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Summary of the results

I will discuss two-dimensional conformal field theories with a
non-vanishing gravitational anomaly cL ̸= cR.

I will prove the following chains of implications:

lattice regulation ⇒ boundary CFT ⇒ cL = cR

and

Hilbert space factorization ⇒ boundary CFT ⇒ cL = cR

Thus proving the following facts for gravitationally-anomalouns
theories:

1. they do not admit a lattice regularization [Nielsen–Ninomiya];

2. they do not admit a Hilbert space factorization, and hence

3. they do not admit any definition of entanglement.
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A map of the talk

We will prove the following implications:

lattice regularization

boundary CFT cL = cR

Hilbert space factorization
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A map of the talk: contrapositive

And derive the following facts:

no lattice regularization

cL ̸= cR no boundary CFT

no Hilbert space factorization

no entanglement

Domenico Orlando Boundaries, Lattices and the Gravitational Anomaly



Introduction lattice ⇒ boundary boundary ⇒ cL = cR Nielsen-Ninomiya factorization ⇒ bCFT no entanglement

Outline

Introduction

Lattice regularization implies boundary CFT

Boundary consistency implies cL = cR

Consequences: a generalized Nielsen–Ninomiya theorem

Tensor factorization implies boundary CFT

Consequences: no entanglement

Domenico Orlando Boundaries, Lattices and the Gravitational Anomaly



Introduction lattice ⇒ boundary boundary ⇒ cL = cR Nielsen-Ninomiya factorization ⇒ bCFT no entanglement

Outline

Introduction

Lattice regularization implies boundary CFT

Boundary consistency implies cL = cR

Consequences: a generalized Nielsen–Ninomiya theorem

Tensor factorization implies boundary CFT

Consequences: no entanglement

Domenico Orlando Boundaries, Lattices and the Gravitational Anomaly



Introduction lattice ⇒ boundary boundary ⇒ cL = cR Nielsen-Ninomiya factorization ⇒ bCFT no entanglement

Lattice regularization

Consider a CFT C in 1+ 1 dimensions.
Suppose that C has a UV completion described by a Hamiltonian
system living on a lattice.

▶ lattice spacing ℓ

▶ sites labelled by integers n
▶ fundamental degrees of freedom Φn.

We also assume locality:
▶ canonical commutators in the lattice theory
▶ the lattice Hamiltonian only couples degrees of freedom

separated by some bounded number (Δn)max of lattice sites
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Lattice regularization

We can write the lattice Hamiltonian as

H = ℓ∑
n
Hn ,

where the local Hamiltonian at n is a function of the sites in a
neighborhood of n

Hn = Hn({Φn′ |
∣∣n− n′

∣∣ ≤ (Δn)max }).

We assume that the couplings are tuned so that the Hamiltonian
flows in the IR to the two-dimensional CFT C.
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Lattice implies boundary in the discretum

We want to show that this regularization implies that C admits a
consistent, unitary quantization on a space with boundary.

First, look at the lattice regularization.
Shift the local Hamiltonians by (Δn)max

Ĥn = Hn+(Δn)max

and delete all the degrees of freedom with n < 0:

Ĥ = ℓ ∑
n≥0

Ĥn .

This new Hamiltonian includes only interactions on the right of n = 0.

We do not need to impose any special value for the degrees of
freedom at the boundary n = 0: the discrete system has free
boundary conditions.
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Lattice implies boundary in the continuum

Remember that Hn depends only on n′ with |n− n′| ≤ (Δn)max.

The deletion of the degrees of freedom at negative lattice sites does
not affect the local dynamics of the theory away from the boundary;
the Hamiltonian density is modified only within a distance
(Δn)max × ℓ of the boundary, which goes to zero in the continuum
limit.

The system in the infrared is described by the conformal field theory
C living on the half-line R+, with some boundary condition.
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The boundary conditions

Unitarity and energy conservation are manifest in the lattice system
on the half-line, and are inherited automatically by the continuum
limit.

Conformal invariance of the theory with boundary is less obvious.
We do not have a priori control over the boundary conditions of the
continuum theory.
We need to use a conjecture of Friedan and Konechny on the
monotonicity of the Affleck-Ludwig g-function under renormalization
group flow
The infrared limit of the lattice system on the positive half-lattice is
the CFT C quantized on R+ with an energy-conserving, unitary, and
conformally invariant boundary condition.

Equivalently, we can think of a boundary state |B⟩.
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Boundary states and central charge

A boundary state representing a energy-conserving conformal
boundary condition, must satisfy [Cardy](

Ln − L̃n
)
|B⟩ = 0 ∀n

Now, act with
(
−L−n + L̃n

)
on the right and subtract the same

equation with n → −n. Use the commutation relations of the
Virasoro algebra and the condition becomes[

2n
(
L0 − L̃0

)
+
n3 − n
12

(cL − cR)
]
|B⟩ = 0.

But
(
L0 − L̃0

)
|B⟩ = 0, so we find that

(cL − cR) |B⟩ = 0

Non-trivial boundary conditions |B⟩ are only possible if cL = cR.
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A generalized Nielsen–Ninomiya theorem

We have proven two implications:

lattice regulation ⇒ boundary CFT

and

boundary CFT ⇒ cL = cR

Now we can string them together and take the contrapositive:

cL ̸= cR ⇒ no bCFT ⇒ no lattice regulation

This is the generalized version of the renowned Nielsen–Ninomiya
theorem.
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The relevance for Quantum information theory

Why is our result relevant for quantum information?
To see that, we need to refine the first implication: lattice ⇒ bCFT.

Let Σ be the spatial slice of our system and let Σ = A∪ B. We want
to show that if the Hilbert space factorizes HA∪B = HA ⊗HB, then we
can define a bCFT.

In other words, we want to show that if the Hilbert space is
factorizable, starting from the CFT Hamiltonian HΣ we can define two
Hamiltonians HA and HB on the two Hilbert spaces associated the
bounded regions A and B. These Hamiltonians are locally the same
as the initial Hamiltonian.
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Factorizaton of the operator algebra

The typical situation is the inverse. Given an operator OA on HA we
can associate it to and operator OΣ ∈ A(HΣ) as follows:

OΣ = OA ⊗ 1B

which defines the embedding of A(HA) in A(HΣ).

What we need is to define a projection that goes the other way round:

A(HΣ) → A(HA)

which, roughly speaking, is obtained by taking the partial trace of the
operator

OΣ 7→ OA ∝ TrB[OΣ]
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Parental advisory
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Regularization

In general O is not trace-class, so we need to regularize.
The natural choice is to use the data of the CFT and introduce a
heat-kernel regularization using the full Hamiltonian HΣ:

OA ∝ Tr′B[OΣ] ≡ lim
ε→0

TrB[OΣe−εHΣ ].

In this way we can define the regularized Hamiltonian on the sector A
using Stone’s theorem:

HA ∝ Tr′B[H] = − lim
ε→0

d
dε

TrB[e−εHΣ ]
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Regularization

Let me comment on the operator we have defined:

TrB[e−εHΣ ]

This is the exponential of the von Neumann entropies of the reduced
density matrices of the thermal ensemble at temperature 1/ε.

Physically we can think of it as the effective dimension of the Hilbert
space HA accessible at energy 1/ε.
In this sense, the scaling of ε describes an RG flow.
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The boundary

The construction is well defined in the bulk (away from the boudary
between A and B), where we are assured that all the corrections to
the unregulated Hamiltonian vanish for ε→ 0.

At the boundary there might be operators that appear with negative
powers of ε (e.g. a cosmological constant would appear as ε−1).

Again we must appeal to the Konechny–Friedan hypothesis.
Scaling ε→ 0 is a boundary renormalization group flow for a CFT,
and leads to a bCFT (if g is bounded).

To recap: we have shown that if the Hilbert space is factorizable
HA∪B = HA ⊕HB, then we can define a boundary conformal field
theory on the two halves, with Hamiltonians HA and HB.
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I’m sorry Dave, I’m afraid I can’t do that
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Consequences

We have now the following chain of implications:

Hilbert space factorization ⇒ boundary CFT

and

boundary CFT ⇒ cL = cR

Once more we take the contrapositive:

cL ̸= cR ⇒ no bCFT ⇒ no Hilbert space factorization

In a gravitationally anomalous theory there is no tensor
factorization of the Hilbert space into Hilbert spaces supported in
complementary regions of a spatial slice.

It follows that no definition of entanglement is possible.

Domenico Orlando Boundaries, Lattices and the Gravitational Anomaly



Introduction lattice ⇒ boundary boundary ⇒ cL = cR Nielsen-Ninomiya factorization ⇒ bCFT no entanglement

Thank you

for your attention
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A map of the talk

no lattice regularization

cL ̸= cR no boundary CFT

no Hilbert space factorization

no entanglement
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What I am not saying

In any separable Hilbert space you can always write a basis and
tensor factorize that basis into factors.
Our result is that those tensor factors can’t be thought of as
representing Hilbert spaces living in complementary regions of a
spatial slice.
If the spatial slice is Σ = A∪ B then we don’t have in general
HΣ = HA ⊗HB.
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The Konechny–Friedan hypothesis

In the lattice description we have obtained a theory with free
boundary conditions. Does this flow to a conformal boundary?

The intuition is the following. Go to the scale Λcft where the bulk
Hamiltonian flows to the CFT. Either the bCFT is conformal, or there
still are non-conformal operators with large coefficients.

▶ either they are irrelevant and flow to zero at long distances
▶ or they are relevant and can be integrated out, leaving us with a

boundary condition with fewer degrees of freedom.

So eventually, one expects, the process should terminate when we
reach a fixed point, or at the latest when there are no boundary
degrees of freedom left, and we should get to a conformal boundary
condition.
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The Konechny–Friedan hypothesis

To make this intuition more precise, there is actually a functional on
boundary theories in two-dimensional CFT, the Affleck-Ludwig
g-function.

This is monotonic along RG flows and stationary if and only if the RG
flow is at a fixed point, essentially like Zamolodchikov c-function.

Problem: the g-function is only conjectured to be bounded below.

Friedan and Konechny have provided a great deal of evidence for the
hypothesis.
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