Fixed Point Matrix Product States and 1+1D Topological Quantum Field Theory

Alex Turzillo

California Institute of Technology Based on work with A. Kapustin and M. You.

June 2, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- Classification of Gapped Phases in 1+1D
- Matrix Product States (MPS), real-space RG, and fixed points

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Lattice TQFT realization of fixed point MPS
- Generalizations: symmetric MPS and fermionic MPS

Gapped Hamiltonians in 1+1D

► state space $\mathcal{H} = \bigotimes_{s}^{N} \mathcal{A}_{(s)}$, local Hamiltonian $H = \sum_{s} h_{s,s+1}$

gapped: energy gap persists in thermodynamic limit

exhaustive example: local commuting projectors (LCP)

Matrix Product States

- physical space $\mathcal{A} \simeq \mathbb{C}^d$, virtual space $V \simeq \mathbb{C}^D$
- MPS tensor $\mathcal{P}: V \otimes V^* \to \mathcal{A}$, adjoint $T = \mathcal{P}^{\dagger}$
- defines state $|\mathcal{P}\rangle \in \mathcal{A}^N$ and LCP Hamiltonian $h_{\mathcal{P}} |\mathcal{P}\rangle = 0$

 MPS efficiently approximate ground states of gapped local Hamiltonians [Hastings 07]

Real-space RG for MPS

$$\blacktriangleright \ \mathcal{P}' := (TT)^{\dagger} : V \otimes V^* \to \mathcal{A} \otimes \mathcal{A}$$

• truncate to dim $im \mathcal{P} \leq D^2$, RG converges

- Fixed point: A inherits an algebra structure (of operator products), V is a module over A.
- ► Canonical form [Perez-Garcia et al 06]: the T(e_i) can be simultaneously block-diagonalized → A is semisimple
- ► GSD is # of distinct blocks of T = number of simple components of A = dimension of Z(A)

Gapped Phases in 1+1D

 A Gapped Phase is an equivalence class of gapped systems. Two systems lie in the same phase if they can be smoothly connected without closing the gap:

$$egin{aligned} & (\mathcal{A}_0, \mathcal{H}_0) \sim (\mathcal{A}_1, \mathcal{H}_1) \ & \exists \mathcal{H}_{t \in [0,1]}' \ & \mathcal{A}_0 \oplus \mathbb{C}^{n_0} \simeq \mathcal{A}_1 \oplus \mathbb{C}^{n_1} \ & \mathcal{H}_{t=i}' = \mathcal{H}_i \oplus \mathbb{1}_{n_i} ext{ for } i = 0,1 \end{aligned}$$

- ► 1+1D gapped phases are boring (no top. order / LRE)! They are characterized entirely by their GSD [Schuch et al 10]
- However, adding symmetry, we get SPTs. Adding fermions, we get fermionic (invertible) topological order.

Topological Quantum Field Theory

- Lagrangian description of fixed points of gapped systems
- assigns state spaces to circles, linear maps to bordisms
- ▶ alg. description: commutative Frobenius algebra [Atiyah 89]

- Iattice TQFT: combinatorial, local [Fukuma et al 94]
- ▶ label edges by $e_i \in A$, sum over labelings with weight $\prod_{\Delta} C_{ijk}$
- symmetric Frobenius + unitarity = semisimple algebra
- ▶ lattice TQFT with $A \longrightarrow$ continuum TQFT with Z(A)

Tensor Networks from TQFTs

- LTQFT on triangulation \longrightarrow tensor network on dual complex
- ► tensors C^k_{ij} on interior vertices, T^µ_{νi} on boundary
- ► topological invariance ⇒ tensor network is a fixed point

 ► cylinder with boundary condition T (a module) on one end has MPS |T⟩ on the other

Generalization: Symmetric MPS from Equivariant TQFT

- ▶ H_t sym. \rightarrow gapped sym. phases (SPTs, SETs) [Gu, Wen 09]
- response to b.g. gauge field \rightarrow equivariant TQFT

- equivariant state-sum / tensor network: group labels on edges
- equivariant state-sum on cylinder \rightarrow symmetric MPS
- twisted sectors: $\sum \operatorname{tr} \left[\rho(g)_V T^{i_1} \cdots T^{i_N} \right] |i_1 \cdots i_N\rangle$
- charges (broken sym): $\rho_A(g)^N \left| \psi_X^T \right\rangle = \left| \psi_{\rho X \rho^{-1}}^T \right\rangle$
- also works for anti-unitary symmetries such as time-reversal

Generalization: Fermionic MPS from Spin TQFT

- spin TQFT: sensitive to spin structure η and topology
- \blacktriangleright on the lattice, model η as a certain non-flat 1-chain
- ▶ define a state-sum with Koszul signs [Gaiotto, Kapustin 15]
 - $Z(X,\eta) \sim \sum \prod_{\Delta} C_{ijk} g^{lm} \sigma(\beta) s(\beta,\eta)$
 - \blacktriangleright supercohomology [Gu, Wen 12] + correction due to η
- on cylinder, get fermionic MPS

$$\sum \mathsf{Tr}[\mathcal{T}\cdots\mathcal{T}\sigma(eta)s(eta,\eta)]\ket{\cdots} = \mathsf{superTr}[\mathcal{T}\cdots\mathcal{T}]\ket{\cdots}$$

extension: supergroup symmetries, supersymmetries?

Classification

- standard TQFT with boundaries
 - \blacktriangleright determined by sym. Frob. algebra ${\cal A}$ and its modules
 - can recover \mathcal{A} from its category of modules
 - TQFT \simeq Morita class of s.s. algebras \simeq center
- ► TQFTs with additional structure: equivariance, spin, etc
 - determined by "algebra objects" in some sym. mon. category
 - Morita classes of algebra objects gives TQFTs
- fixed point MPS (phases) have the same classification
- invertible phases = invertible Morita classes
 - Rep(G) recovers group cohomology classification of SPTs
 - ▶ sRep (G, ϵ) *should* recover spin cobordism, fermionic SPTs
- ► Bosonization sRep(G, e) → Rep(G) relates the symmetric bosonic and fermionic constructions and classifications