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This is fine: This is a Coarse-Grained Entropy.
(Like the relation between energy and temperature)

• Ryu-Takayanagi and AdS/CFT
o Entanglement Entropy of a CFT subregion = Area operator 

evaluated on minimal surface

This is NOT fine: This is a microscopic measure of entanglement

[Ryu, Takayanagi]
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Operator equals entropy…
You Ryu-Takayanagi people 
have to fix that!
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• Entanglement Entropy (EE):

• But it CAN be written as the expectation value of a 
linear operator!

• However, this operator gives the correct result only 
within this specific state.

Let’s demonstrate this with an example…
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Example: Two Qubit Hilbert Space

• This is spanned by the product states:

• Assume the existence of an EE operator that computes 
the entropy of, say, the right qubit.

• Since the entropy in ANY product state is zero, it is easy 
to convince yourself that it must be the zero operator.

• But then, what about entangled states:
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• We have demonstrated that EE cannot be written as the 
expectation value of a linear operator.

• But then, how should we understand the Ryu-Takayanagi
formula which says that it is!

• Does this mean that the area operator is a ‘nonlinear’ 
and ‘state dependent’ operator? But what about the 
intuition from canonical quantum gravity?

• Is this perhaps a new insight into quantum gravity?!!





No…



I will
• provide a not-so-drastic resolution of this issue.
• show that in certain regimes the EE in holographic 

theories does behaves like a linear operator.
• demonstrate this by computing the EE of an interval in 

states dual to macroscopic superpositions of distinct 
geometries.



I will
• provide a not-so-drastic resolution of this issue.
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• demonstrate this by computing the EE of an interval in 
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geometries.

The goal would be to compare the results on both sides 
of the duality. I will focus on 
On the Bulk: Motivate how I expect the area operator to 
behave.
On the Boundary: Rely heavily on 1+1 holographic CFT 
techniques to compute the EE using the replica trick.
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[Ryu, Takayanagi]

• The question: How do the Entropy and Area behave under 
superpositions of geometries? 
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The Area Operator of RT is…

1. Gauge Invariant
• Guaranteed by the minimality condition

2. Supported on R
• Via entanglement wedge reconstruction

3. A Linear Operator
• It is a nonlinear functional of the metric operator

4. Fairly Diagonal in a Semi-Classical Basis
• Fluctuations in semi-classical states vanish as



The Area Operator of RT
A Prediction

• The takeaway: 
Since the off-diagonal terms are suppressed, the expectation value 
of the area operator in a superposition will simply be the average 
of the area in each branch of the wavefunction.

• Extending the RT formula, we make the prediction:



EE of a Superposition



• Now let’s discuss what the EE looks like for a superposition 
of macroscopically distinct semi-classical states. We want 
to compare this to how the area operator behaves.

• We will consider two cases:
• Superpositions of TFD’s of different temperature.
• Superpositions of single sided pure states.

EE of a Superposition
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• Let’s consider the state

where

• Compute the entropy of the right CFT:

• Each                   . The magnitude of the second term
• So long as                  we have

Entropy of Mixing

[Lindem, Popescu, Smolin]

Approximations 
made are not valid 
when   .  … . . . . .
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EE of a Superposition
Single Sided Pure States

• Next, let’s consider

• The replicated density matrix

• Assuming Virasoro Identity Block dominance we find:

• Averaging breaks down once VI Block dominance fails. 
This occurs when 



A Linear Entropy Operator?

• So far we saw that the entanglement entropy of an interval 
averages in subspaces of dimension much less than     .



A Linear Entropy Operator?

• So far we saw that the entanglement entropy of an interval 
averages in subspaces of dimension much less than     .

• In the TFD case we found this ‘entropy of mixing’ 
contribution. This is a new contribution to RT.



A Linear Entropy Operator?

• So far we saw that the entanglement entropy of an interval 
averages in subspaces of dimension much less than     .

• In the TFD case we found this ‘entropy of mixing’ 
contribution. This is a new contribution to RT.

• The entropy of mixing piece is truly a nonlinearity: One can 
never end up with logarithms of amplitudes when taking 
expectation values of linear operators.



A Linear Entropy Operator?

• So far we saw that the entanglement entropy of an interval 
averages in subspaces of dimension much less than     .

• In the TFD case we found this ‘entropy of mixing’ 
contribution. This is a new contribution to RT.

• The entropy of mixing piece is truly a nonlinearity: One can 
never end up with logarithms of amplitudes when taking 
expectation values of linear operators.

• RT seems very resilient! I hoped to find something wrong 
with the Area piece without resorting to      states!
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• There turns out to be a more blatant nonlinearity: let’s 
assume the RT formula for all semi-classical states

and consider such a state defined on a product Hilbert         
.  space of two CFTs
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• The homology constraint is the source of this nonlinearity. 
• The RT homology prescription is not a linear property in 

the CFT.

• This makes sense: the homology constraint is sensitive to 
whether the two CFTs are connected via a wormhole. This 
notion we know is not a linear observable.

A Linear Entropy Operator?



Lessons..

• That EE in holographic theories behaves like a linear 
operator within subspaces of dimension          .

• Maybe this is a general lesson that ‘State-dependent’ 
quantities can behave like linear operators within 
certain subspaces. Is there a Complexity Operator?

• The Homology prescription is not linear in the CFT.
• Some open questions:

• Single Sided Entropy of Mixing?
• FLM corrections?
• Multiple intervals?
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• To study this further, consider the following approximate 
form of the TFD:

Actually, let’s restrict the number of terms,

and compute the EE of an interval on the right CFT.

Homology
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• Think Shenker-Standford wormholes!
• The RT surface is hidden in the causal shadow. 

• This is just an analogy. We’re not sure exactly what the dual 
looks like.

Homology



• Upshot: A different Area operator needs to be used for 
different           . Each operator is linear, but the prescription 
of choosing the ‘right’ operator is not.

Homology



Lessons..

• That EE in holographic theories behaves like a linear 
operator within subspaces of dimension          .

• Maybe this is a general lesson that ‘State-dependent’ 
quantities can behave like linear operators within 
certain subspaces. Is there a Complexity Operator?
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