
Topological Entanglement 
Negativity in Chern-

Simons theories

Po-Yao Chang,    
05/31/2016, YITP 

Center of Materials Theory, Rutgers University 
In collaboration with Xueda Wen and Shinsei Ryu

A1

A2

A1A1

A2 A2

(a)

’

A1

A1 A1

A2 A2

A2

A2

’A1

’A1 ’A1

’A1

’A1 ’A1

’A2 ’A2

’A2 ’A2

’A2

(b)

Figure 8: (a) The reduced density matrix ⇢A1[A2 , which is obtained based on the wave-

functional in Fig.7 (c). (b) The partially transposed reduced density matrix ⇢

T
A2

A1[A2
, which

is obtained by switching A2 and A

0
2 in (a).

after gluing, two S

3 are contributed by the 3-balls in the first and fourth rows in Fig. 8

(d). It is noted that there is no Wilson line threading through these two S

3, and therefore

each of them contributes Z(S3) after the surgery. The other two S

3 are contributed by

the 3-balls in the second and third rows. Since there are Wilson lines threading through

these two S

3, each of them contributes Z(S3
, R̂a) after the surgery.

For the 4no tubes, 2no tubes are contributed by the ones that connect the first (third)

and second (fourth) rows of 3-balls. There are no Wilson lines threading through these

2no tubes. Therefore, after the surgery procedure in Fig. 1, each of these tubes contributes

Z(S3). The other 2no tubes are contributed by the tubes that connect A1�A1 (A0
1�A

0
1)

in the second row, and the ones that connect A0
2�A

0
2 (A2�A2) in the third row. For these

2no tubes, since there are Wilson lines threading through them, each tube contributes a

factor Z(S3
, R̂a) after the surgery.
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Outline
• Introduction: What is the entanglement negativity? 

• Methods: How to compute the entanglement 
negativity in Chern-Simons theories? (Surgery 
method) 

• Results:  Understanding 3-manifolds!



Entanglement negativity
Entanglement (Renyi) entropy: bipartite systems 

B

A

B

A A

A and B are always  
adjacent to each other. 

• A1 and A2 can be either adjacent 
or disjointed. 

Beyond bipartite systems: entanglement between A1 and A2 

B

A1 A2

B

A1 A2

tripartite



Entanglement negativity
B
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[Vidal-Werner 02]

Trace norm of a partially transposed  
reduced density matrix

1. ⇢A1[A2 = trB⇢ is a mixed state
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Entanglement negativity
B

A1 A2

[Vidal-Werner 02]

Trace norm of a partially transposed  
reduced density matrix

1. ⇢A1[A2 = trB⇢ is a mixed state
2. ⇢

T2
A1[A2 partial transpose w.r.t. A2

|e(1)i i |e(2)i i HA1 HA2and are bases of and

It measures ‘how much’ the eigenvalues of          are negative. 

Logarithmic negativity:

3. Trace norm:



It is not easy to compute the  
entanglement negativity for a many body state!!! 

• A replica trick + QFT (can be CFT or CS) 

• Monte Carlo simulations 

• Tensor network (MPS) 

• An overlap matrix method (free fermions) 

• Representation theory (Valance bond solids) 

• …

[Calabrese, Cardy, Tonni, 12,13]

[Chung, Alba, Bonnes, Chen, Lauchli,13]

[Calabrese, Tagliacozzo, Tonni,13]

[Chang, Wen,16]

[Santos, Korepin,16]



Some interesting results
1. Universal behavior for critical systems (CFT approaches)

Entanglement negativity in extended systems 37

Figure 9. Entanglement for two adjacent intervals of equal length ` < L/2 in a
periodic chain of length L. Left: the ratio rn(z) in Eq. (196) as function of z = `/L
compared with the parameter free CFT prediction. Right: Subtracted negativity
✏(z) in Eq. (199) again compared with the parameter free CFT prediction.

and again the rhs is a parameter free CFT prediction. In Fig. 9 (left panel), this
prediction is compared with the numerical data and the agreement is extremely good
since no deviations are visible even close to the boundaries.

7.6. The negativity for two disjoint intervals in the periodic chain.

To conclude our analysis of the periodic chain we consider now the most di�cult
situation of two disjoint intervals for which the negativity has been already considered
numerically [12]. Here we start by considering the traces Tr(⇢T2

A )n which, in the
conformal regime !L ⌧ 1, should be described by Eq. (66) with Gn(y) given in (84).
The direct numerical data, that we do not present here, agree well with the CFT
predictions where the overall constant is fixed by a fit and explicitly depends on the
values of ! and L, since the data are influenced by the zero mode. However, while this
is a further confirmation of the predictive power of CFT, it gives not much information
on the true entanglement (which is only obtained in the limit ne ! 1). Indeed the
function Gn(y) turns out to be very close to a constant (in proper units equals 1) and
the direct data mainly probe the prefactor to Gn(y) in Eq. (66), whose logarithm
vanishes in the replica limit ne ! 1, and so does not give any contribution to the
negativity.

As already stated in Sec. (5), a practical way to get rid of the prefactor is to
consider the ratio Rn(y) in Eq. (69), where also the non-universal parts due to the
zero mode cancel and we are left with a universal function of y. The CFT prediction
for this ratio R⌘=1

n (y) in Eq. (86) is compared to the numerical data in Fig. 10. As
L increases, the data approach the CFT result. The di↵erences with the asymptotic
formula are due to the presence of unusual corrections to the scaling [64, 65] whose
leading part is of the form L�2/n. A quantitative finite size scaling analysis is reported

E =

1

4

ln[tan(⇡z)] + const.

0 Ll 2l
z = l/L

[Calabrese, Cardy, Tonni, 12]

A1 A2 B
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A1 A2 B

2. Light cone behaviors for quench studies
2

FIG. 1: Setup for a local quantum quench. Two separate CFTs de-
fined on two semi-infinite lines are joined together at their endpoints.
Then quasiparticles, which may be viewed as entangled pairs, are
generated at the jointing point, and propagate freely through the sys-
tem. The entanglement negativity between two intervals which are
far from each other may be built with the help of these propagating
entangled pairs.

(1+1) dimensional critical system is Lorentz invariant at the
low energy limit, we can utilize the power of conformal field
theory and understand the universal feature of this dynamical
phenomenon.
The rest of the paper is organized as follows. In part B of

this section, we give a brief review of path integral represen-
tation of the entanglement negativity, and then introduce the
CFT setup for a local quantum quench in part C. In Section
II, by using CFT approach, we compute the time evolution
of the entanglement negativity for two adjacent intervals in
part A, and two disjoint intervals in part B. We consider both
symmetric and asymmetric cases. In section III, we describe
the numerical method of calculating the entanglement nega-
tivity for a harmonic chain, based on which we study the local
quench of the entanglement negativity. Then we compare the
numerical results with the CFT results. In section IV, we con-
clude our work and list some interesting future problems to be
studied.

B. Entanglement negativity in quantum field theory

A detailed description of path integral representation of the
entanglement negativity can be found in Ref.[21]. For the
completeness of this paper, we give a brief review here.
First, as discussed in Ref.[21], by using a replica trick, one

can relate the entanglement negativity with the integer powers
of ρT2

A1∪A2
as

EA1,A2 = lim
ne→1

lnTr
(
ρT2
A1∪A2

)ne

, (5)

where ne is an even integer, and the density matrix ρ may be
expressed as a (euclidean) path integral

ρ =
1

Z

∫
[dφ(x, τ)]

∏

x

δ (φ(x, 0) − φ′(x′))

×
∏

x

δ
(
φ(x,β) − φ

′′

(x
′′

)
)
e−SE ,

(6)

where SE is the euclidean action and Z = Tre−βH is the
partition function. Now we consider subsystems A1 and A2

located in intervals [u1, v1] and [u2, v2], respectively. Then the
reduced density matrix ρA1∪A2 may be obtained by sewing
together all the points along edges τ = 0 and τ = β except
the points in A1 ∪ A2. That is, we leave two open cuts at
[u1, v1] and [u2, v2] along τ = 0.
Next, before we compute Tr

(
ρT2
A1∪A2

)ne

, it is beneficial to
see how to calculate Tr (ρA1∪A2)

n first. In order to calculate
Tr (ρA1∪A2)

n, we consider n copies of the cut plane, and then
sew together the cut [ui, vi]

j
τ=0− with the cut [ui, vi]

j+1
τ=0+ for

i = 1, 2 and all the copies j = 1, · · · , n. Note that for j = n,
we sew together the cut [ui, vi]

j=n
τ=0− with the cut [ui, vi]

j=1
τ=0+ .

In this way, we define a n-sheeted Riemann surface Rn. The
trace of (ρA1∪A2)

n is then given by

Tr (ρA1∪A2)
n =

ZRn

Zn
, (7)

where ZRn
is the partition function for the orbifold CFT on

Rn. Rather than dealing with the fields on a nontrivial mani-
fold, it is found more convenient to work on a single complex
plane. It turns out Eq.(7) can be expressed in terms of lo-
cal twisted fields defined at (ui, 0) and (vi, 0) on the complex
plane as follows

Tr (ρA1∪A2)
n =

〈
Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)

〉
. (8)

Intuitively, the effect of twist fields Tn andT̄n is shown in Fig.
2. Winding anticlockwise (clockwise) around the twist field
Tn (T̄n), once the branch cut is crossed, one will go from layer
j to layer j + 1.
With the introduction of twist fields, the expression of

Tr
(
ρT2
A1∪A2

)n
is very straightforward. As discussed in

Ref.[20, 21], the effect of partial transposition with respect to
A2 is equivalent to changing the two twist operators Tn(u2)
and T̄n(v2). Then one has

Tr
(
ρT2
A1∪A2

)n
=
〈
Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)

〉
. (9)

If the two intervals [u1, v1] and [u2, v2] are adjacent to each
other, we simply set u2 → v1, and then Eq. (9) can be written
as

Tr
(
ρT2
A1∪A2

)n
=
〈
Tn(u1)T̄ 2

n (u2)Tn(v2)
〉
. (10)

Therefore, from Eqs. (5), (9) and (10), it is found that the com-
putation of the entanglement negativity reduces to the compu-
tation of expectation values of twist fields in a complex plane.

C. CFT approach to a local quench

Before we study the CFT approach to a local quantum
quench, it is beneficial to comment on the difference between
local quenches and global quenches. Local quenches are more
complicated than global quenches because they are inhomo-
geneous. For global quenches, we change the parameters of a

7

FIG. 6: Entanglement negativity E for two symmetric disjoint intervals as a function of time. Here we choose central charge c = 1, ϵ = 1,
(d, l) = (40, 10), (60, 10) and (80, 10), respectively. Shown in (a) is the CFT result, and (b) is the numerical calculation based on a critical
harmonic chain.

Note that in the study of negativity evolution after a global
quench, it was found that E(t) shows the same behavior as
the Renyi mutual information apart from the prefactor[25].
For the local quench studied here, by comparing our result
in Eq.(37) with the result of mutual information in Ref.[35], it
is found that the expressions are also the same except for the
prefactor. In other words, our results parallel with the story in
negativity evolution after a global quench.
As shown in Fig.6(a), we plot the evolution of the entan-

glement negativity with different (d, l) according to Eq.(37).
A ‘light-cone’ effect can be observed: For t < d, there is
no entanglement negativity between A1 and A2. At t = d,
the entanglement negativity begins to develop, and reaches the
maximum approximately at t = d+ l/2. At t = d+ l, the en-
tanglement negativity decreases suddenly, which corresponds
to the entangled pairs propagating out of intervals A1 and A2

simultaneously. Note that at t = d + l/2, taking the limit
d ≫ l, one has

Et=d+ l

2
≃

c

4
ln

l

2ϵ
, (38)

which is independent of the distance d, as also can be observed
in Fig.6. That is to say, with the help of entangled pairs, we
can create a long-range entanglement between two intervals
which are far from each other.

2. Asymmetric finite intervals

In this part, we consider the asymmetric disjoint intervals.
We have multi choices as follows: (i) d1 ̸= d2, l1 = l2, (ii)
d1 = d2, l1 ̸= l2 and (iii) d1 ̸= d2, l1 ̸= l2. For simple,
we consider the case in (i), i.e., A1 ∈ [−d1 + l,−d1] and
A2 ∈ [d2, d2 + l]. Without loss of generality, we choose d1 <
d2 ≤ d1 + l.

The calculation of negativity evolution is similar with the
symmetric case, and we obtain the same result in Eq.(36). The
difference is that we should expresswij in terms of d1, d2 and
l, as explicitly shown in the appendix. By plugging the expres-
sions of wij into Eq.(36), one arrives at the time evolution of
entanglement negativity as shown in Eq.(39). One can check
that when d1 = d2 = d, the result in Eq.(37) is reproduced.
According to Eq.(39), we plot E(t) with different (d1, d2)

in Fig.7(a). Compared to the symmetric case, the ‘light-cone’
effect is still observed. The difference is that the time when
E(t) increases quickly now happens at

t = max[d1, d2], (40)

and the time when E(t) decreases quickly happens at

t = min[d1 + l, d2 + l], (41)

which is also in agreement with the quasiparticle picture.

III. NUMERICAL EVALUATION OF THE NEGATIVITY
FOR A HARMONIC CHAIN AFTER A LOCAL QUENCH

In this section, to confirm our CFT results, we study the
time evolution of the logarithmic negativity after a local quan-
tum quench on a lattice model, a critical harmonic chain. The
entanglement negativity for a harmonic chain has been nu-
merically studied in several works[8, 21, 25, 26, 36]. Here we
follow the method developed in these works, and apply it to
the local quench problem.
We will first introduce the lattice model and the covariance

matrix in part A. In part B, we introduce the evolution matrix
and show how to calculate the entanglement negativity. In
part C, we apply the method to the cases studied with CFT
approach, and compare the results accordingly.

d l

[Wen, Chang, Ryu,15]
[Coser, Tonni, Calabrese,14]

A1 A2
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Figure 9. Entanglement for two adjacent intervals of equal length ` < L/2 in a
periodic chain of length L. Left: the ratio rn(z) in Eq. (196) as function of z = `/L
compared with the parameter free CFT prediction. Right: Subtracted negativity
✏(z) in Eq. (199) again compared with the parameter free CFT prediction.

and again the rhs is a parameter free CFT prediction. In Fig. 9 (left panel), this
prediction is compared with the numerical data and the agreement is extremely good
since no deviations are visible even close to the boundaries.

7.6. The negativity for two disjoint intervals in the periodic chain.

To conclude our analysis of the periodic chain we consider now the most di�cult
situation of two disjoint intervals for which the negativity has been already considered
numerically [12]. Here we start by considering the traces Tr(⇢T2

A )n which, in the
conformal regime !L ⌧ 1, should be described by Eq. (66) with Gn(y) given in (84).
The direct numerical data, that we do not present here, agree well with the CFT
predictions where the overall constant is fixed by a fit and explicitly depends on the
values of ! and L, since the data are influenced by the zero mode. However, while this
is a further confirmation of the predictive power of CFT, it gives not much information
on the true entanglement (which is only obtained in the limit ne ! 1). Indeed the
function Gn(y) turns out to be very close to a constant (in proper units equals 1) and
the direct data mainly probe the prefactor to Gn(y) in Eq. (66), whose logarithm
vanishes in the replica limit ne ! 1, and so does not give any contribution to the
negativity.

As already stated in Sec. (5), a practical way to get rid of the prefactor is to
consider the ratio Rn(y) in Eq. (69), where also the non-universal parts due to the
zero mode cancel and we are left with a universal function of y. The CFT prediction
for this ratio R⌘=1

n (y) in Eq. (86) is compared to the numerical data in Fig. 10. As
L increases, the data approach the CFT result. The di↵erences with the asymptotic
formula are due to the presence of unusual corrections to the scaling [64, 65] whose
leading part is of the form L�2/n. A quantitative finite size scaling analysis is reported

E =

1

4

ln[tan(⇡z)] + const.

0 Ll 2l
z = l/L

block of the chain, which may be applied in other contexts.
Finally, to better evidence the unique properties of the en-
tanglement in the Kondo regime we carry a parallel analysis
of the entanglement properties of this model in the gapped
dimerized regime. Using a true measure of entanglement to
determine ! enables to exploit the peculiarities of the Kondo
regime of a spin chain to generate long-range distance inde-
pendent entanglement usable for quantum communication
tasks.17

A true measure of entanglement should satisfy a set of
postulates, for example, it should be nonincreasing under
local actions, such a genuine measure does exist for two
subsystems of arbitrary size even when their combined state
is mixed, as it happens in Kondo systems. This measure is
the negativity18 and it has been successfully used to quantify
the entanglement in a harmonic chain19,20 and between dis-
tant regions of critical systems.21,22 For bipartite systems,
negativity is defined as E=!i"ai"−1, where ai denote the ei-
genvalues of the partial transpose of the whole density ma-
trix of the system with respect to one of the two subsets of
the given partition and " . . . " is the absolute value.18

The paper is organized as follows: In Sec. II, we define an
entanglement healing length for the spin chain Kondo model;
Sec. III explains the DMRG-based approach we devised in
order to compute its entanglement properties. In Sec. IV, we
show the remarkable scaling of a true measure of entangle-
ment #i.e., negativity$ in the Kondo regime attainable by the
Kondo spin chain when 0"J2"J2

c =0.2412; in addition, we
motivate an ansatz for the ground state of this chain in the
Kondo regime. Section V is devoted to a summary of our
results and to a few concluding remarks.

II. MEASURING THE ENTANGLEMENT
HEALING LENGTH

The spin chain Kondo model14 is defined by the Hamil-
tonian,

H = J!##1 . #2 + J2#1 . #3$ + !
i=2

N−1

#i . #i+1 + J2!
i=2

N−2

#i . #i+2,

#1$

where #i= ##i
x ,#i

y ,#i
z$ is a vector of Pauli operators at site i,

N is the total length of the chain, J2 is the next nearest neigh-
bor coupling and the nearest neighbor coupling J1 has been
normalized to 1. The impurity spin, located at one end of the
chain, is accounted for by weaker couplings to the rest of the
system; in the following, see Fig. 1#a$, both couplings J1 and
J2 are weakened by the same factor J!, which quantifies then
the impurity strength.

To study the entanglement of the ground state we divide
%see Fig. 1#b$& all the spins of the chain in three different
groups, the impurity spin, block A, which contains the L
spins next to the impurity #L=0,1 , . . . ,N−1$ and block B
formed by the remaining N−L−1 spins. We use negativity to
fully characterize the entanglement between the impurity and
block B in both the gapless Kondo and the gapped dimerized
regimes. We determine the size of the block A when the
entanglement between the impurity and block B is almost

zero; by this procedure we measure an entanglement healing
length #EHL$ L!, i.e., the length of the block A which is
maximally entangled with the impurity. We show that, in the
gapless Kondo regime, EHL scales with the strength of the
impurity coupling just as the Kondo screening length, !,
does. Thus, in the gapless regime of the Kondo spin chain,
our approach yields a method to detect the Kondo screening
length7,12,13 based on a true measure of entanglement. In ad-
dition, we find that entanglement, as quantified by negativity,
is a homogeneous function of two ratios: N /L! and L /N,
where L is the size of the block A, i.e., the block adjacent to
the impurity, and N is the length of the whole chain. As a
result, the entanglement in the Kondo regime is essentially
unchanged if one rescales all the length scales with the EHL
L!.

III. DMRG ANALYSIS OF ENTANGLEMENT
IN THE SPIN-CHAIN KONDO MODEL

We use the DMRG23 approach to compute the ground
state of the spin chain Kondo model. We analyze large
chains, N=250, to avoid finite size effects and take N to be
even to avoid problems arising from accidental degeneracies.
In a DMRG approach the ground state of the system is par-
titioned in terms of states of a left block, a right block #not to
be confused with blocks A and B$ and two intermediate spins
as shown in Fig. 2#a$. The states of the intermediate spins are
given in the computational #"↑ ' , "↓ '$ basis, while the states
of the both blocks are usually in some non-trivial truncated
DMRG basis. In this approach one has several representa-
tions for the ground state which vary due to the number of
spins in the left #right$ block and it is possible to go from one
representation to the other by applying pertinent operators on
each block. The main issue in the DMRG is that the dimen-
sion of the left #right$ block is kept constant independent of
whatever spins are there in that block. To have a fixed di-
mension for the left #right$ block we truncate the Hilbert
space such that the amount of entanglement between the two
parts of the chain remains almost unchanged.23 To have a

FIG. 1. #Color online$ #a$ Kondo Spin chain with next nearest
neighbor Heisenberg interaction with one impurity at one end. #b$
The chain is divided into three parts, an impurity, a block A and
a block B. Entanglement is computed between the impurity and
block B.
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3. Estimate Kondo screening length [Bayat, Sodano, Bose,10]

[Calabrese, Cardy, Tonni, 12]
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2. Light cone behaviors for quench studies
2

FIG. 1: Setup for a local quantum quench. Two separate CFTs de-
fined on two semi-infinite lines are joined together at their endpoints.
Then quasiparticles, which may be viewed as entangled pairs, are
generated at the jointing point, and propagate freely through the sys-
tem. The entanglement negativity between two intervals which are
far from each other may be built with the help of these propagating
entangled pairs.

(1+1) dimensional critical system is Lorentz invariant at the
low energy limit, we can utilize the power of conformal field
theory and understand the universal feature of this dynamical
phenomenon.
The rest of the paper is organized as follows. In part B of

this section, we give a brief review of path integral represen-
tation of the entanglement negativity, and then introduce the
CFT setup for a local quantum quench in part C. In Section
II, by using CFT approach, we compute the time evolution
of the entanglement negativity for two adjacent intervals in
part A, and two disjoint intervals in part B. We consider both
symmetric and asymmetric cases. In section III, we describe
the numerical method of calculating the entanglement nega-
tivity for a harmonic chain, based on which we study the local
quench of the entanglement negativity. Then we compare the
numerical results with the CFT results. In section IV, we con-
clude our work and list some interesting future problems to be
studied.

B. Entanglement negativity in quantum field theory

A detailed description of path integral representation of the
entanglement negativity can be found in Ref.[21]. For the
completeness of this paper, we give a brief review here.
First, as discussed in Ref.[21], by using a replica trick, one

can relate the entanglement negativity with the integer powers
of ρT2

A1∪A2
as

EA1,A2 = lim
ne→1

lnTr
(
ρT2
A1∪A2

)ne

, (5)

where ne is an even integer, and the density matrix ρ may be
expressed as a (euclidean) path integral

ρ =
1

Z

∫
[dφ(x, τ)]

∏

x

δ (φ(x, 0) − φ′(x′))

×
∏

x

δ
(
φ(x,β) − φ

′′

(x
′′

)
)
e−SE ,

(6)

where SE is the euclidean action and Z = Tre−βH is the
partition function. Now we consider subsystems A1 and A2

located in intervals [u1, v1] and [u2, v2], respectively. Then the
reduced density matrix ρA1∪A2 may be obtained by sewing
together all the points along edges τ = 0 and τ = β except
the points in A1 ∪ A2. That is, we leave two open cuts at
[u1, v1] and [u2, v2] along τ = 0.
Next, before we compute Tr

(
ρT2
A1∪A2

)ne

, it is beneficial to
see how to calculate Tr (ρA1∪A2)

n first. In order to calculate
Tr (ρA1∪A2)

n, we consider n copies of the cut plane, and then
sew together the cut [ui, vi]

j
τ=0− with the cut [ui, vi]

j+1
τ=0+ for

i = 1, 2 and all the copies j = 1, · · · , n. Note that for j = n,
we sew together the cut [ui, vi]

j=n
τ=0− with the cut [ui, vi]

j=1
τ=0+ .

In this way, we define a n-sheeted Riemann surface Rn. The
trace of (ρA1∪A2)

n is then given by

Tr (ρA1∪A2)
n =

ZRn

Zn
, (7)

where ZRn
is the partition function for the orbifold CFT on

Rn. Rather than dealing with the fields on a nontrivial mani-
fold, it is found more convenient to work on a single complex
plane. It turns out Eq.(7) can be expressed in terms of lo-
cal twisted fields defined at (ui, 0) and (vi, 0) on the complex
plane as follows

Tr (ρA1∪A2)
n =

〈
Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)

〉
. (8)

Intuitively, the effect of twist fields Tn andT̄n is shown in Fig.
2. Winding anticlockwise (clockwise) around the twist field
Tn (T̄n), once the branch cut is crossed, one will go from layer
j to layer j + 1.
With the introduction of twist fields, the expression of

Tr
(
ρT2
A1∪A2

)n
is very straightforward. As discussed in

Ref.[20, 21], the effect of partial transposition with respect to
A2 is equivalent to changing the two twist operators Tn(u2)
and T̄n(v2). Then one has

Tr
(
ρT2
A1∪A2

)n
=
〈
Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)

〉
. (9)

If the two intervals [u1, v1] and [u2, v2] are adjacent to each
other, we simply set u2 → v1, and then Eq. (9) can be written
as

Tr
(
ρT2
A1∪A2

)n
=
〈
Tn(u1)T̄ 2

n (u2)Tn(v2)
〉
. (10)

Therefore, from Eqs. (5), (9) and (10), it is found that the com-
putation of the entanglement negativity reduces to the compu-
tation of expectation values of twist fields in a complex plane.

C. CFT approach to a local quench

Before we study the CFT approach to a local quantum
quench, it is beneficial to comment on the difference between
local quenches and global quenches. Local quenches are more
complicated than global quenches because they are inhomo-
geneous. For global quenches, we change the parameters of a

7

FIG. 6: Entanglement negativity E for two symmetric disjoint intervals as a function of time. Here we choose central charge c = 1, ϵ = 1,
(d, l) = (40, 10), (60, 10) and (80, 10), respectively. Shown in (a) is the CFT result, and (b) is the numerical calculation based on a critical
harmonic chain.

Note that in the study of negativity evolution after a global
quench, it was found that E(t) shows the same behavior as
the Renyi mutual information apart from the prefactor[25].
For the local quench studied here, by comparing our result
in Eq.(37) with the result of mutual information in Ref.[35], it
is found that the expressions are also the same except for the
prefactor. In other words, our results parallel with the story in
negativity evolution after a global quench.
As shown in Fig.6(a), we plot the evolution of the entan-

glement negativity with different (d, l) according to Eq.(37).
A ‘light-cone’ effect can be observed: For t < d, there is
no entanglement negativity between A1 and A2. At t = d,
the entanglement negativity begins to develop, and reaches the
maximum approximately at t = d+ l/2. At t = d+ l, the en-
tanglement negativity decreases suddenly, which corresponds
to the entangled pairs propagating out of intervals A1 and A2

simultaneously. Note that at t = d + l/2, taking the limit
d ≫ l, one has

Et=d+ l

2
≃

c

4
ln

l

2ϵ
, (38)

which is independent of the distance d, as also can be observed
in Fig.6. That is to say, with the help of entangled pairs, we
can create a long-range entanglement between two intervals
which are far from each other.

2. Asymmetric finite intervals

In this part, we consider the asymmetric disjoint intervals.
We have multi choices as follows: (i) d1 ̸= d2, l1 = l2, (ii)
d1 = d2, l1 ̸= l2 and (iii) d1 ̸= d2, l1 ̸= l2. For simple,
we consider the case in (i), i.e., A1 ∈ [−d1 + l,−d1] and
A2 ∈ [d2, d2 + l]. Without loss of generality, we choose d1 <
d2 ≤ d1 + l.

The calculation of negativity evolution is similar with the
symmetric case, and we obtain the same result in Eq.(36). The
difference is that we should expresswij in terms of d1, d2 and
l, as explicitly shown in the appendix. By plugging the expres-
sions of wij into Eq.(36), one arrives at the time evolution of
entanglement negativity as shown in Eq.(39). One can check
that when d1 = d2 = d, the result in Eq.(37) is reproduced.
According to Eq.(39), we plot E(t) with different (d1, d2)

in Fig.7(a). Compared to the symmetric case, the ‘light-cone’
effect is still observed. The difference is that the time when
E(t) increases quickly now happens at

t = max[d1, d2], (40)

and the time when E(t) decreases quickly happens at

t = min[d1 + l, d2 + l], (41)

which is also in agreement with the quasiparticle picture.

III. NUMERICAL EVALUATION OF THE NEGATIVITY
FOR A HARMONIC CHAIN AFTER A LOCAL QUENCH

In this section, to confirm our CFT results, we study the
time evolution of the logarithmic negativity after a local quan-
tum quench on a lattice model, a critical harmonic chain. The
entanglement negativity for a harmonic chain has been nu-
merically studied in several works[8, 21, 25, 26, 36]. Here we
follow the method developed in these works, and apply it to
the local quench problem.
We will first introduce the lattice model and the covariance

matrix in part A. In part B, we introduce the evolution matrix
and show how to calculate the entanglement negativity. In
part C, we apply the method to the cases studied with CFT
approach, and compare the results accordingly.

d l

[Wen, Chang, Ryu,15]
[Coser, Tonni, Calabrese,14]
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As a comparison, it is noted that tr (⇢A1[A2)
n has the expression
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Once we obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we can calculate the entanglement negativity based on

Eq.(1.6).

1.2 Chern-Simons theory and surgery

One may refer to the seminal paper [37] for details of the Chern-Simons theory. Here

we mainly review the properties of Chern-Simons theory that will be used in our study

of entanglement negativity. The Chern-Simons theory action with a gauge group G on a

three-manifold M is given by

SCS =
k

4⇡

Z

M

tr

✓
A ^ dA+

2

3
A ^ A ^ A

◆
, (1.13)

where ‘tr0 is the trace over the fundamental representation of the gauge group G, A is

the G-connection on a genetic three-manifold M , and k is the coupling constant, which

is quantized. Chern-Simons theory is a topological field theory in the sense that the

correlation functions do not depend on the metric of the manifold M . Since the Chern-

Simons theory action does not contain the metric, the partition function

Z(M) =

Z
[DA]eiSCS(A)

, (1.14)

can define a topological invariant of the manifold M . Besides the partition function as

an invariant of three-manifolds, links and knots inside three-manifolds can also be seen
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Figure 4. Path integral representation of Tr(⇢T2
A )n = Tr(⇢C2

A )n for n = 3.

In the following the subscript C will be understood in the expectation values, if not
di↵erently stated.

3.2. The partial transposition and the negativity in QFT.

The partial transposition of the reduced density matrix ⇢A with respect to the second
interval A2 corresponds to the exchange of row and column indices in A2. In the path
integral representation, this is equivalent to interchange the upper and lower edges of
the second cut in ⇢A as depicted in the middle of Fig. 2. If we join n copies of ⇢T2

A

cyclically, we have an n-sheeted Riemann surface where row and column indices are
reversed compared to those of a correlation function of four twist fields, as it should
be clear from the middle of Fig. 2. This problem can be however solved very easily
by reversing the order of the column and row indices in A2 as in the bottom of Fig. 2,
to obtain the reversed partial transpose ⇢C2

A . This is related to the partial transpose
as ⇢C2

A = C⇢T2
A C, where C reverses the order of indices either on the lower or on

the upper cut and satisfies C2 = 1. Clearly Tr(⇢T2
A )n = Tr(⇢C2

A )n and so Tr(⇢T2
A )n is

the partition function on the n-sheeted surface obtained by joining cyclically n of the
above ⇢C2

A as in Fig. 4. In this case, the order of the row and column indices is the
right one to identify this partition function with the four-point function of the twist
fields

Tr(⇢T2
A )n = Tr(⇢C2

A )n = hTn(u1)T n(v1)T n(u2)Tn(v2)i , (33)

i.e. the partial transposition has the net e↵ect to exchange two twist operators
compared to Eq. (32). We notice that we could easily have worked out Tr(⇢T2

A )n

without introducing the reverse partial transpose. However this is a very useful
technical concept because it allows to identify Tr(⇢T2

A )n with the correlation function
of already known and studied twist fields, without the need of introducing new fields.

For n = 2, T2 = T 2 and so

Tr⇢2A = Tr(⇢T2
A )2 , (34)

which also straightforwardly follows from the properties of the trace and so it is true
for any matrix ⇢ replacing ⇢A above.

To replace ⇢T2
A with ⇢C2

A it has been fundamental to consider integer cyclical
traces. The operator C enters in quantities like Tr(⇢A⇢

T2
A ) which is in fact the partition

A1 A2

�

[Calabrese, Cardy, Tonni, 12]
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are the so called Renyi entropy and von Neumann entropy defined as follows
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vN
A = �Tr⇢A ln ⇢A, (1.1)

where n is an integer, and ⇢A = TrB⇢ is the reduced density matrix of subsystem A,

with ⇢ = | ih |. The Renyi entropy and von Neumann entropy are related by S

vN
A =

limn!1 S
(n)
A . It is noted that when ⇢ corresponds to a pure state, one has the nice property

that S
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B and S

vN
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vN
B . For a mixed state, it is found that the quantum and

classical correlations cannot be explicitly separated in these entanglement measures. Now

we consider two subsystems A1 and A2 which are embedded in a larger system, and
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the entanglement between A1 and A2 is the Renyi mutual information
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which is symmetric in A1 and A2 by definition. Similar with the von Neumann entropy,

by taking the n ! 1 limit, one can obtain the (von Neumann) mutual information

IA1A2 = lim
n!1

I

(n)
A1A2

. (1.3)

Another quantity under extensive study, which is useful in characterizing the quantum

entanglement in mixed states, is the entanglement negativity[8, 9]. To be concrete, for a

reduced density matrix ⇢A1A2 which describes a mixed state in the Hilbert spaceHA1⌦HA2 ,

a partial transposition of ⇢A1A2 with respect to the degrees of freedom in region A2 is

defined as
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where T2 represents the partial transposition over A2, |e(1)i i and |e(2)j i are arbitrary bases

in HA1 and HA2 , respectively. Then the entanglement negativity can be defined as

EA1A2 := ln tr
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��
. (1.5)

To calculate the entanglement negativity in a quantum filed theory, it is convenient to

use the replica trick as follows [10, 11]
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n
e

!1
ln tr

�
⇢

T2
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, (1.6)

where ne is an even integer.

Recently, the entanglement negativity has been extensively studied in conformal field

theories [10, 11, 12], quantum spin chain systems [13, 14], coupled harmonic oscillators
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As a comparison, it is noted that tr (⇢A1[A2)
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Once we obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we can calculate the entanglement negativity based on

Eq.(1.6).

1.2 Chern-Simons theory and surgery

One may refer to the seminal paper [37] for details of the Chern-Simons theory. Here

we mainly review the properties of Chern-Simons theory that will be used in our study

of entanglement negativity. The Chern-Simons theory action with a gauge group G on a

three-manifold M is given by

SCS =
k

4⇡

Z

M

tr

✓
A ^ dA+

2

3
A ^ A ^ A

◆
, (1.13)

where ‘tr0 is the trace over the fundamental representation of the gauge group G, A is

the G-connection on a genetic three-manifold M , and k is the coupling constant, which

is quantized. Chern-Simons theory is a topological field theory in the sense that the

correlation functions do not depend on the metric of the manifold M . Since the Chern-

Simons theory action does not contain the metric, the partition function

Z(M) =

Z
[DA]eiSCS(A)

, (1.14)

can define a topological invariant of the manifold M . Besides the partition function as

an invariant of three-manifolds, links and knots inside three-manifolds can also be seen
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Chern-Simons Theory

as topological invariants in the Chern-Simons theory. Such a link or a knot in three-

manifolds can be defined as the “Wilson line”, that traces the holonomy of the gauge

connection on an oriented closed curve C in a given irreducible representation R̂ of G,

W

C
R(A) = trRP exp

Z

C
A. (1.15)

We can compute the correlation functions of non-intersecting links/knots Ci, i = 1, · · · , N ,

with a representation R̂i to each Ci on a three-manifold M ,

Z(M, R̂1, · · · , R̂N) = hW C1
R̂1

· · ·W C
N

R̂
N

i =
Z
[DA]

 
NY

i=1
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C
i
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i

!
eiSCS
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These links/knots correlation functions can be seen as the partition functions of a Chern-

Simons theory on a three-manifold M in the presence of Wilson loops. As shown by

Witten [37], the the partition functions are exactly calculable by canonical quantization

and surgery.

The key ingredient of computing the partition function is doing canonical quantiza-

tion of a Chern-Simons theory on a three-manifold M with boundary given by a Riemann

surface ⌃. This canonical quantization will produce a Hilbert space H⌃ with an associ-

ated state | Mi. The dual Hilbert space H⇤
⌃ with an associated state h M | state can be

obtained by reversing the orientation of the ⌃. The partition function of a Chern-Simons

theory on a (closed) three-manifold can be computed by performing the Heegaard split-

ting, which decomposes the three-manifold as the connected sum of two three-manifolds

M1 and M2 with common boundary ⌃. The original three-manifold M = M1

S
f M2

is obtained by gluing M1 and M2 through their boundary under the homeomorphism

f : ⌃ ! ⌃. This homeomorphism acting in the Hilbert space can be presented by an

operator Uf : H⌃ ! H⌃. Hence the partition can be evaluated as

Z(M) = h M2 |Uf | M1i. (1.17)

When the boundary is a sphere, i.e., ⌃ = S

2, the Hilbert space HS2 is one dimensional.

When the boundary ⌃ = T

2, which can be seen as the boundary of a solid torus T =

D ⇥ S

1, one can obtain a state in HT 2 by inserting a Wilson loop in the representation

R̂i around the non-contractible cycle in the solid torus,

| T,R̂
i

i = |R̂ii. (1.18)

The state without the Wilson loop is |0̂i, denoted as the vacuum state.
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Gluing two slide toruses—> S2 ⇥ S1

The above results allow us to compute the partition function on three-manifolds in

the presence of Wilson loops. Let us start at S2 ⇥ S

1, which can be seen as gluing two

solid toruses T = D⇥S

1 with boundaries identified. I.e., S2 comes from gluing two discs

together along their boundary S

1. The partition function of a Chern-Simons theory in

this three-manifold is

Z(S2 ⇥ S

1) = h0̂|0̂i = 1. (1.19)

While performing modular transformation S: ⌧ ! � 1
⌧
on the second solid torus and

glue it back, i.e., the non-contractible cycle of the first solid torus is homologous to the

contractible cycle of the second solid torus, we get S

3. We obtain the Chern-Simons

partition function

Z(S3) = h0̂|S|0̂i = S00, (1.20)

where Sij is the element of the modular S matrix. If there is a Wilson loop in the

representation R̂i in one solid torus, the Chern-Simons partition functions become

Z(S2 ⇥ S

1
, R̂i) = h0̂|R̂ii = �0,i.

Z(S3
, R̂i) = h0̂|S|R̂ii = S0i. (1.21)

One can also consider a Wilson loop in the representation R̂i in a solid torus, which

is glued to another solid torus with a Wilson loop in the representation R̂j. The Chern-

Simons partition functions are

Z(S2 ⇥ S

1
, R̂i, R̂j) = hR̂i|R̂ji = �i,j.

Z(S3
, R̂i, R̂j) = hR̂i|S|R̂ji = Sij. (1.22)

Here we list two main properties of the above results:

1. The normalized vacuum expectation values of disjointed Wilson loops can be fac-

torized, i.e.,

Z(M, R̂1, · · · , R̂N)

Z(S3)
=

NY

i=1

Z(Mi, R̂i)

Z(S3)
, (1.23)

where the three-manifold M is the connected sum of N three-manifolds Mi joined
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Factorability
M1 M2 M1 M2S3

Ri Ri Ri Ri

Ri
× ×=

Figure 1: The surgery procedure to relate the partition function on a manifold M1 �M2

with the partition functions on M1 and M2.

2. If Wilson loops are linked or they are passing through the common boundary S

2

between Mi and Mj, the factorability of the partition function is hold when the

Hilbert space for S2 with a pair of charges in the dual representations R̂i and R̂i is

one dimensional. We have

Z

�
M,L(R̂i, R̂j, R̂k)

� · Z(S3
, R̂j) = Z

�
M1, L(R̂i, R̂j)

� · Z�M2, L(R̂j, R̂k)
�
,

Z(M, R̂i, R̂i) · Z(S3
, R̂i) = Z(M1, R̂i) · Z(M2, R̂i). (1.24)

A surgery procedure we will frequently use in this work is shown in Fig. 1, where we

relate the partition function on a manifold M1 �M2 with the partition functions on M1

and M2, by a factor Z(S3
, R̂i) = S0i.

In addition, the modular S-matrix, which is unitary, is related with the quantum

dimension as follows

da =
S0a

S00
. (1.25)

The unitary condition for S-matrix implies that

(S00)
�1 =

sX

i

|di|2 =: D. (1.26)

2 Topological entanglement negativity

Based on the above discussions, we study the spatial topological entanglement negativity

between two subregions on various manifolds in this section. The entanglement negativity

is calculated in the following steps. (1) We consider tr
�
⇢

T2
A1[A2

�n
e

as the partition function
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0 1

1 + τ

0 1

−1/τ

Figure 7: Two ways of viewing the same torus, corresponding to the modular transformations
T and S.

with (a, b, c, d) all integers and ad− bc = 1. This is called SL(2,Z) or the modular group.
Note that S2 = 1 and (ST )3 = 1.

Consider the scaling limit of the partition function Z of a lattice model on this torus.
Apart from the divergent term in log Z, proportional to the area divided by a2, which in
CFT is set to zero by regularisation, the rest should depend only on the aspect ratio of
the torus and thus be modular invariant. This would be an empty statement were it not
that Z can be expressed in terms of the spectrum of scaling dimensions of the CFT in a
manner which is not, manifestly, modular invariant.

Recall that the generators of infinitesimal translations along and around the cylinder can
be written as

Ĥ = 2π(L̂0 + L̂0) − πc
6 P̂ = 2π(L̂0 − L̂0) .

The action of twisting the cylinder corresponds to a finite translation around its circum-
ference, and sewing the ends together corresponds to taking the trace. Thus

Z = Tr e−(Im τ)Ĥ+i(Reτ)P̂

= eπcIm τ/6 Tr e2πiτ L̂0 e−2πiL̂0

= (qq̄)−c/24 Tr qL̂0 q̄L̂0 ,

where in the last line we have defined q ≡ e2πiτ .

The trace means that we sum over all eigenvalues of L̂0 and L̂0, that is all scaling fields
of the CFT. We know that these can be organised into irreducible representations of
the Virasoro algebra, and therefore have the form (∆ + N, ∆ + N̄), where ∆ and ∆
correspond to primary fields and (N, N̄) are non-negative integers labelling the levels of
the descendants. Thus we can write

Z =
∑

∆,∆

n∆,∆χ∆(q)χ∆(q̄) ,

where n∆,∆ is the number of primary fields with lowest weights (∆, ∆), and

χ∆(q) = q−c/24+∆
∞
∑

N=0

d∆(N)qN ,

Z(M, [ , , R̂i, R̂i]C) · Z(S3, R̂i) = Z(M1, [ , R̂i]C1) · Z(M2, [ , R̂i]C1)1 12 2



Now let us compute the entanglement negativity in 
various cases
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Figure 2: (a) Wavefunctional | i. A Wilson line in representation R̂a threads through

the AB interface. Shading implies a three-ball. (b) ⇢A[B = | ih |. (c) ⇢TB

A[B, in which

we do partial transpostition over B, i.e., we switch B with B

0.

on a three-manifold M . (2) We use surgery method to compute tr
�
⇢

T2
A1[A2

�n
e

, and then

take ne ! 1.

To avoid confusions, a spatial manifold is a two-manifold, which can be viewed as the

boundary of the three dimensional spacetime manifold where the wavefunction is defined.

2.1 Bipartition of a sphere

In this part, for the pedagogical purpose, we consider the simplest case, in which the spa-

tial manifold is a two-sphere S2. We consider the general case that there is a quasiparticle

ā (a) in the subsystem A (B), where ā is the anti-quasiparticle of a, i.e., a⇥ ā = I + · · · ,
with I being the identity operator. A Wilson line in the representation R̂a connects the

quasiparticles ā and a at the two ends, , as shown in Fig. 2 (a). For the case without

quasiparticles, we can simply set ā = a = I at the end.

Fig. 2 (a) represents the wavefunctional | i, which is defined on a three-ball. It is noted

that the Wilson line in representation R̂a is inside the solid ball. For the density matrix

⇢ = | ih |, we simply need to consider one more 3-ball with two conjugate punctures,

which represents h |, as shown in Fig. 2 (b). To study the topological entanglement

negativity between A and B, we need to consider the partially transposed density matrix

⇢

T
B (or ⇢TA). Pictorially, this can be operated by switching the submanifold B and B

0 as

shown in Fig.2 (c). Similar graphic representations of ⇢TB were also used in the tensor

network study of the entanglement negativity [14].
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with I being the identity operator. A Wilson line in the representation R̂a connects the
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…

Next, to calculate the entanglement negativity between A and B, we will use the

replica trick [see Eq. (1.6)]. tr
�
⇢

T
B

�n
can be calculated as follows. First, we make n

copies of ⇢TB , with each copy represented in Fig. 2 (c). Next, we glue the subregion A

0

(B) in the i-th copy with the subregion A (B0) in the (i + 1)-th (mod N) copy, then we

obtain tr
�
⇢

T
B

�n
. It is emphasized that tr

�
⇢

T
B

�n
depends on whether n is odd or even.

For odd n, i.e., n = no, the manifold after gluing is a S

3. On the other hand, for even n,

i.e., n = ne, the manifold after gluing are two independent S3. Therefore, tr
�
⇢

T
B

�n
after

the normalization has the following expressions

tr
�
⇢

T
B

�n
o

(tr⇢TB)no

=
Z(S3

, R̂a)

Z(S3
, R̂a)no

= Z(S3
, R̂a)

1�n
o = (S0a)

1�n
o

,

(2.27)

and

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

=
Z(S3

, R̂a)2

Z(S3
, R̂a)ne

= Z(S3
, R̂a)

2�n
e = (S0a)

2�n
e

,

(2.28)

where we have considered the fact that tr
�
⇢

T
B

�
= Z(S3

, R̂a) = S0a. Then, according to

the definition in Eq.(1.6), one can obtain the entanglement negativity as follows

EAB = lim
n
e

!1
ln

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

= lnS0a = ln da � lnD. (2.29)

For the case without any quasiparticles on the sphere, one simply sets da = dI = 1, and

therefore

EAB = � lnD. (2.30)

As a comparison, for odd n, one will obtain the trivial result, i.e., limn
o

!1 ln
tr(⇢TB)

n

o

(tr⇢TB)
n

o

= 0.

It is noted that EAB in Eqs.(2.29) and (2.30) are the same as the topological entanglement

entropy. This is because for a general pure state, the entanglement negativity for a

bipartite system is equal to the 1/2 Renyi entropy, EAB = S

(1/2)
A = S

(1/2)
B . It is known

that for the case in Fig. 2 (a), one has S(n)
A = S

(n)
B = ln da � lnD for arbitrary n.

Here we demonstrate the simplest case of computing the entanglement negativity by

the surgery method. As will be shown later, this basic operation provides a building block

for the study of more complicated cases.

2.2 Tripartition of a sphere

In this section, we study the entanglement negativity between A1 and A2 for a tripartite

spatial manifold S

2, where the sphere is divided into A1, A2 and B. In particular, we are

mainly interested in two cases: (1) A1 and A2 are adjacent, as shown in Fig. 3 (a), and

(2) A1 and A2 are disjoint, as shown in Fig.4 (a).
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…

Next, to calculate the entanglement negativity between A and B, we will use the

replica trick [see Eq. (1.6)]. tr
�
⇢

T
B

�n
can be calculated as follows. First, we make n

copies of ⇢TB , with each copy represented in Fig. 2 (c). Next, we glue the subregion A

0

(B) in the i-th copy with the subregion A (B0) in the (i + 1)-th (mod N) copy, then we

obtain tr
�
⇢

T
B

�n
. It is emphasized that tr

�
⇢

T
B

�n
depends on whether n is odd or even.

For odd n, i.e., n = no, the manifold after gluing is a S

3. On the other hand, for even n,

i.e., n = ne, the manifold after gluing are two independent S3. Therefore, tr
�
⇢

T
B

�n
after

the normalization has the following expressions

tr
�
⇢

T
B

�n
o

(tr⇢TB)no

=
Z(S3

, R̂a)

Z(S3
, R̂a)no

= Z(S3
, R̂a)

1�n
o = (S0a)

1�n
o

,

(2.27)

and

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

=
Z(S3

, R̂a)2

Z(S3
, R̂a)ne

= Z(S3
, R̂a)

2�n
e = (S0a)

2�n
e

,

(2.28)

where we have considered the fact that tr
�
⇢

T
B

�
= Z(S3

, R̂a) = S0a. Then, according to

the definition in Eq.(1.6), one can obtain the entanglement negativity as follows

EAB = lim
n
e

!1
ln

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

= lnS0a = ln da � lnD. (2.29)

For the case without any quasiparticles on the sphere, one simply sets da = dI = 1, and

therefore

EAB = � lnD. (2.30)

As a comparison, for odd n, one will obtain the trivial result, i.e., limn
o

!1 ln
tr(⇢TB)

n

o

(tr⇢TB)
n

o

= 0.

It is noted that EAB in Eqs.(2.29) and (2.30) are the same as the topological entanglement

entropy. This is because for a general pure state, the entanglement negativity for a

bipartite system is equal to the 1/2 Renyi entropy, EAB = S

(1/2)
A = S

(1/2)
B . It is known

that for the case in Fig. 2 (a), one has S(n)
A = S

(n)
B = ln da � lnD for arbitrary n.

Here we demonstrate the simplest case of computing the entanglement negativity by

the surgery method. As will be shown later, this basic operation provides a building block

for the study of more complicated cases.

2.2 Tripartition of a sphere

In this section, we study the entanglement negativity between A1 and A2 for a tripartite

spatial manifold S

2, where the sphere is divided into A1, A2 and B. In particular, we are

mainly interested in two cases: (1) A1 and A2 are adjacent, as shown in Fig. 3 (a), and

(2) A1 and A2 are disjoint, as shown in Fig.4 (a).
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0
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�
⇢

T
B

�n
. It is emphasized that tr

�
⇢

T
B

�n
depends on whether n is odd or even.
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�
⇢

T
B

�n
after

the normalization has the following expressions

tr
�
⇢

T
B

�n
o

(tr⇢TB)no

=
Z(S3

, R̂a)

Z(S3
, R̂a)no

= Z(S3
, R̂a)

1�n
o = (S0a)

1�n
o

,

(2.27)

and

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

=
Z(S3

, R̂a)2

Z(S3
, R̂a)ne

= Z(S3
, R̂a)

2�n
e = (S0a)

2�n
e

,

(2.28)

where we have considered the fact that tr
�
⇢

T
B

�
= Z(S3

, R̂a) = S0a. Then, according to
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n
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!1
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�
⇢

T
B

�n
e

(tr⇢TB)ne

= lnS0a = ln da � lnD. (2.29)
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n

o
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n

o
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2, where the sphere is divided into A1, A2 and B. In particular, we are

mainly interested in two cases: (1) A1 and A2 are adjacent, as shown in Fig. 3 (a), and

(2) A1 and A2 are disjoint, as shown in Fig.4 (a).

10

M1 M2 M1 M2S3

Ri Ri Ri Ri

Ri
× ×=

Figure 1: The surgery procedure to relate the partition function on a manifold M1 �M2

with the partition functions on M1 and M2.

2. If Wilson loops are linked or they are passing through the common boundary S

2

between Mi and Mj, the factorability of the partition function is hold when the

Hilbert space for S2 with a pair of charges in the dual representations R̂i and R̂i is

one dimensional. We have

Z

�
M,L(R̂i, R̂j, R̂k)

� · Z(S3
, R̂j) = Z

�
M1, L(R̂i, R̂j)

� · Z�M2, L(R̂j, R̂k)
�
,

Z(M, R̂i, R̂i) · Z(S3
, R̂i) = Z(M1, R̂i) · Z(M2, R̂i). (1.24)

A surgery procedure we will frequently use in this work is shown in Fig. 1, where we

relate the partition function on a manifold M1 �M2 with the partition functions on M1

and M2, by a factor Z(S3
, R̂i) = S0i.

In addition, the modular S-matrix, which is unitary, is related with the quantum

dimension as follows

da =
S0a

S00
. (1.25)

The unitary condition for S-matrix implies that

(S00)
�1 =

sX

i

|di|2 =: D. (1.26)

2 Topological entanglement negativity

Based on the above discussions, we study the spatial topological entanglement negativity

between two subregions on various manifolds in this section. The entanglement negativity

is calculated in the following steps. (1) We consider tr
�
⇢

T2
A1[A2

�n
e

as the partition function
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, in which we do partial transposition
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First we consider the case that A1 and A2 are adjacent to each other, as shown in Fig.

3 (a). There is a Wilson line in representation R̂a which threads through both the A1A2

interface and the A1B interface. Again, for the case without any quasiparticle on the

sphere, one can simply set R̂a = R̂I at the end.

For convenience, we deform the three-dimensional spacetime manifold in Fig.3 (a),

without changing the topology, to two three-balls connected by a tube, as shown in Fig.3
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even as follows.

For odd n, i.e., n = no, the resulting manifold is two S

3 connected by no tubes. Each

tube is contributed by the one that connects A0
1 and A
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1 in Fig. 3 (d). Then, by using the
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interface and the A1B interface. Again, for the case without any quasiparticle on the

sphere, one can simply set R̂a = R̂I at the end.
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surgery procedure in Fig. 1, we cut all the tubes that connect the two S

3, with each tube

contributing a factor Z(S3
, R̂a)�1. Therefore, one can obtain
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For even n, i.e., n = ne, the resulting manifold is three S

3 connected by ne tubes. The
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3 has the same origin as the case of a bipartited sphere in Fig. 2. Similar with the
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Then the entanglement negativity between A1 and A2 can be expressed as
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!1
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= lnS0a = ln da � lnD, (2.33)

which is the same as Eq. (2.29). In other words, for a tripartited S

2 as shown in Fig. 3,

the existence of region B does not a↵ect the entanglement negativity between A1 and A2,

i.e.,

EA1A2(B 6= ;) = EA1A2(B = ;). (2.34)

2.2.2 A1 and A2 are disjoint

Here, we consider the case that A1 and A2 are disjoint, as shown in Fig. 4 (a). We also

include a quasiparticle a (anti-quasiparticle ā) in region A2 (A1). Therefore, a Wilson line
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.

It can be found that the resulting manifold is two S

3 connected by n tubes, which is

independent of whether n is even or odd. By considering the surgery procedure in Fig. 1,
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Figure 4: (a) Wavefunctional | i. A Wilson line in representation R̂a threads through

the interface A1B and A2B. A1 and A2 are disjoint. (b) A three-manifold which is

topologically equivalent to (a). (c) ⇢A1[A2 = trB| ih |, and (d) ⇢

T
A2

A1[A2
, in which we

switch region A2 and A

0
2 in (c).

one can cut all the tubes that connect the two S

3, with each tube contributing a factor

Z(S3
, R̂a). Then one can obtain

tr
⇣
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T
A2

A1[A2

⌘n
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tr⇢

T
A2
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3
, R̂a)2

Z(S3
, R̂a)n

= Z(S3
, R̂a)

2�2n = (S0a)
2�2n

, (2.35)

for both n = no and n = ne. Therefore, one can obtain the entanglement negativity

between A1 and A2 as follows

EA1A2 = lim
n
e

!1
ln

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

= ln (S0a)
0 = 0. (2.36)

I.e., there is no entanglement negativity between A1 and A2 in this case. It is noted that

the topological mutual information between A1 and A2 for this case is also zero [see Eq.

(4.70)].

2.3 Two adjacent non-contractible regions on a torus with non-

contractible B

Here, we focus on the spatial manifold of a torus, T 2. For the simplest case of a bipartite

torus, one can refer to the Appendix A, where the operation is straightforward and helpful
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for understanding the more complicated cases.

We first consider two adjacent non-contractible regions A1 and A2 on a torus with a
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a one-component A1A2 interface, and in Fig. 6 (a), the two adjacent regions A1 and A2

share a two-component A1A2 interface. In the following, we will study the entanglement

negativity between A1 and A2 for these two cases separately.
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For the configuration in Fig. 5 (a), it is equivalent to three 3-balls connected by three

tubes, as shown in Fig. 5 (b). Then one can obtain the reduced density matrix ⇢A1[A2 by

tracing over the B part, as shown in Fig. 5 (c). The partial transposition of the reduced

density matrix ⇢A1[A2 is fulfilled by switching A2 with A
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2, as shown in Fig. 5 (d).

Generally, the Wilson loop can fluctuate among di↵erent representations. For simplic-

ity, we first consider the case in which the Wilson loop is in a definite representation R̂a.
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share a two-component A1A2 interface. In the following, we will study the entanglement
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. The result after gluing depends on whether n is odd or even as
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and B �B, respectively. The tube connecting B �B corresponds to the vertical tube in
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where we have used the fact Z(S2 ⇥ S

1
, R̂a, R̂a) = 1. On the other hand, for even n, i.e.,
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It is then straightforward to show that for a general state | i =
P

j  j|R̂ji, i.e., the
Wilson loop is in a superposition of di↵erent representations R̂j, one has
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Then, one can obtain the entanglement negativity between A1 and A2 as follows
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Figure 5: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1, A2

and B, where we have a one-component A1A2 interface. The red solid line represents a

Wilson loop which can fluctuate among di↵erent representations. (b) A three-manifold

with three 3-balls joined by three tubes appropriately, which is topologically equivalent

to (a). (c) ⇢A1[A2 = trB| ih |, and (d) ⇢
T
A2

A1[A2
, in which we switch A2 with A

0
2 in (c).

for understanding the more complicated cases.

We first consider two adjacent non-contractible regions A1 and A2 on a torus with a

non-contractible region B, but with di↵erent number of components for the interface, as

shown in Fig. 5 (a) and Fig. 6 (a). In Fig. 5 (a), the two adjacent regions A1 and A2 share

a one-component A1A2 interface, and in Fig. 6 (a), the two adjacent regions A1 and A2

share a two-component A1A2 interface. In the following, we will study the entanglement

negativity between A1 and A2 for these two cases separately.

2.3.1 One-component interface

For the configuration in Fig. 5 (a), it is equivalent to three 3-balls connected by three

tubes, as shown in Fig. 5 (b). Then one can obtain the reduced density matrix ⇢A1[A2 by

tracing over the B part, as shown in Fig. 5 (c). The partial transposition of the reduced

density matrix ⇢A1[A2 is fulfilled by switching A2 with A

0
2, as shown in Fig. 5 (d).

Generally, the Wilson loop can fluctuate among di↵erent representations. For simplic-

ity, we first consider the case in which the Wilson loop is in a definite representation R̂a.
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Figure 4: (a) Wavefunctional | i. A Wilson line in representation R̂a threads through

the interface A1B and A2B. A1 and A2 are disjoint. (b) A three-manifold which is

topologically equivalent to (a). (c) ⇢A1[A2 = trB| ih |, and (d) ⇢

T
A2

A1[A2
, in which we

switch region A2 and A

0
2 in (c).

one can cut all the tubes that connect the two S

3, with each tube contributing a factor

Z(S3
, R̂a). Then one can obtain
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⇣
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for both n = no and n = ne. Therefore, one can obtain the entanglement negativity

between A1 and A2 as follows

EA1A2 = lim
n
e

!1
ln

tr
�
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T
B

�n
e

(tr⇢TB)ne

= ln (S0a)
0 = 0. (2.36)

I.e., there is no entanglement negativity between A1 and A2 in this case. It is noted that

the topological mutual information between A1 and A2 for this case is also zero [see Eq.

(4.70)].

2.3 Two adjacent non-contractible regions on a torus with non-

contractible B

Here, we focus on the spatial manifold of a torus, T 2. For the simplest case of a bipartite

torus, one can refer to the Appendix A, where the operation is straightforward and helpful
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Figure 5: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1, A2

and B, where we have a one-component A1A2 interface. The red solid line represents a

Wilson loop which can fluctuate among di↵erent representations. (b) A three-manifold

with three 3-balls joined by three tubes appropriately, which is topologically equivalent

to (a). (c) ⇢A1[A2 = trB| ih |, and (d) ⇢
T
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, in which we switch A2 with A

0
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for understanding the more complicated cases.

We first consider two adjacent non-contractible regions A1 and A2 on a torus with a

non-contractible region B, but with di↵erent number of components for the interface, as

shown in Fig. 5 (a) and Fig. 6 (a). In Fig. 5 (a), the two adjacent regions A1 and A2 share

a one-component A1A2 interface, and in Fig. 6 (a), the two adjacent regions A1 and A2

share a two-component A1A2 interface. In the following, we will study the entanglement

negativity between A1 and A2 for these two cases separately.

2.3.1 One-component interface

For the configuration in Fig. 5 (a), it is equivalent to three 3-balls connected by three

tubes, as shown in Fig. 5 (b). Then one can obtain the reduced density matrix ⇢A1[A2 by

tracing over the B part, as shown in Fig. 5 (c). The partial transposition of the reduced

density matrix ⇢A1[A2 is fulfilled by switching A2 with A

0
2, as shown in Fig. 5 (d).

Generally, the Wilson loop can fluctuate among di↵erent representations. For simplic-

ity, we first consider the case in which the Wilson loop is in a definite representation R̂a.
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Figure 6: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1, A2

and B, where we have a two-component A1A2 interface. The red solid line represents a

Wilson loop which can fluctuate among di↵erent representations. (b) A three-manifold

with four 3-balls joined by four tubes appropriately, which is equivalent to the configura-

tion in (a) in topology. (c) ⇢A1[A2 = trB| ih |, and (d) ⇢
T
A2

A1[A2
, in which we do partial

transposition over A2, i.e., we switch A2 with A

0
2 in (c).

Z(S3
, R̂a). Therefore, one can obtain

tr
⇣
⇢

T
A2

A1[A2

⌘n
o

⇣
tr⇢

T
A2

A1[A2

⌘n
o

=
1

Z(S2 ⇥ S

1
, R̂a, R̂a)no

· Z(S3
, R̂a)4

Z(S3
, R̂a)4no

= Z(S3
, R̂a)

4�4n
o = (S0a)

4�4n
o

.

(2.43)

On the other hand, for even n, i.e., n = ne, the resulting manifold is six S

3 connected by

3ne tubes, where the extra two S

3 is caused by the partial transposition. Similar with the

case of n = no, the 4ne tubes are contributed by the ones connecting A2 � A2, A0
1 � A

0
1,
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A2 A2

(a)

’

A1

A1 A1

A2 A2

A2

A2

’A1

’A1 ’A1

’A1

’A1 ’A1

’A2 ’A2

’A2 ’A2

’A2

(b)

Figure 8: (a) The reduced density matrix ⇢A1[A2 , which is obtained based on the wave-

functional in Fig.7 (c). (b) The partially transposed reduced density matrix ⇢

T
A2

A1[A2
, which

is obtained by switching A2 and A

0
2 in (a).

after gluing, two S

3 are contributed by the 3-balls in the first and fourth rows in Fig. 8

(d). It is noted that there is no Wilson line threading through these two S

3, and therefore

each of them contributes Z(S3) after the surgery. The other two S

3 are contributed by

the 3-balls in the second and third rows. Since there are Wilson lines threading through

these two S

3, each of them contributes Z(S3
, R̂a) after the surgery.

For the 4no tubes, 2no tubes are contributed by the ones that connect the first (third)

and second (fourth) rows of 3-balls. There are no Wilson lines threading through these

2no tubes. Therefore, after the surgery procedure in Fig. 1, each of these tubes contributes

Z(S3). The other 2no tubes are contributed by the tubes that connect A1�A1 (A0
1�A

0
1)

in the second row, and the ones that connect A0
2�A

0
2 (A2�A2) in the third row. For these

2no tubes, since there are Wilson lines threading through them, each tube contributes a

factor Z(S3
, R̂a) after the surgery.
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b4

BB

A1 A2

b2

b3

A1 B

A2 B

A1A1

A2 A2

A1

A2

B

A1

A2

A1

A2

B

(a) (b) (c)

Figure 7: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1,

A2 and B, where we have a two-component A1A2 interface and a contractible region

B. The red solid line represents a Wilson loop which can fluctuate among di↵erent

representations. (b) A three-manifold with four 3-balls joined by four tubes appropriately,

which is equivalent to the configuration in (a) in topology. The configuration in (b) can

be further deformed into the configuration in (c), without changing topology.

7 (b), where there are four S

3 connected by four tubes, which can be further deformed

into the three-manifold in Fig. 7 (c). Then it is straightforward to obtain the reduced

density matrix ⇢A1A2 by tracing out the B part, as shown in Fig. 8 (a). To obtain the

partially transposed reduced density matrix ⇢

T
A2

A1[A2
, we simply need to switch A2 with A

0
2

in ⇢A1[A2 , as shown in Fig. 8 (b).

As before, for simplicity, we first consider the case in which the Wilson loop is in a

definite representation R̂a. To obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we make n copies of ⇢
T
A2

A1[A2
in Fig.8

(b). Then we glue the region A

0
1(A2) in the i-th copy with the region A1(A0

2) in the

(i + 1)-th (mod N) copy, and obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

. Since the configuration in Fig. 8 (b)

is already very complicated, it is helpful for the readers to understand the gluing based

on the case of a bipartite torus [see Fig. 10 (c)], considering that the limit B ! ; in Fig.

7 (a) corresponds to a bipartite torus.

The gluing result depends on whether n is odd or even as follows. For odd n, i.e.,

n = no, the resulting manifold is four S

3 connected by 4no tubes. One should be very

careful here. For convenience, we label the four rows of 3-balls in Fig. 8 (d) as the first,

second, third and fourth rows of 3-balls from top to bottom. In the resulting manifold
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A’2

A’2

(a) (b) (c) (d)

Figure 9: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1,

A2 and B, where A1 and A2 are disjoint. (b) The configuration in (a) is topologically

equivalent to four 3-balls joined by four tubes appropriately. (c) ⇢A1[A2 by tracing out part

B. (d) Partially transposed reduced density matrix ⇢T2
A1[A2

where the partial transposition

is over degrees of freedom in A2, i.e., we switch A2 with A

0
2 in ⇢A1[A2 in (c).

By imposing the normalization condition
P

j | j|2 = 1, EA1A2 can be simplified as

EA1A2 = 2 ln

 
X

j

| j|S0j

!
= 2 ln

 
X

j

| j|dj
!

� 2 lnD. (2.54)

The result is the same as Eq. (4.64) for a bipartite torus, i.e., EA1A2(B 6= ;) = EA1A2(B =

;) for the configuration in Fig. 7 (a). For this case, the entanglement negativity between

A1 and A2 depends on the choice of ground state for both Abelian and non-Abelian

Chern-Simons theories.

2.5 Two disjoint non-contractible regions on a torus

Finally, we demonstrate the vanishing entanglement negativity for two disjoint non-

contractible regions A1 and A2 on a spatial manifold T

2, as shown in Fig. 9 (a), in which

the regions A1 and A2 are separated by non-contractible regions B. The configuration in
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Conclusion:
• Entanglement negativity is always zero for disjointed 

intervals. 

• Entanglement negativity depends on the number of 
interfaces between A1 and A2. 

• Entanglement negativity depends on the choice of 
ground state. — can distinguish Abelian and non-
Abelian theories.

Questions:
• Generalization for higher dimensions? 

• Non-chiral topological field theories?


