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Motivations:  
  
●  Boundaries result in observable  

effects in QFT (the Casimir forces); 

  

 ●  Boundaries change single-particle  

spectra, we expect that the entangle- 

ment entropy (EE)  is sensitive to  

the boundaries; 

 

 ● EE carries a  new piece of information about  physics of boundaries in 

QFT (how states are entangled across the boundary):  importance for 

condensed matter 

 

We consider EE when an entangling surface crosses the boundary 



 

Finite size effects of EE in 2D CFT’s 
  
J. L. Cardy, “Boundary Conditions, Fusion Rules and the Verlinde 

Formula," Nucl. Phys. B 324, 581 (1989); 

 

I. Affleck and A. W. W. Ludwig, “Universal non-integer 'ground state 

degeneracy' in critical quantum systems," Phys. Rev. Lett. 67, 161 

(1991);  

 

and other works 

  



first studies of boundary effects in  4D  QFT’s 

Boundary of entangling surface B, 

P is its perimeter 

entangling surface B  of area A(B) 

sharp corners 

Fursaev, PRD73, 124025 (2006) 

Wilczek, Hertzberg, PRL 106, 050404 (2011)   
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Boundary terms appear in  

 

                                         -  the ‘logarithmic part’ of EE  
 

 

 

 

 

This may be important:  

 

we expect that the logarithmic part of EE is related to the 

conformal anomaly and may have a holographic description 
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EE and trace anomaly in d=4: 
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proved by Z.Komargodski and A.Schwimmer, JHE 201P 12 ( 1)099



3 invariants on a smooth entangling surface B in d=4 

(no boundaries)  
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Logarithmic term in EE in d=4 

conformal charges in the trace anomaly of a CFT uniquely fix the 

logarithmic term in EE (no boundaries) ! 

log
(no boundaries)

  Ryu,Takayanagi, JHEP 0608, 045 (2006),  

  Solodukhin,  PLB 665, 305 (2008)

  Fursaev, Patrushev, Solodukhin,  PRD 88, 044054 (2013)

         for CFT's
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Holographic entanglement entropy  

(Ryu-Takayanagi formula) 

2

volume of a holographic surface   in 

position of the boundary (a UV cutoff in CFT)

(expansion for  first found by A.Schwimmer and S.Theisen, arXiv:0802
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the rest of the talk:  
  
We study effects of boundaries in the conformal anomaly and in  

the entropy of entanglement, when the entangling surface crosses the 

boundary 

  

- a first systematic classification of the “boundary charges” in the 

integrated conformal anomaly CFT in d=3,4; 

 

- relation between bulk and boundary charges in d=4; 

 

- calculation of the logarithmic terms in EE in d=3,4; 

 

- new features of distributional (extrinsic and intrinsic) geometry when 

conical singularities cross boundaries; 

 

- search for the relation between “boundary charges” in the conformal 

anomaly and in EE; 

 

 

  



Local and integrated conformal anomaly 
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Boundary terms in d=4: 
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Results for boundary charges in d=4  
(DF, JHEP 1512, 112 (2015)) 

  boundary "charges"     are calculated for CFT's,  spins 0, 1/2, 1

a relation between boundary   and bulk "charges"     is established   ,





k

k

q

q a с



Results for d=4  

CFT a 

 

c 

 

q1 

 

q2 

 

b.cond. 

 

Scalar 1 / 360 1 / 120 1 / 15 2 / 35 Dirichlet 

Scalar 1 / 360 1 / 120 1 / 15 2 / 45 Robin 

Spinor 11 / 360 1 / 20 2 / 5 2 / 7 Mixed 

Maxwell 31 / 180 1 / 10 12 / 15 16 / 35 Absolute 

Maxwell 31 / 180 1 / 10 12 / 15 16 / 35 Relative 

      For an Abelian gauge field  "charges" do not depend on the boundary

conditions:    

     or   =0 =0 


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Properties of boundary chargers in d=4  

1

1

    

   as consequence, integrated anomaly has a correct Gibbons-Hawking type

boundary term:  the functional

under variations has no normal derivatives of the bulk
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 metric on the boundary  

(Solodukhin, PLB 752, 131 (2016))

Boundaries yield a single independent boundary charge  at   

  is sensitive to boundary conditions

 appears in RG equation for

ˆ( Tr  )





Kq

q

q  3-point correlation function of the stress-energy 

tensor near the boundary (Kuo-Wei Huang (2016), 1604.02138[hep-th])



Some details 



Effective action and spectral geometry   
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Boundary terms (d=4) 
(Branson and Gilkey, Comm. Part. D.E. 15, 245 (1990))    
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Boundary terms (continued)    

This complicated structure of the heat coefficients  drastically 

simplifies in CFT’s as a result of the conformal invariance of the 

coefficient 



Сonformal invariance of the heat coefficient 
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EE for entangling surface crossing  the 

boundary  

  



Logarithmic terms in EE in CFT’s (d=4) 
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 Invariants and coefficients 
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 Boundary terms in EE from the integrated anomaly? 

log

log

explicit derivation of    and    by methods of spectral

geometry is  a technically involved problem, 

one can try to derive the boundary terms in    by using the integrated 

anomaly:
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   is the integrated anomaly of a CFT on  -'replicated' manifold  

one should use distributional properties of curvatures on conical singularities (c.s.)

this method has proved to 
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be successful for manifolds with squashed c.s.

Fursaev, Patrushev, Solodukhin (2013))(



 

The difficulty in 4D is that the structure of conical singularities on the 

boundaries is complicated. 

 

One can get some insights by studying CFT’s in three dimensions 

(a much simplier case).  

 

see,  Fursaev, Solodukhin, PRD 93 (2016) 084021 



 

Why 3D case is interesting:  
  
  

- there is no local conformal anomaly; 

 

- no analogs of C-theorem  and  a-theorem; 

 

- the F-theorem and a relation to EE are established, but only for closed 

3D manifolds; 

 

- there is an integrated anomaly as a pure boundary effect; 

 

 

  



Integrated anomaly of 3D CFT’s: 
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a general structure of 3D integrated anomaly in the presence  of boundaries
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Properties of boundary chargers in d=3  

CFT a 

 

q 

 

b.cond. 

 

Scalar 1 / 96 1 / 64 Dirichlet 

Scalar -1 / 96 1 / 64 Robin 

Spinor 0 1 / 32 Mixed 

   

         

         


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a

q

q

the anomaly is purely boundary effect

depends on boundary conditions

depends on the theory, does not depend on b.c.

appears in  RG equation for 2 - point correlation function

of (Kuo-Wei Huang (2016), 

1604.02138[hep-th])

         q

the stress - energy tensor near the boundary 

as a  possible candidate for a  C - function analogue?



 log terms in 3D EE when the entangling 

line is orthogonal to the boundary 
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Explicit  derivation by using anomaly of the partition function on a replicated

manifold    with conical singularities
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 log terms in 3D EE from the integrated anomaly 
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 non-minimal couplings 
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to the  heat coefficient  is
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and explains the discrepancy!
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Distributional geometry on the boundary:  
  
  

to carry out calculations of the entropy (when the entangling line is tilted 

to the boundary) one needs to know distributional properties of intrinsic 

and  extrinsic geometries when conical singularities from the bulk cross 

the boundary 

 

Previous results: 

 

Fursaev, Solodukhin (1994)   -  distributional properties of curvature 

polynomails (‘symmetric’ conical singularities) 

 

 Fursaev, Patrushev, Solodukhin (2013)  - generalization to ‘squashed’ 

conical singularities 

 

 

 

  



Internal geometry 
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Simple configuration:  let  be locally flat ,  conical singularities lie on 

a line   in  ,  the line  crossing the plane boundary under a tilt angle   
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Regularization of conical singularities 
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'replicated' manifold   can be defined in cylindrical coordinates

equation for the boundary
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External geometry has distributional properties! 
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Logarithmic part of  EE  for tilted boundary: 

log

Each point, where entangling line meets the boundary, yields the contribution:

 

  the log term in the entropy  is determined by the boundary charges in the 

integrat
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Summary and future work:  
 

●    boundary terms in integrated conformal anomalies of CFT’s  are 

specified by sets of boundary invariants and charges; 

 

 ●   some boundary  charges are connected with the bulk charges (for yet 

unknown reasons), some don’t;  some boundary  charges depend on the 

boundary conditions; 

 

 ●   boundary charges may appear in log part of EE (3D CFT); 

 

 ● in 3D CFT’s boundary the q-charge is related to RG equations for 

correlators of the stress-energy tensor (however, its behavior under RG 

flow is to be understood); 

 

 ●   when conical singularities cross the boundaries new distributional 

properties of internal and external geometries are revealed (more studies 

are needed to extend to qubic invariants);  

 

 ●   calculation of boundary terms in EE in d=4, their relation to boundary 

charges are for the future work 

 

 



Thank you for attention 


