1}{p^2} \frac{\partial}{\partial p} (p^3 \psi(r,z))$$

$$\left(\frac{dE}{dt}\right)_{\text{Adiab}} = -E\left(\frac{2m+E}{m+E}\right)\frac{V_c}{2h}$$

Reacceleration

$$\frac{\partial}{\partial p}p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi$$

Relation between Dpp and Dxx

$$D_{pp} = \frac{4V_a^2 p^2}{3D_{xx}\delta\left(4 - \delta^2\right)\left(4 - \delta\right)w},$$

determine the propagation models

Observables

- 1) Secondary/Primary
- B/C and sub-Fe(Sc+V+Ti)/Fe sensitive to combination D₀/Z_h
- 2) Radioactive species (cosmic clock)
- ¹⁰Be/⁹Be, ³⁶Cl/Cl, ²⁶Al/²⁷Al sensitive to diffusive halo size
- 3) Stable primaries
- Proton and electron fluxes sensitive to primary sources

Degeneracies between parameters

1. D_0/Z_h , most relevant for DM !

2.
$$\delta + \gamma_{p2} = 2.7$$

3. V_a scales as $(D_0)^{1/2}$

Trotta, etal, arXiv:1011.0037

Maurin, etal, astro-ph/0212111

An alternative analysis framework

Standard approach: B/C+ ¹⁰Be/⁹Be

pros: B/C source independent, only constrain D_0/Z_h , ¹⁰Be: $\tau_{Be10} = 1.4$ Myr, sensitive to D_0 only, break the D_0/Z_h degeneracy corns: low precision ¹⁰Be/⁹Be data (from ACE, ISOMAX) data come from different exps., different solar activity periods,

Alternative approach: B/C + Proton

- B/C + Proton forms a complete set for determining all the propagation parameters.
- Both have been measured by AMS-02
 - Very precisely measured
 - Avoiding combination of syst. errors in different experiments
 - All data from the same period, easy to model solar modulation effects

Proton flux breaks the D_0/Z_h degeneracy in 2D diffusion model

Relative change with Z_h for fixed D_0/Z_h

Breaking term

Analytic solution in 2D two-zone model

 $\psi_i(0) = \frac{2hq_i}{V_c + 2h/\tau_f + D_{xx}S_i \coth(S_i Z_h/2)},$

$$S_i^2 = \frac{V_c^2}{D_{xx}^2} + \frac{4}{D_{xx}\tau_r} + \frac{4\zeta_i^2}{R_h^2}.$$

$$D_{xx}S_i \coth(S_i Z_h/2) \approx \left(\frac{D_{xx}}{Z_h}\right) \left(2 + \frac{V_c^2 Z_h^2}{6D_{xx}^2} + \frac{2Z_h^2}{3D_{xx}^2}\right)$$

D0/Zh degeneracy is broken in stable CR fluxes

- For proton ~5%, data err ~3%
- For B/C ~2%, data error ~4% Thus
- B/C determines D0/Zh
- Proton flux determines Zh

H.B.Jin, Y.L.Wu, YFZ, arXiv:1410.0171, JCAP

Proton flux also breaks the γ + δ degeneracy

Relative change with δ for γ + δ fixed at 2.7

H.B.Jin, Y.L.Wu, YFZ, arXiv:1410.0171, JCAP

A global Bayesian determination of propagation parameters

Input: AMS-02 data on B/C ratio and proton flux

Phys.Rev.Lett. 114 (2015) 171103

Approach: Bayesian statistic analysis + Markov Chain Monte Carlo

Results

(using data from AMS02, ICRC2013)

Trotta, 1011.0037 Fit B/C+¹⁰Be/⁹Be

Quantity	Prior	Best-fit	Posterior mean and	Posterior 95%	Ref. [23]
	range	value	Standard deviation	range	
$Z_h(\mathrm{kpc})$	[1, 11]	3.2	3.3±0.6	[2.1, 4.6]	5.4 ± 1.4
D_0/Z_h	[1, 3]	2.02	$2.00{\pm}0.07$	[1.82, 2.18]	(1.54 ± 0.48)
δ	[0.1, 0.6]	0.29	$0.29 {\pm} 0.01$	[0.27, 0.32]	$0.31 {\pm} 0.02$
$V_a(\mathrm{km}\cdot\mathrm{s}^{-1})$	[20, 70]	44.7	44.6 ± 1.2	[41.3, 47.5]	38.4 ± 2.1
γ_{p1}	[1.5, 2.1]	1.79	$1.78 {\pm} 0.01$	[1.75, 1.81]	$1.92 {\pm} 0.04$
γ_{p2}	[2.2, 2.6]	2.46	2.45 ± 0.01	[2.43, 2.47]	$2.38 {\pm} 0.04$

 D_0/Z_h is precisely determined (err <5%)

$$\frac{D_0}{Z_h} = (2.00 \pm 0.07) \text{ cm}^2 \text{s}^{-1} \text{kpc}^{-1}.$$

A lower Z_h favored

 $Z_h = 3.3 \pm 0.6 \mathrm{kpc}$

H.B.Jin, Y.L.Wu, YFZ, arXiv:1410.0171, JCAP

Correlations between parameters

Prediction for ¹⁰Be/⁹Be consistent with data

Predicted backgrounds

 $e^+/(e^++e^-)$ cannot be accommodated within uncertainties

DM fits including propagation uncertainties

Favored regions and limits

Fermi limits from dSphs

PLANK limits

H.B.Jin, Y.L.Wu, YFZ, arXiv:1410.0171, JCAP

Typical uncertainties in antiproton flux

model	R(m kpc)	$Z_h(\mathrm{kpc})$	D_0	$ ho_0$	δ_1/δ_2	$V_a ({\rm km/s})$	$ ho_s$	γ_{p1}/γ_{p2}
Conventional	20	4.0	5.75	4.0	0.34/0.34	36.0	9.0	1.82/2.36
MIN	20	1.8	3.53	4.0	0.3/0.3	42.7	10.0	1.75/2.44
MED	20	3.2	6.50	4.0	0.29/0.29	44.8	10.0	1.79/2.45
MAX	20	6.0	10.6	4.0	0.29/0.29	43.4	10.0	1.81/2.46

The "new" MIN, MED, MAX models in GALPROP approach

AMS-02 data (almost) consistent with background

AMS-02 pbar data set stringent limits (bb channel)

Upper limits from antiproton could be compatible with that from dwarf galaxies

AMS-02 data favor a heavy DM ?

So far, a heavy DM is not excluded (yet)

H.B.Jin, Y.L.Wu, YFZ, arXiv:1504.04601, PRD

Eg. a 10 TeV DM contribution with Boost factor ~100

Antiproton data at high energies will be crucial

AMS-02 see ~one antiproton/month, due to limited acceptance & rigidity resolution Call for next generation magnet spectrometer

Conclusions

- The AMS-02 experiment has measured the CRs with unprecedented precision.
- The cosmic ray propagation models can be more precisely determined by the new AMS-02 data on B/C and proton flux
- The positron anomaly favor DM annihilation into tau final states, which is in strong tension with Fermi-LAT gamma ray data.
- The first AMS-02 antiproton data can be used to set stringent limits on DM annihilation, compatible with that from the gamma ray data.

