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Indistinguishable particles

All particles in the Universe come in two varieties: bosons
(mostly mediators of forces) and fermions (mostly matter).

Atoms are comprised of fermions, but (viewed from a distance)
can be either bosonic (even # of constituent fermions) or
fermionic (odd # of constituent fermions)

Much work on making quantum degenerate atoms:
Bosons: H, 4He*, “Li, 22Na, 52Cr, 8587Rb, 133Cs, etc

Fermions: 6Li, 40K, 53Cr, etc



Indistinguishable particles

« Ultracold atoms can be confined in ‘optical lattices’

* One-dimensional lattice: #
lase

e 2D lattice:
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e 3D lattice:

* Approximately 100 sites/dimension.




Indistinguishable particles

Can make effective 3D, 2D, or 1D optical lattices:
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Indistinguishable particles

 Represent the sites of a lattice as a graph:
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Indistinguishable particles

 Represent the sites of a lattice as a graph:

1 2 3
o—o—0

« Suppose that there are three fermions:
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‘Slater determinant’ — accounts for fermionic antisymmetry




Indistinguishable particles

« Suppose that there are four sites instead:

« Too many Slater determinants — unwieldy notation

« With bosons, we need to use permanents instead; one also
has more terms because of multiple occupancy of sites.



Indistinguishable particles

* Quantum field theory makes the description more efficient.
Generic Hamiltonian is written in terms of quantum fields:

B = 5291000 (V2 9000 + 310009106V ) )

« Expand quantum fields in suitable basis:
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Indistinguishable particles

« |f Mis number of sites and N is number of particles, then
Hilbert space dimension is:

MU m . (M AN 1)
NI(M — N)!’ NI(M —1)!
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« |f M >>N then the Hilbert space dimension grows exponentially
iIn the number of particles.
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Indistinguishable particles

Exponentially growing Hilbert space doesn't mean that
simulating indistinguishable particles is classically inefficient.

If particles are non-interacting, then all properties can be
obtained from (time-evolution of) single-particle states:

zh w(’r‘t _Zhﬁ Zozjgbj HZozjgbj r
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Need only know initial occupations ||



Indistinguishable particles

 Pretend that 3 bosons are actually distinguishable:
o090 0—0—90 0090
Hi=HI®I + IQH®RI + IQIQH

* Projecting into indistinguishable space requires repeating
sums over identical labels: inefficient in principle.

« But don’t need to in practice for bosons: all observables are
simply N-fold multiples of single-particle quantities!



Indistinguishable particles

So why is boson sampling [Aaronson and Arkhipov, STOC 2011, p. 333]
classically difficult™?

Given some input to an optical circuit, what is the photon
distribution at the output?
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[Tillman et al, Nature Photonics 7, 540-544 (2013)]



Indistinguishable particles

« Photons effectively interact! Hong-Ou-Mandel effect (photon
bunching):
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Indistinguishable particles

« Photons effectively interact! Hong-Ou-Mandel effect (photon
bunching):

1000 -
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No. of coincidence counts in 10 min.

260 280 300 320 340 360
Position of beam splitter (1cm)

[Hong, Ou, Mandel, PRL 59, 2044 (1987)]

* Projecting into indistinguishable space is inefficient; no short
cut because observables are not N-fold multiples of single-
particle quantities: hard problem!



Indistinguishable particles

For bosons, need to evaluate ‘Slater permanents’, which is hard
(Calculating permanents is #P-complete [valiant, Theor. Comp. Sci. 8, 189
(1979); also Aaronson, Proc. R. Soc. A 467, 3393 (2011)])

» NP example: Are there any subsets of a list of integers that
add up to zero?

» #P example: How many subsets of a list of integers add up
to zero?

« Even though boson sampling is (likely) classically hard, can it
be used to do anything interesting? Maybe not.

« But are interacting indistinguishable bosons powerful?



Indistinguishable particles

Quantum walks with interacting indistinguishable bosons can
perform universal quantum computation (Childs, Gosset, and Webb, Science
339, 791 (2013); also Underwood and Feder, Phys. Rev. A 85, 052314 (2012)])
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[Childs, Gosset, and Webb, Science 339, 791 (2013)]



Indistinguishable particles

What about fermions?

« Perhaps surprisingly, non-interacting fermions are classically
efficient to simulate! Calculating determinants is in P (Using
Gaussian elimination the complexity scales with d like d?).

« That said, interacting bosons are easy to approximate in
quantum Monte Carlo, but interacting fermions are not
(because of the sign problem).

« Of course, d is scaling exponentially with the number of
particles MN....



Indistinguishable particles

The behavior of non-interacting fermions can be simulated by

matchgates acting on two spin-1/2 particles:

[Valiant, SIAM J. Comput. 31, 1229 (2002); Terhal and DiVincenzo, Phys. Rev. A 65, 032325 (2002); Brayvi,
Contemp. Math. 482, 179 (2009); Jozsa, Kraus, Miyake, Watrous, Proc. R. Soc. 466, 809 (2010)]
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det(A)=det(B) and A,B&€ U(2) or SU(2)

* If matchgates only act on nearest-neighboring spins, the
behavior can be efficiently simulated classically.



Indistinguishable particles

What is the relationship between matchgates and non-interacting
fermions”?

« Matchgate group is generated by (XX, YY, IZ, ZI, XY, and YX),
where i.e. XX =0, ® 0,

* |s there a relationship between fermions and spins? Fermions
always anticommute (no matter what site they are on):

A

fif] = =ffi+ 8 fifi=—fifs fif]=-11]

« Spins only anticommute if they are on the same site; they
commute otherwise. For example:

X.Z,=-ZX; XZ =ZX,.



Indistinguishable particles

* In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

—o—0—0—0—=9



Indistinguishable particles

* In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

fi
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Indistinguishable particles

* In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

7 Z Z Z Z S S =X;+1Y;
—o—0—0—0—0 At 2
Zi =1-2ff;

* Note that in the spin representation, fermionic operators are
strongly non-local!



Indistinguishable particles

* In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

S S Sf =X+
T Zi=1-2flf;

* S0, nearest-neighbor fermions are just like nearest-neighbor
Pauli matrices of the type XX, YY, XY, and YX.



Indistinguishable particles

Amazingly, adding a SWAP operation to switch positions of

fermions is enough to enable universal quantum computation!
[Jozsa and Miyake, Proc. R. Soc. 464, 3089 (2008)]
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Note that SWAP = G(I, X) = 8 (1) (1) 8 is not a matchgate,
because det(/) = -det(X). \0 0 0 1 )



Indistinguishable particles

Even more amazingly, universal computing is possible with only

matchgates for other geometries!
[Brod and Galvao, Physical Review A 86, 052307 (2012)]




Indistinguishable particles

Important (open) question: Can the absence / presence of
entanglement area laws enable us to infer the power of
indistinguishable quantum systems for quantum computation?

* The entanglement entropy for non-interacting bosons is
proportional to the area (entanglement area law)
[Plenio, Eisert, Dreil3ig, and Cramer, Phys. Rev. Lett. 94, 060503 (2005)]:

von Neumann: S = —trplogp

1 a
—logtr (p%)

Rényi: § =

G~ Ld—l




Indistinguishable particles

Important (open) question: Can the absence / presence of
entanglement area laws enable us to infer the power of
indistinguishable quantum systems for quantum computation?

* Non-interacting fermions have ‘more entanglement’ than non-
iInteracting bosons: the entanglement area law is violated
logarithmically: wolf, Phys. Rev. Lett. 96, 010404 (2006)]

S~ L% tog L

« Non-interacting fermions on a lattice are in a sense ‘critical:’

S ~ glog(L/a)

« (critical bosons can still satisfy area laws)



Indistinguishable particles

Important (open) question: Can the absence / presence of
entanglement area laws enable us to infer the power of
indistinguishable quantum systems for quantum computation?

« For d=1 systems, the ground states of all gapped Hamiltonians

satisfy entanglement area laws.
[Brandao, Horodecki, Nature Physics 9, 721 (2013)]

« All such models can be efficiently represented.

« Very recently it was proven that there exists an efficient

algorithm to find the ground state.
[Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)]

 There are also efficient methods to approximate some d=1
gapless / critical models, though no formal proof exists.

These results suggest that gapped d=1 systems are not universal
for quantum computation. Gapless case?



Indistinguishable particles

Important (open) question: Can the absence / presence of
entanglement area laws enable us to infer the power of
indistinguishable quantum systems for quantum computation?

 For d=2 or general d, much less is known / understood.

 The ground states of all gapped (gap €) Hamiltonians have

exponential correlation functions £ = O(1/e):
[Hastings, Phys Rev B 69, 104431 (2004)]

(i) ~elreomile
O = {b' (r)b(r;), ar:)a(r;), S¥ (r:) SH)(ry), .. .}

 The ground states of all frustration-free Hamiltonians (including

critical ones!) also have exponential correlation functions:
[Gosset and Huang, Phys Rev Lett 116, 097202 (2016)]:

§=0(1/Ve)



Indistinguishable particles

Important (open) question: Can the absence / presence of
entanglement area laws enable us to infer the power of
indistinguishable quantum systems for quantum computation?

* |tis tempting to assume that systems with exponential
correlations have efficient classical representations, but it isn't
even known if all such systems satisfy area laws!

* [In fact, it has been proven that there exist quantum states
satisfying area laws that cannot be represented efficiently.
[Ge and Eisert, arXiv:1411.2995]

« Cluster (stabilizer / quantum code) states are gapped spin
states from local frustration-free Hamiltonians, satisfy
entanglement area laws, are efficiently representable, and are
universal for quantum computation via measurements®.



Cluster States

« Cluster states are highly entangled states that are resources
for measurement-based quantum computation.

Suppose () is a qubit in the state|+) = % (10) + 1))

* Evidently, X |+)|4+) = |+)|+)

R O O O



Cluster States

« Cluster states are highly entangled states that are resources
for measurement-based quantum computation.

Suppose () is a qubit in the state|+) = % (]0) +[1))

+ Evidently, Xo|4+)[+) = |-H)|+) = | + +)

OXR = OO0

- The stabilizer group for| + +) is therefore {XI,IX, XX, 11}



Cluster States

« Cluster states are highly entangled states that are resources

for measurement-based quantum computation.

Suppose () is a qubit in the state|+) = % (]0) +[1))

Also, CZ| + +) = §(|OO) 01) + |10) — [11))
% (]0+) +|1—)) (cluster/ Bell state)
= OO
1 0 0 0)
(o 10 o
€z = 0 0 1 O
000 —1)




Cluster States

With the commutation relation
CZ|++)=CZ(IX)|++)=(ZX)CZ| + +)

The stabilizer group for the two-qubit cluster state is
{(XZ,ZX,YY, 11}

All group elements commute.

Recall matchgate / free fermion group is generated by
(XX, YY, 1Z, ZI, XY, and YX).



Cluster States
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Cluster States

- The stabilizer generators for the cluster state are X, H Z;
j=N (%)
« Every cut through a bond — one ‘entropy unit’



Cluster States

Choosing H = — X H Z; guarantees that the cluster

N (d
state is the lowest enejrgy é%enstate. ‘Local’ and gapped!

This gives 3-body (5-body) Hamiltonian for 1D (2D) clusters.

No (physical) two-body Hamiltonian can yield a
(nondegenerate) ground state that is any cluster state
[van den Nest, Luttmer, Dur, and Briegel, PRA77, 012301 (2008)].

It is impossible to find a physical Hamiltonian that yields a
cluster state as the ground state, though one can get arbitrarily
close [Darmawan and Bartlett, New Journal of Physics 16, 073013 (2014)]



Measurement-Based Quantum Computing

Why are cluster states interesting? Universal quantum

computation is effected solely by making successive adaptive
measurements [Raussendorf, Briegel, PRL 86, 5188 (2001)].



Measurement-Based Quantum Computing

1) Initialize all qubits in the state |+) = L(‘O>+‘1>)
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Measurement-Based Quantum Computing

2) Entangle qubits: Apply CZ gates between all nearest
neighbours




Measurement-Based Quantum Computing

3) Remove unwanted qubits: Z-basis measurements

_» ‘real-space quantum circuit”



Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

horizontal chains = logical qubits.

vertical links = 2-qubit gates



Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

wout >

horizontal chains = logical qubits.

vertical links = 2-qubit gates



Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

wout >

horizontal chains = logical qubits.

vertical links = 2-qubit gates



Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

U

horizontal chains = logical qubits.

vertical links = 2-qubit gates

>

wout >



Measurement-Based Quantum Computing

* The key is single-qubit gate teleportation:

‘ > ‘ > Z-rotation, X

+ + measurement
g 1 ) +4/0)=e™|1)}
‘ﬂ> il ) +) %ut>=Xm+>

Vo) f

By-product operator Sufficient for arbitrary
“Classical feedforward”  single-qubit rotations



Measurement-Based Quantum Computing

What about area laws?

« The quantum information always resides on the ‘surface’ of the
state, so entanglement area laws are always strictly satisfied.

* Asimilar situation exists for MBQC on symmetry-protected /

Haldane-phase states, which have exponential correlations.
[Verstraete, Wolf, Perez-Garcia, Cirac, PRL 96, 220601 (2006);

Wei, Affleck, Raussendorf, PRA 86, 032328 (2012); Wei, Raussendorf, PRA92, 012310 (2015)]



Fermions in double-well arrays

 Consider (ultracold) fermions in independent double-well Iattices:
a) b) 5

0 05

)gf}.
[Lee et al. (Trey Porto), PRL 99, 020402 (2007)].

» Spatial qubits if there is one particle in each double-well: Left is |0)
and right is |1)



Fermions in double-well arrays

» Suppose we have a series of interconnected two-site lattices:

W



Fermions in double-well arrays

« Suppose that there is exactly one fermion in each double-well:

Wl



Fermions in double-well arrays

« Suppose that there is exactly one fermion in each double-well:

Wl



Fermions in double-well arrays

« Suppose that there is exactly one fermion in each double-well:

Wl



Fermions in double-well arrays

« Suppose that there is exactly one fermion in each double-well:

Wl

* These phases are the same as the ones you get by applying a
maximally entangling CZ gate on qubits!




Fermions in double-well arrays

* \We have a series of interconnected two-site lattices:
1234 5678 910
o—=0 00 o—S0 0690 O—=0



Fermions are maximally entangled

 Consider only two interlocking links:

1 23 4 0) = £ f|D):
oS0 O
. 1> = ]Cl f4 (I)>9
* The basis corresponds to the states:
2> = fz f3 (I)>9
3) =1 11| @).
* The Hamiltonian H = —r(fff3 + 5 i+ o+ f4+f2) is then:
[0 1 -1 0\
H=—-71 00 : = T(ZX-XR®JZ)
- -1 0 O B
\ O 1 -1 0 ) Cluster state stabilizer!



Fermions are maximally entangled

 Consider only two interlocking links:

1 23 4
o—S0 ®

* The ground state is the superposition of occupying both sites of
each link: 1 |

‘g.s.> = NG (f1+ +f3+) N (f2+ +f4+)

@)

— %(f;f; +f1+f4Jr +f3+f2+ +f3+f4+) (I)>

= %(f;f; WAGAA +f3+f4+) (I)>



Fermions are maximally entangled

* This is very different from two non-interlocking links:

1 2 3 4
* The ground state is the superposition of occupying both sites of
each link:

s)= =17+ ) 5 £+ £)

=%(fl+f3++fl+f4++f2+f3++f2+f4+)

)

)



Fermions are maximally entangled

1 23 4
o—S0 ®

« Compare the fermion ground state:
1
‘g.s.> = E(flJrf; thlh -6+ f3+f4+)

to the modified two-qubit cluster state:

zlcz\++>=%(\00>+\01>-\10>+\11>).

- These are the same if: f, f5 (I)> had OO>§ A
£ @)= [10); £ f)

@)

D) < |01);
(I>>©‘11>.




Fermions are maximally entangled

 Recall that spins and fermions are connected through the
Jordan-Wigner transformation: f

0—90—00-0 0-90—06-0 09
/Z /7 /777 17/8
- o—o ©o—o | o—o
%—I

non-local Z-'strings’

Z=1-2ff



Fermions are maximally entangled

 Recall that spins and fermions are connected through the
Jordan-Wigner transformation: £+

090 —00-0  0-00—06-0 00
/Z /7 /777 1775
- 0—-90—00-9 | o—o
%—I

non-local Z-'strings’

Z=1-2ff



Fermions are maximally entangled

 Reall that spins and fermions are connected through the Jordan-
Wigner transformation: £+

060 —06-0 0-90—0-0
/Z 77 /777 1775
- 90— 08=-0  0-60—0e-0

l |

 Consider the hopping of a fermion in one of the double-wells:

f,‘+ ﬁ+3
o—e  6—0 o—0 00
7> 7°7° 7777* SZLZS;
0—“—“—0 o—0 090

l |



Fermions are maximally entangled

 Recall that spins and fermions are connected through the
Jordan-Wigner transformation: £+

090 —09-0  0-00—0e-0
/ /77 /777 1775
- 0—90—00-0  0-90—0e-90

l |

 Consider the hopping of a fermion in one of the double-wells:

f,‘+ ﬁ+3
S0 060 0=60 0690
SZZS;
= —90—08=0  0=60 06-0
* This term involves four spin operators — Hamiltonian has
effective four-body interactions.

l |



Fermions are maximally entangled

* The fermion Hamiltonian in spin form becomes:
N-1

-
H=-g > ZojraZajra (Xoji1 Xajpa + Yaj11Yaj44).
§=0

* Introduce an encoded basis |() > = 12j_|_102j—|—4> = f§j+1\0>3
lj> = |02j4112j44) = f§j+4‘0>

_ 1
* Define Xj — 5 ( 2j_|_1X2j+4 -+ Y2j+1Y2j+4)and

Z; =1lojy129544 = —Zojr1l2j44



Fermions are maximally entangled

* In the encoded basis the Hamiltonian becomes
N-—1
H=1) Z;, \X;Z;.1—TZny 11Xy

g=1

 This is locally equivalent to the 1D cluster-state Hamiltonian!
(conjugate sites 1 through N-1 by Z):

» The fermionic ground state is therefore gapped, independent of
size (excitations cost energy 27).



Fermions are entangled

 Likewise, a two-dimensional encoded cluster state can be
constructed by non-interacting fermions hopping on this structure:

I:I:ZIZ:II.'ZIZK
S0eg Gunbing Sungpans

» So the ground-state of non-interacting fermions hopping on
overlapping lattices is universal for measurement-based quantum
computaton??



Fermions are maximally entangled, but...

» Of course, there is a catch! Return to the two-qubit case:

1 23 4
oS0 ®

* Quantum teleportation requires X-basis measurements, so first
one must transform the first qubit by a Hadamard:

H, = \% {1 — 2n1 + (1 — 2ngy) (f?]:fl +f]]_tf3)}

/10 1 0 \\
1 0 1 0 1 Hopping amplitude (sign)
- depends on occupation of
\/5 L0 -1 0 second site. Need quartic
\0 1 0 —1/ |term = particle interactions.




Fermions are maximally entangled, but...

* S0, even though the ground state is maximally entangled, one
cannot perform local operations unless the fermions interact!

* In fact, performing a local (encoded) unitary operation U ,instead
yields CZ,,U,CZ,, which is a matchgate (modulo local
operations).

* For example, performing H yields G(H,H).

 This is the measurement-based analog of universal matchgate
computing.

* In practice, we need to implement (' Z to counteract the induced
ones; this requires real interactions. Using this we can construct
SWAP.



Review

 ‘Non-interacting’ bosons are computationally non-trivial
* Non-interacting fermions are efficiently simulatable

* In 1D, all ground states of gapped / frustration-free Hamiltonians
are efficiently simulatable. Not so for gapless Hamiltonians

* In 2D or higher, not too much is known! Seemingly trivial
extensions of non-interacting fermions are not classically
simulatable.

 Relationships among frustration-free/frustrated, gapped/gapless,
area law satisfied/violated, ground-state representation
efficient/inefficient, ground-state finding efficient/inefficient...?



