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Tensor-network simulations of the surface code
under realistic noise
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Quantum error correction
▶ Quantum states are fragile.
▶ Threshold theorem: Arbitrarily long quantum computation

can be executed with arbitrarily high reliability, provided that
the error rates are below a certain critical value (a threshold).

▶ This is possible due to quantum error correcting codes, in
which a single logical qubit is encoded into the collective state
of many quantum particles.

▶ Understanding the performance of error correcting codes is
crucial.
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Topological codes

▶ The surface code has a practical realisation on a 2D lattice
with nearest neighbour interactions.

▶ The performance of the surface code under different types of
noise is usually determined with numerical simulations,
however only simple noise models can currently be simulated

▶ Here we present an improved way to simulate the surface code
under realistic local noise using tensor networks.
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Error correction with the surface code

▶ The surface code is composed of an L× L square lattice of
qubits.

▶ During the error correction process, checks are measured, then
a unitary correction is applied.
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The performance of surface code

▶ Below a threshold noise value, we can make the noise on the
logical qubit arbitrarily small by increasing the lattice size.

▶ The maximum amount of noise the code can tolerate, the
threshold, as well as the efficiency of noise supression below
threshold, depend heavily on the type of noise.

▶ These quantities are determined using numerical simulations.
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Simulating error correction

▶ Local Pauli noise: E(ρ) = pIρ+ pxXρX + pyY ρY + pzZρZ

▶ Errors and corrections all Pauli operators: to simulate
evolution keep track of what Pauli is applied to each qubit.

▶ The effect on encoded information is also Pauli, and can be
computed easily.
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Simulations beyond Pauli noise

▶ Realistic noise is not Pauli.

▶ E.g. a large component of noise in superconducting
architectures is amplitude damping

|1⟩ → |0⟩ , (1)

|0⟩ → |0⟩ (2)

which is characterised by the T1 time.

▶ Systematic errors (small local rotations) are also unavoidable.

▶ General noise is much harder to simulate.
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Simulations beyond Pauli noise

▶ Brute-force simulations have been used on distance-3 codes of
up to 25 qubits.

▶ However, there is additional structure in the surface code to
take advantage of.

▶ In this work we exploit the tensor network structure of the
surface code to obtain a more efficient simulation algorithm.
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Simulation algorithm

(a) Noiseless state (b) Apply noise

(c) Measurements (d) Contract network
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Results: Thresholds

▶ We have used this algorithm to estimate thresholds for various
noise models.
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Results: Pauli comparisons

▶ Our simulations are exact and make no simplifications to the
noise model. Does the code perform similarly with Pauli
approximations to noise channels?
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Future work

▶ Noisy measurements (3D tensor networks).

▶ It is likely that we can exploit additional entanglement
structure in the code to develop more efficient simulation
algorithms.
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Conclusion

▶ Topological quantum codes represent a practical way to
achieve fault tolerance in quantum computing.

▶ However, the performace of these codes in realistic conditions
is not well understood.

▶ We have developed a tensor network method for simulating
the surface code under arbitrary local noise. It is exact and
allows us to probe low error rates. It is also fast enough to
allow asymptotic quantities (thresholds) to be estimated.


