Chaos from Information Metric

Masamichi Miyaji Yukawa Institute for Theoretical Physics

M. Miyaji [arXiv.1606.xxxx]

[Shenker, Stanford, Maldacena]

Black hole information paradox [Hayden, Preskill]

Scrambling

Add local perturbation W to thermal system at $t = -t_w$. If $W(-t_w)$ is scrambled, $W(-t_w)$ is typical operator.

$$W(-t_w) = \sum_{\mathcal{O}} c_{\mathcal{O}}(-t_w)\mathcal{O}$$

For almost all local V, $[W(-t_w), V] \neq 0$ should hold.

Lyapunov exponent

$$C(t) \sim \frac{1}{A} \cdot e^{\lambda_L t} \qquad \longrightarrow \qquad t_w \sim \frac{1}{\lambda_L} \log A$$

Fidelity, Information metric, and Loschmidt echo

Inner product between two states with identical Hamiltonian will be conserved.

No butterfly effect?

[Peres, Jalabert, Pastawski, Jacquod, Silvestrov, Beenakker, Cerruti, Wisniacki, Cucchietti, Gorin, Prosen, Zurek, Seligman, etc...]

 H^{λ}

 $|\Psi_{\lambda}\rangle$

 $|\Psi_{\lambda+\delta}\rangle$

 $H^{\lambda+\delta\lambda}$

Inner product between two states with different Hamiltonians H^{λ} and $H^{\lambda+\delta\lambda}$ decays rapidly in chaotic systems.

Butterfly effect !

Fidelity or Loschmidt echo

$$|\langle \Psi_{\lambda+\delta\lambda}|e^{iH^{\lambda+\delta\lambda}t}e^{-iH^{\lambda}t}|\Psi_{\lambda}\rangle| \quad \stackrel{\bullet}{\longrightarrow} \quad$$

$$= 1 - G_{\lambda\lambda} (\delta\lambda)^2 + \mathcal{O}((\delta\lambda)^3)$$

Information metric

- Detect sensitivity of the states to external environment or internal imperfection
 Measure of decoherence
- Irreversibility

Information metric of TFD state

We perturb TFD state of the theory with external coupling $H_{CFT} + \lambda \cdot V$ at $t = -t_w$ by local operator W on \mathcal{H}_L . TFD state at t=0 is

$$|\Psi_{TFD}(\beta,\lambda,t_w)_W\rangle = e^{-iH^{\lambda}t_w}We^{iH^{\lambda}t_w}|\Psi_{TFD}(\beta,\lambda,t_w)\rangle$$

Information metric is

$$|\langle \Psi_{TFD}(\beta,\lambda+\delta\lambda,t_w)_W|\Psi_{TFD}(\beta,\lambda,t_w)_W\rangle$$

$$= 1 - G^W_{\lambda\lambda}(\delta\lambda)^2 + \mathcal{O}((\delta\lambda)^3)$$

 $=\frac{1}{\sqrt{Z_W(\beta,\lambda)Z_W(\beta,\lambda+\delta\lambda)}}|\mathrm{Tr}[e^{-\frac{\beta}{2}H_L^{\lambda+\delta\lambda}}W^{\lambda+\delta\lambda}(-t_w)W^{\lambda}(-t_w)e^{-\frac{\beta}{2}H_L^{\lambda}}]|$

Information metric

For general quantum systems, information metric can be divided into

$$G^W_{\lambda\lambda} = G^{(0)}_{\lambda\lambda} + G^{W:c}_{\lambda\lambda}$$

The first part is

$$G_{\lambda\lambda}^{(0)} = \frac{1}{2} \int_0^\beta \frac{dt^1 dt^2}{t^1 > \frac{\beta}{2} > t^2} \operatorname{Tr} \left[\frac{e^{-\beta H}}{Z_W(\beta,\lambda)} e^{Ht^1} V e^{-Ht^1} e^{Ht^2} V e^{-Ht^2} W(-t_w)^2 \right]$$

$$-\frac{3}{8}\left(\int_0^\beta dt \operatorname{Tr}\left[\frac{e^{-\beta H}}{Z_W(\beta,\lambda)}e^{Ht}Ve^{-Ht}W(-t_w)^2\right]\right)^2$$

$$\langle V(t)V\rangle_{\beta} \sim \mathcal{O}(e^{-\frac{t}{t_r}})$$

For large N theory, when scrambling time is much larger than relaxation time,

$$G_{\lambda\lambda}^{(0)} \approx \frac{1}{2} \int_{0}^{\beta} \frac{dt^{1} dt^{2}}{t^{1} > \frac{\beta}{2} > t^{2}} \operatorname{Tr} \left[\frac{e^{-\beta H}}{Z(\beta,\lambda)} e^{Ht^{1}} V e^{-Ht^{1}} e^{Ht^{2}} V e^{-Ht^{2}} \right]$$

This is equal to unperturbed information metric. In particular, it's time independent.

Information metric

The second part is

$$\begin{split} G_{\lambda\lambda}^{W:c} &= Re \Big[\frac{1}{2} \int_{0}^{t_{w}} dt^{1} dt^{2} \mathrm{Tr} \Big[\frac{e^{-\beta H}}{Z_{W}(\beta,\lambda)} \Big[W(-t_{w}), \ V(-t^{1}) \Big] \cdot \Big[W(-t_{w}), \ V(-t^{2}) \Big]^{\dagger} \Big] \\ &+ \frac{i}{2} \int_{0}^{\frac{\beta}{2}} dt_{E} \int_{0}^{t_{w}} dt \mathrm{Tr} \Big[\frac{e^{-\beta H}}{Z_{W}(\beta,\lambda)} e^{Ht_{E}} V e^{-Ht_{E}} \Big[\Big[W(-t_{w}), \ V(-t) \Big], \ W(-t_{w}) \Big] \Big] \Big] \\ &- \frac{1}{2} (\int_{0}^{t_{w}} dt \mathrm{Tr} \Big[\frac{e^{-\beta H}}{Z_{W}(\beta,\lambda)} \Big[W(-t_{w}), \ V(-t) \Big] \ W(-t_{w}) \Big])^{2} \end{split}$$

All of the terms are proportional to commutator $\left[W(-t_w), V(-t)\right]$

- Rapid growth of the second part of information metric means scrambling.
- Expected to behave $\sim e^{\lambda_L t_w}$
- For large N theory with hierarchy, rapid growth of information metric itself is enough to ensure scrambling.

Holographic proposal for Information Metric

Consider time dependent states $|\Psi_{\lambda}\rangle$ and $|\Psi_{\lambda+\delta\lambda}\rangle$ governed by Hamiltonians $H_{CFT} + \lambda \cdot V$ and $H_{CFT} + (\lambda + \delta\lambda) \cdot V$ with marginal deformation V, whose dual spacetimes

are the same, except for scalar field configurations.

M.M., Numasawa, Shiba,

Takayanagi, Watanabe]

Proposal

Consider a extremal volume codimension 1 surface Σ_d which ends at $t = t_0$ at the boundary of spacetime.

$$|\langle \Psi_{\lambda+\delta\lambda}(t_0)|\Psi_{\lambda}(t_0)\rangle| = 1 - G_{\lambda\lambda}(\delta\lambda)^2 + \mathcal{O}((\delta\lambda)^3)$$

 $n_d > 0$ $n_d \sim \mathcal{O}(1)$

The proposal is consistent with the result of pure AdS case and two sided BH case.

* "Complexity = Maximal volume" was proposed in [Stanfords, Susskind]

Shock wave geometry [Shenker, Stanford]

A few particles thrown into BH from left boundary at $t = -t_w$. Two sided BH Proper energy at t = 0 is

$$E_p \approx \frac{E}{R} e^{\frac{2\pi}{\beta}t_w}$$

Back reaction can't be neglected for $t_w >> \beta$. The geometry can be approximated by shock wave geometry.

The geometry is given by attaching two BHs with mass M and M + E. For large t_w and $E \ll M$,

$$v_L = v_R + \alpha$$
$$\alpha = \frac{E}{u_w} \frac{d}{dM} \left[-e^{f'(R)r_*(r)} \right]|_{r=R} \propto \frac{1}{N^2} e^{\frac{2\pi}{\beta}t_w}$$

t = 0 slice of this spacetime is dual to

$$|\Psi_{TFD}(\beta,\lambda,t_w)_W\rangle = e^{-iH^{\lambda}t_w}We^{iH^{\lambda}t_w}|\Psi_{TFD}(\beta,\lambda,t_w)\rangle$$

By computation,

$$\lambda_L = \frac{2\pi}{\beta} \qquad t_w = \frac{\beta}{2\pi} \log N^2 + \cdots$$

Information metric from holography

Holographically, $|\langle \Psi_{TFD}(\beta, \lambda + \delta\lambda, t_w)_W | \Psi_{TFD}(\beta, \lambda, t_w)_W \rangle|$ = $e^{-n_d (\delta\lambda)^2 \int_{\Sigma_d} \sqrt{g}}$ = $1 - n_d (\delta\lambda)^2 \int_{\Sigma_d} \sqrt{g} + \mathcal{O}((\delta\lambda)^4)$

 Σ_d is the maximum volume surface.

$$G^W_{\lambda\lambda} = G^{(0)}_{\lambda\lambda} + G^{W:c}_{\lambda\lambda}$$

Information metric from holography

For d=2, numerical result shows $G_{\lambda\lambda}^{W:c}$ grows proportional to $\alpha = \frac{E}{4M} e^{\frac{2\pi}{\beta}t_w}$

$$G_{\lambda\lambda}^{W:c} = f_0 \alpha + \mathcal{O}(\alpha^2) \qquad f_0 > 0 \quad f_0 \sim \mathcal{O}(N^0)$$

The second part of information metric indeed grows exponentially rapidly in holographic CFT.

Consistent with intuitive picture of butterfly effect.

Conclusion

Rapid growth information metric of TFD state for external environment or internal imperfections signifies scrambling, at least for large N theories.

Using holographic proposal for information metric, we confirmed information metric indeed grows exponentially fast in holographic theory.

Butterfly effect !

Future problems

Analytical and numerical calculations.

Various regimes of Loschmidt echo: e.g. Strong perturbation.

Confirm equilibration of reduced density matrices = growth of commutators?