
The Gong Show 

The preview show by the 40 poster presenters 



#1 



Instantons and Entanglement Entropy
Arpan Bhattacharyya and Ling-Yan Hung 

Department of Physics and Center for Field Theory and Particle Physics, 
Fudan University 

based on work with Charles -Melby Thomson and P.C.H  Lau, Arxiv:- 1606.xxxxx

YKIS-2016  



              Entanglement Entropy

Decay of False Vacuum  and 
Entanglement Entropy

              How robust is the area Law?

              Instanton tunneling                 crucial to obtain correct ground state
              Classic example is  Mexican Hat potential in  

              Dilute gas assumption and replica trick give us, 

SEE = S0 +A(R)KP1[(1� logPn)
0|n=1 � log(�i⇡e

�S0)]

This is the Instanton correction to the entropy , do an analytic continuation in time, 
decay rate K enters into the entropy expression   

              How easy (hard) to get volume law for local field theories ???



              Transverse Ising Model: 

Decay of False Vacuum in spin Chain 
and Growth of Entanglement Entropy
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              Study the time evolution of the wave function  which appears  
like false vacuum   

| (t) >= eiHT |0 >

|0 >              +1 eigenstate of �z

              We find the growth of entropy is bounded by the area law  

              Satisfy Lieb-Robinson Bound



Gauge Theory
Generic gauge groups the background pure gauge configuration can  
be classified by different topological sectors.

These backgrounds cannot be related by small gauge transformation.  
True vacuum is the sum of all these.   Vacuum.✓

Instanton  tunnels  between these pure Gauge backgrounds

✓ Vacuum in 2+1d U(1) Gauge theory
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Z
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2+1 d U(1)   X-Y model duality  

Give us handle how to do the n=1 
 expansion and the answer for EE 
  matches from both side.
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Modelling      -Vacuum ✓

One more classic example is 1+1 dimensional Schwinger model:

Sschwinger =

Z
d

2
x  ̄�

µ(i@µ � eAµ) � 1

4
F

µ⌫
Fµ⌫

✓ Vacuum (in temporal Gauge) :
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f0(N,�)
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†
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¯ �± 

Bogoliubov transformation

Too complicated , we will consider a toy model where we just 
 focus on the (weighted) sum of the Fermi-surfaces.
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Entanglement entropy for this case cannot scale as “Volume”.  
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Entanglement Entropy and Conformal Interfaces

Enrico Brehm, Ilka Brunner, Daniel Jaud, Cornelius Schmidt-Colinet

Arnold Sommerfeld Center, Ludwig Maximilian Universität München

June 15th 2016

CFT1 CFT2

correlations

E. Brehm Entanglement Entropy and Conformal Interfaces



Measure of choice: Entanglement Entropy

SA = −Tr ρA log ρA = − ∂

∂n
Trρn

A .

Method:

top. defect bn

CFT⊗n

I⊗nB A

JInbn

Result:

SI = σI
c
3

log L + s(I) .

E. Brehm Entanglement Entropy and Conformal Interfaces
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Equivalence of Emergent de Sitter Spaces 
from Conformal Field Theory 

C. T. Asplund, N. Callebaut, CZ [1604.02687] 

Two proposals for a dS space emergent from entanglement entropy: 

Claire Zukowski 

1) Kinematic Space 2) Auxiliary de Sitter Proposal 
Modular Hamiltonian for ball-shaped 
regions for         in vacuum:

KS = Space of boundary 
intervals in         /spacelike 
Ryu-Takayanagi geodesics on 
a bulk slice of 

Global

boundary-to-bulk     
propagator

                    satisfies a dS 
Klein-Gordon equation

Czech, Lamprou, McCandlish, Sully (2015a) de Boer, Heller, Myers, Neiman (2015)



Our Results 

•Quotient Spaces: For e.g. BTZ black hole/conical singularity, 
phase transitions in EE introduce defects in KS. 

Goal: Provide support for the equivalence of these emergent 
spacetimes in the vacuum case and beyond 

•Thermal Case: KS for BTZ black string is the hyperbolic patch 
of      . Perturbations of EE satisfy a wave equation on KS. 

Our Results: 
Pure AdS BTZ String BTZ BH Con. Sing.

Equivalence          Modular Hamiltonian from EE? 

•Causal Structure: KS of locally        spaces is generically globally 
hyperbolic.  



Kinematic space K (1.0)   =    space of CFT   intervals    /    AdS geodesics         
[Czech, Lamprou, McCandlish, Sully  JHEP 1510 (2015) 175] 

K of global AdS
= global dS

2

2

3

3 K of 
Poincare AdS

K of 
BTZ black string

K of 
BTZ black hole

K of 
conical star

K   =   auxiliary de Sitter of 
[de Boer, Heller, Myers, Neiman  
Phys.Rev.Lett. 116 (2016) no.6, 061602]

=>
EE perturbations propagate on K 

K of quotiented geometries 
raises questions on 
propagating fields on K

[Asplund, NC, Zukowski
1604.02687]



Kinematic space K (1.0)   =    space of CFT   intervals    /    AdS geodesics         
[Czech, Lamprou, McCandlish, Sully  JHEP 1510 (2015) 175] 

K of global AdS
= global dS

2

2

3

3 K of 
Poincare AdS

K of 
BTZ black string

K   =   auxiliary de Sitter of 
[de Boer, Heller, Myers, Neiman  
Phys.Rev.Lett. 116 (2016) no.6, 061602]

=>
EE perturbations propagate on K 

K  =  auxiliary dS for any 
locally AdS geometry, by 
recognizing K as Liouville
metric with the EE the  
Liouville field 

3

[NC, Verlinde - in preparation]



#4 



Emergent Geometry from Redundancy-
Constrained States and Bulk Entanglement 
Gravity 

ChunJun Cao and Sean Carroll,  

California Institute of Technology 

Prepared for YKIS 2016 



Embedding 
manifold 

Entanglement 
perturbation and gravity 
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Entanglement Entropy in a Holographic Kondo Model

Mario Flory

Max-Planck-Institut für Physik

Quantum Matter, Spacetime and Information

YITP, 15.06.2016

Based on 1410.7811 and 1511.03666

Mario Flory YKIS 2016 1 / 2



Entanglement entropy in the Kondo effect
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2016/06/15YKIS 2016, Quantum Matter, Spacetime and Information 1

 Bose-Hubbard model as the effective theory on an optical lattice, including 
the hopping term + Short-range repulsive interactions U
 The extension to the SU(N) Bose-Hubbard model

Conjecture of MF-Harrison-Karch-Meyer-Paquette, JHEP04(2015)068

 To compute the VEV of the hopping term in both sides of the duality
concretely and compare them,Work in progress of MF-Meyer-Sumiran-Tezuka

SU(N) Bose-
Hubbard model

2d gravity on the 
AdS2 hard wall
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 (b): Realizing the lobe-shaped phase structure from the gravity dual 
 Finding zero modes at the cusp around thop=0

 (c): Comparision of dF/dthop :  the result of SU(Nc) Bose-Hubbard model fits the result of the gravity 
dual at small hopping well (Dashed lines are the field theory result)

2016/06/15YKIS 2016, Quantum Matter, Spacetime and Information 2

(a) (b) (c)
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Fractional quantum Hall states of dipolar fermions 

in a strained optical lattice
Hiroyuki Fujita, ISSP. Univ. Tokyo

Aim: Quantum simulation of strongly entangled phase of matter

Synthetic magnetic field  

in a strained honeycomb optical lattice

Fermionic dipolar molecule e.g. NaRb

Landau levels

Correlation

Realization of FQHE states in ultra-cold gases?



Various valley-polarized FQHE states found

Exact diag. in a spherical geometry in lowest LLMethod:

Energy scale estimation for 

Discussion on its experimental realization 

⌫ =
1

3
Laughlin state of

Result:

N
orb



#8 



Shape Dependence of Holographic 
Rényi entropies. Damián A. Galante (UWO/PI) 

Work in progress in collaboration with L. Bianchi, 
S. Chapman, X. Dong, M. Meineri and R. Myers 

Lots of conjectures have been made recently about 
universal features of Rényi entropies of deformed 
entangling surfaces… 

There has been a proof around n=1 [Faulkner, Leigh, 

Parrikar], but for general n… 

For 4d CFTs 

fb(n) = fc(n)

Cone Contributions to 
Rényi Entropies 

Displacement 
conjecture in general 

dimensions 

CD(n) = d�

✓
d+ 1

2

◆✓
2p
⇡

◆d�1

hn
�(d)
n / hn

n� 1



Shape Dependence of Holographic 
Rényi entropies. Damián A. Galante (UWO/PI) 

Work in progress in collaboration with L. Bianchi, 
S. Chapman, X. Dong, M. Meineri and R. Myers 

[X. Dong, 2016] 

What is CD? How to compute it in holographic theories? 
What is the result? How different is it from the conjecture? 

In 4d holographic CFTs

fb(b) 6= fc(n)

In holographic CFTs

in d dimensions

In holographic CFTs

in d dimensions
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Dyonic extremal Black hole entropy for N = 8 gauged supergravity

Prieslei Goulart - IFT/UNESP - Sao Paulo, Brazil - MPI - Munich, Germany

I Motivation: obtain the black hole entropy for supergravity theories with a
non-trivial dilaton potential;

I Sen’s entropy function:
Near horizon metric is AdS2 × S2:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ

2 + sin2 θdφ2), (1)

where the constants v1 and v2 are the AdS2 radius and the S2 radius respectively.
Entropy function:

E(~u, ~v ,~e, ~q, ~p) ≡ 2π[eAq
A −

∫
dθdφ

√
− det gL]. (2)

Attractor equations:

∂E
∂us

= 0,
∂E
∂v1

= 0,
∂E
∂v2

= 0,
∂E
∂eA

= 0 , (3)

At the extremum (3) the entropy function is the black hole entropy:

SBH = E(~u, ~v ,~e, ~q, ~p). (4)

Prieslei Goulart



I We obtain the dyonic black hole entropy N = 8 gauged supergravity:

S =

∫
d4x
√
−g

R − 3

8

 4∑
I=1

(∂µλI )
2 − 2

∑
I<J

∂µλI∂
µλJ

− 1

4

4∑
I=1

X 2
I (F

I
µν)

2 − V

 ,
(5)

F I
µν = ∂µA

I
ν − ∂νAI

µ, V (X ) = −
g2

4

∑
I<J

1

XIXJ
, X1X2X3X4 = 1. (6)

I The entropy is written as

E = 2π

(
4∑

I=1

qIpI

)1

2

1 +

√√√√√1−
g2

2

(
4∑

I=1

qIpI

)∑
J<K

√
pJpK

qJqK




−1/2

.

(7)
I The entropy can also be written as

E =
1

2

(
4∑

I=1

qIpI

)(
q1q2q3q4

p1p2p3p4

)1/4

. (8)

I We also how the entropy changes under electric-magnetic duality.

Prieslei Goulart
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String theory is not even wrong?

Not really; we will make it FALSIFIABLE!

LIGO

PLANCK

Today we propose yet another approach:  
an experimental realization of a quantum black hole



Super Yang-Mills
IIA/IIB-string 

M-theory 
(BH, black brane)

Sachdev-Ye-Kitaev  
model BH in AdS2

Make them from  
atoms and lasers!

Experimental Quantum Gravity 
with Cold Atoms

Let’s make a black hole in your lab and see how it behaves!
©NISTI. Danshita, M. Hanada, M. Tezuka
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Hayata, Hidaka, MH, Noumi, Phys. Rev. D 92, 065008  

MH in preparation (2016)

Emergent curved spacetime 
from locally thermalized matter

Masaru Hongo  
iTHES Research group, RIKEN 


Quantum Matter, Spacetime and Information, 2016/6/15, Kyoto University, 

Described by
T (x), �v(x), µ(x)

QFT



Thermal Field Theory

T = const.

Thermodynamics �0

x

�0d�
�0

QFT in the 
flat spacetime 

     with radius

Thermal Field Theory

Path int.

( Matsubara, 1955 )

Gibbs distribution: �̂G =
e��(Ĥ�µN̂)

Z
= e��(Ĥ�µN̂)��[�,�]

 Thermodynamic potential with Euclidean action 

�[�, �] = log Tr e��(Ĥ�µN̂) = log

�
d��±�|e��(Ĥ�µN̂)|��

SE [�] =

� �

0
d�

�
d3x LE(�, �µ�)= log

�

�(�)=±�(0)
D� e+SE [�],



Hydro {�(x), �v(x)}

�(x)

x

d�

[ Hayata-Hidaka-MH-Noumi ’15 ]

g̃µ� = g̃µ�(�,�v)

QFT in the 
“curved spacetime” 
 with “metric”

Local Thermal Field Theory

Path int.

Local Thermal Field Theory

ds

2 = �e

2�(dt̃+ aī)dx
ī + �

0
īj̄dx

ī
dx

j̄

is written in terms of QFT in curved spacetime

Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

�[t̄; �] � log Tr exp

��
d�t̄�

�
�µ(x)T̂ �

µ(x) + �(x)Ĵ�(x)
��

 [�]

Consistent with [Banerjee et al.(2012), Jensen et al.(2012) …]
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Crofton’s formula

Czech etal. 2015

Γ

G1

σ(γ)
4G =

1
4 ∫γ∩Γ≠∅N(γ ∩ Γ) εK

The length σ(γ) of a curve γ can be

expressed in terms of an integral over the

geodesics Γ that have nonvanishing

intersection number N(γ ∩ Γ) with γ

The measure εK is given by the second derivative of the
entanglement entropy

εK(u, v) =
∂2S(u,v)
∂u∂v du ∧ dv

Hence we can obtain the geometry from the entanglement
structure of the field theory on the boundary

Xing Huang Some applications of integral geometry in AdS/CFT



Kinematic space of geodesics in general dimensions

XH and Lin 2015

A B

Crofton’s formula in higher dimensions:

σd(Md) ∼ ∫
Md−1∩Γ≠∅

N(Md ∩ Γ) εK

which says that the area is equal to flux of
geodesics

εK = 1

4G
det [∂

2S(x⃗1, x⃗2)
∂x⃗1∂x⃗2

]
d−1

∏
i=1

dx i2 ∧ dx i1

The volume form follows from
second derivative of S and is a new
type of measure of two-point
correlation (entanglement contour)

S is no longer related to entropy
even though it can be computed
from field theory

Xing Huang Some applications of integral geometry in AdS/CFT
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Coupled Wire Construction 
and generalized Wilson line YKIS2016

Yukihisa Imamura and Keisuke Totsuka (arXiv:1605.09235)

A new method of systematically constructing topological phases

many-body hopping interaction

CFT (Luttinger liquid)

(Abelian) 
Laughlin state 
chiral spin liquid 

(Non-Abelian) 
Moore-Read state 
Read-Rezayi state 

etc.

Coupled Wire Construction :



Coupled Wire Construction 
and generalized Wilson line YKIS2016

Yukihisa Imamura and Keisuke Totsuka (arXiv:1605.09235)

generalized Wilson line :

The bulk theory of the Laughlin state 
= the Chern-Simons gauge theory

How emerging in the coupled wire construction?

The ground state has some redundancy  
                                 related to a gauge and a chiral transformation

Chern-Simons gauge field
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Topological phase transition in QCD
described by using imaginary chemical potential

We propose a new determination of the confinement-deconfinement transition in QCD

The Roberge-Weiss endpoint would define
the deconfinement temperature 

Deconfined phase Confined phase

Effective potential

In this determination, 
the deconfinement transition

can be interpreted as 
the topological phase transition

This determination may have direct relations with the entanglement entropy and the Uhlmann phase

K.K. and A. Ohnishi, PLB 750 (2015) 282.
K.K. and A. Ohnishi, arXiv: 1602.06037, to be published in PRD.
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Distinguishability of countably many states
Ryuitiro Kawakubo and Tatsuhiko Koike,  Department of Physics, Keio University

✴ Condition for distinguishability

Theme: 
State discrimination (We want to distinguish each state in a given set of states). 

Problem:
What kind of states can be distinguishable by a single measurement? 
More precisely, in our discussion distinguishability of states is to be understood 
as the possibility of an unambiguous measurement on them.

�1

�2

�3

1

2

3

?

unambiguous measurement

• An unambiguous measurement is allowed to answer 
“?” or “do not know”.

• An unambiguous measurement distinguishes the 
inputs with certainty unless “?” is detected.

We obtained
countable pure states to be distinguishable.



Distinguishability of countably many states
Ryuitiro Kawakubo and Tatsuhiko Koike,  Department of Physics, Keio University

A von Neumann lattice is a family of states which corresponds to the lattice in the classical 
phase space. The distinguishability of a von Neumann lattice depends only on the area of its 
fundamental region S. It is indistinguishable when S is sufficiently small and distinguishable 
when S is sufficiently large. The threshold is exactly the Planck constant,
which is the unit of area of the phase space as in Bohr-Sommerfeld quantum condition.

✴ Distinguishability of von Neumann lattices

indistinguishable distinguishable

h
S

the Planck constant
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Holographic Entanglement Entropy of 

Anisotropic 

Minimal Surfaces in LLM Geometries 

YKIS2016   Quantum Matter, Spacetime and Information 
June 13-June 17, 2016 YITP, Kyoto University, Japan 

 

In collaboration with Chanju Kim, O-Kab Kwon 

 

Based on arXiv1605.00849 (accepted in PLB) 

Previous related works 

Phys.Rev. D90 (2014) 4, 046006 ,    

Phys.Rev. D90 (2014) 12, 126003   

(with O. Kwon, C. Park and H. Shin.) 

 

Kyung  Kiu  Kim 

(Yonsei University) 

 

 



 

 

 

 

 

 

 

 Vacuum structure 

 

Continuous Vacua                    Discrete Vacua 

 

 

 

 Entanglement Entropy ?    



 An infinite number of entanglement entropies 

 

 

 

 We consider all the entanglement entropies corresponding to 
all the vacua through a holographic approach(Ryu-Takayanagi 
Formula).  

 For small mass deformation  

 

 

 This result should correspond to the corresponding field 
theory calculation with small mass perturbation. 

 

 

 There are many interesting structures( Droplet picture,  Yong 
diagam,  H c-theorem).  Please visit my poster presentation ! 

Thank you ! 
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Dynamic correlation of Kitaev’s honey-comb model

Shinji Koshida

Department of Basic Science, The University of Tokyo

June 15, 2016

A

B

1

2

3

HKit = −
∑

µ=1,2,3

Jµ
∑

(x,y)∈Bµ
Λ

Sµ
xS

µ
y .

1 / 2



• By mapping the Kitaev’s honey-comb model to Majorana fermions coupled to
Z2-gauge fields,

H̃ =
i

4

∑
x,y∈Λ

Axya
4
xa

4
y

acting on an extended Hilbert space, it is “solved”.

• The action of quantum spin operators is not clear.

• I derived matrix elements of quantum spin operators with respect to energy
eigenstates.

⟨ϕσ′

I , S̃µ
xϕ

σ
0 ⟩

= Cσσ′

 ∑
i∈I\I

(−1)ℓ(I,i)Rσ′

xiPfZ
σσ′

I∪{i} +
∑
i∈I

(−1)ℓ(I,i)Rσ′
xiPfZ

σσ′

I\{i}


2 / 2
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Time-evolution of Holographic Entanglement Entropy and Metric 
perturbations

Jung Hun Lee (Kyung Hee Univ.)

Based on (arXiv:1512.02816) with Nakwoo Kim (Kyung Hee Univ.)

Entanglement Entropy has holographic descriptions of quantum gravity 
      by AdS/CFT correspondence.

The motivation is to see how small excitations in the gravity side manifest 
     itself in HEE.

We consider the small cap-like surfaces in the bulk and compute HEE 
     perturbatively in deformed AdS vacuum. (ex. AdS-BHs, AdS-scalar systems)

[Ryu,Takayanagi 06]

SA = �TrA[⇢A log ⇢A]

SA =
Area(�A)

4GN
(d+1)

von Neumann

formula

Holographic EE :

:

Yukawa International Seminar 2016 (YKIS2016)

Quantum Matter,Spacetime and Information



Time-evolution of Holographic Entanglement Entropy and Metric 
perturbations

Jung Hun Lee (Kyung Hee Univ.)

Based on (arXiv:1512.02816) with Nakwoo Kim (Kyung Hee Univ.)

We found that the metric perturbation around the AdS vacuum does not effect
     the divergent terms and the change is in the finite part.

We have computed the entanglement temperature by using the methods of
     holographic renormalisation. [Bhattacpatya,Nozaki,Takayanagi,Ugajin 13]

[Fe↵erman,Graham 85][Myers 99]

We have checked that the entanglement temperature is proportional to the 
     inverse size of the system and has the same value for the systems considered 
     in our paper.

Thank you for listening!

Yukawa International Seminar 2016 (YKIS2016)

Quantum Matter,Spacetime and Information
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1. Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, 84112, U.S.A. 

2. Key State Laboratory of Surface Physics, Department of Physics and Center for Field Theory and Particle Physics, Fudan University, China 

3. Collaborative Innovation Center of Advanced Microstructures, Fudan University, China  

YITP, May 2016 

ArXiv: 1603.01777 



YITP, May 2016 

1. Phases with intrinsic topological order have (among other features), 

       1)  ground state degeneracy on nontrivial manifolds; 

       2)  bulk-edge correspondence; 

       3)  long-range entanglement. 

2. What does entanglement for such phases look like on nontrivial manifolds?  

      How do these degenerate ground states enter?  

      What other information is involved? 

3. These questions have been partially studied before[1] using Chern-Simons 

theory.  We focus on a general set of non-chiral theories: string-net model[2].  

Quantum Entanglement in Topological Phases on a Torus 

[1] Dong, Shiying, et al. Journal of High Energy Physics 2008.05 (2008): 016. 
 
[2] Levin, Michael A., and Xiao-Gang Wen.  Physical Review B 71.4 (2005): 045110. 



4. By partitioning a torus into two cylinders, we derive 

 

 

 

5.   A decomposition matrix M enters the expression which describes how bulk topological charges of the 

ground states decompose into boundary degrees of freedom. 

 

6.   We generalize the Minimally Entangled States[3] to Minimally Entangled Sectors. 

7.   Examples from abelian & non-abelian finite groups and modular tensor category are discussed. 

YITP, May 2016 

[3] Zhang, Yi, et al.  Physical Review B 85.23 (2012): 235151. 
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Spectral Weight in 
Holographic Superfluids

Victoria Martin

Stanford University

Quantum Matter, Spacetime and Information

June 15, 2016

arXiv:xxxx.xxxx Gouteraux, VM
See also: arXiv:1210.1590 Anantua, Hartnoll, VM, Ramirez



Charge behind horizon Low energy spectral weight 
at nonzero momentum





𝜎 ≠ 0 𝑘 < 𝑘⋆



𝜎 ≠ 0 𝑘 < 𝑘⋆ 𝜎 ≠ 0 𝑘 < ෨𝑘

??



𝜎 ≠ 0 𝑘 < 𝑘⋆ 𝜎 ≠ 0 𝑘 < ෨𝑘

1) How should we interpret low energy spectral weight that exists independently of charge? 

2) What other degrees of freedom could this weight represent? 

3) To what extent do bulk charge distribution properties represent those of the boundary charge?

??
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A

Inflation

Disentangle?Entangle
We investigated the entanglement in the de Sitter space.

Quantum Entanglement in the de Sitter Spacetime

Hubble Horizon  Hubble Horizon  

Akira Matsumura 
Yasusada Nambu (Nagoya univ.)  



The entanglement 
does not disappear .

In this scale, the entanglement is lost.
Discussion :

What a relation between the entanglement and the de Sitter 
spacetime structure ?
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Holographic Entanglement Entropy (HEE) and Field
Redefinition Invariance (FRI)

M. R. Mohammadi Mozaffar
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Field Redefinition Invariance

Physical observables must be invariant under the field reparametrization

(change of basis in the Hilbert space)

Example: Path Integral in QFT

Z =
∫
DΦ(x) e−I[Φ(x)] =

∫
DΦ̃(x) e−Ĩ[Φ̃(x)]

Φ(x) → Φ̃(x) = Φ̃[Φ(x)] non-zero Jacobian

A one-to-one correspondence between physical observables

Question

Can we find HEE functional for higher derivative gravity theories using FRI?

M. R. Mohammadi Mozaffar (IPM) HEE and FRI June 2016 2 / 3



HEE and FRI

Our Strategy ∫ √
gR+ ...

∫ √
gf(Rµν) + ...

SEE = min(A)
4G

SEE

Ryu-Takayanagi

FPS, Dong & ...

G(g) G−1(g)

Field Redef.

Achievements

FRI extracts the new HEE functionals from the RT functional, so

1 It gives both the HEE functional and the corresponding hypersurface

2 It has simple generalization to time dependent cases

3 Different entanglement inequalities satisfied

M. R. Mohammadi Mozaffar (IPM) HEE and FRI June 2016 3 / 3
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Field Space Entanglement

Consider a local QFT with N number of fields
L = L1 [ϕ1(x)] + L2 [ϕ2(x)] +⋯ +LN [ϕN (x)] + Lint. [ϕi(x)]

Hilbert space decomposition
Htot. = H1 ⊗H2 ⊗⋯⊗HN

Reduced density matrix
ρ(m, N ) = TrH(N−m) [ρtot.]

Entanglement and Renyi entropies

Sent. = −Tr [ρ(m, N ) log ρ(m, N )] , S(n) = 1
1 − n

log Tr [ρn(m, N )]

Explicit models

S = 1
2 ∫

ddx [
N
∑
i=1
(∂µϕi)2 + λ∑∂µϕi∂

µϕj]

Ali Mollabashi 1 / 2
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Our (Gaussian) Models
Nearest-Neighbour Infinite-Range

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6 ϕN

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6 ϕN

Renyi & Araki-Lieb inequalities and SSA are satisfied
n-partite information ≥ 0 (checked for n ≤ 5)
In particular I (3) ≥ 0 (existence holographic dual?)
Infinite-Range model in λ→ 0 limit

S reg.(m) = λ2m(N −m)
32

[1 − log λ2m(N −m)
32

] +O (λ3)

Ali Mollabashi 2 / 2
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15th June, 2016YKIS Conference

The Gibbs paradox revisited from the 
fluctuation theorem with absolute irreversibility

1University of Tokyo, 2RIKEN CEMS Yûto Murashita1, Masahito Ueda1,2

S Sstat

GP-I
GP-II

GP-III

�Sid = 0 �Sdif = 2NkB ln 2

The Gibbs paradox has three faces

The Gibbs paradox 
from gas mixing

Thermodynamics (Classical) statistical mechanics

The three faces are resolved 
in the thermodynamic limit

However, GP-II is partially open in small systems!

Gibbs (1875)

Gibbs (1902)

Ehrenfest&Trkal (1921)

van Kampen (1984) 
Jaynes(1992)



15th June, 2016YKIS Conference

1University of Tokyo, 2RIKEN CEMS Yûto Murashita1, Masahito Ueda1,2

Theme of GP-II

*The quantum resolution is irrelevant in this context

S(T, V,N) = Sstat(T, V,N) + kBf(N)

Removing the ambiguity f(N)

In the thermodynamic limit

S(T, qV, qN) = qS(T, V,N)

Extensivity
f(N) = �N lnN +Nconst.

The Gibbs paradox revisited from the 
fluctuation theorem with absolute irreversibility

,

'

� lnN ! (N ! 1)In a small thermodynamic system
Fluctuation theorem with 
absolute irreversibility

he��(W��F )i = 1� �
,f(N) = � lnN ! +Nconst.
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Flux	
  quench	
  in	
  a	
  system	
  of	
  interac4ng	
  
spinless	
  fermions	
  in	
  one	
  dimension	
  

Yuya	
  Nakagawa	
  (ISSP,	
  Univ.	
  of	
  Tokyo)	


•  Quantum	
  quench	
  of	
  the	
  flux	
  piercing	
  an	
  interac4ng	
  
spinless	
  fermion	
  chain	
  

•  Numerical	
  calcula4on	
  of	
  the	
  dynamics	
  of	
  par4cle	
  current	
  
aHer	
  the	
  quench	


H (t) = − 1
2

e−iθ (t )ci
†ci+1 + e

iθ (t )ci+1
† ci( )i∑ −Δ nini+1i∑

spinless	
  fermion	
  
chain	


Flux	


Nakagawa,	
  Misguich,	
  Oshikawa,	
  arXiv:1601.06167	
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Oscilla4ons	
  are	
  due	
  to	
  selec4ve	
  
Umklapp	
  scaRering!!	
  

Other	
  results:	
  
・	
  strong	
  nonlinearity	
  of	
  J(t=∞)	
  in	
  rela4on	
  with	
  
the	
  Drude	
  weight	
  
・ thermaliza4ons	
  in	
  integrable	
  model	
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Dynamics	
  of	
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Flux	


arXiv:1601.06167	


please	
  
see	
  .gif	
  

anima4on!	
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Quantum Annealing with
Hyperpolarized Nuclear Spins

M. Negoro @ Eng. Sci., Osaka Univ.

Proposal for nuclear ferro or anti-ferro @ room temperature

Laser

microwave

Nuclear
Spin

Orb.
Mom.

Electron spin

Laser

Spin-Orbit Int.

Spin-Orbit Int.

microwave

t
0

Δω

ω1

0

0

@100mK

34%

0.5uK
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・Sweep dynamics with OBC 

: Sweep time 

Sweep from C phase to C* phase 

String correlation functions (SCFs) 

entanglement entropy (EE), spectrum (ES) 

・Physical quantities 

Entanglement dynamics of Majorana fermions 
Yukawa Institute for Theoretical Physics, Kyoto University Takumi Ohta 

With Shu tanaka, Ippei Danshita, and Keisuke Totsuka 
Reference: Phys. Rev. B 93, 165423 (2016) 

Dynamical properties of Majorana fermions 



Spatially periodic structure 

SCF 

ES 

Oscillating and splitting structures in time 

＠ t = τ 

Digest of Dynamics 

EE 
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YKIS at YITP Kyoto, Japan (June 2016)

Universality of Black Hole Quantum Computing

Benedikt Richter

Physics of Information and Quantum Technologies Group, IT, Lisboa

IST, Universidade de Lisboa

ASC, Ludwig-Maximilians-Universität München

joint work with

Gia Dvali
(LMU, MPP, NYU)

Cesar Gomez
(LMU, UAM-CSIC)

Dieter Lüst
(LMU, MPP)

Yasser Omar
(IT, IST)

based on arXiv: 1605.01407



Black Hole Quantum Computing

By analyzing the key properties of black holes, we derive a model-independent
picture of black hole quantum computing.

Black hole type quantum computer

qubits gates decoherence time

Main results:

time scales for gate operations, (local) decoherence and life-time coincide:

tgate ∼ tdecoh ∼ tlife−time

⇒ maximal circuit depth is trivial,

⇔ Trade-off between memory and information processing capacity
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Paola Ruggiero

 “Quantum Matter, Spacetime and Information”,  
June, 13-17, 2016           

with V. Alba, P. Calabrese 
 arXiv:1605.00674 

THE ENTANGLEMENT NEGATIVITY  
IN RANDOM SPIN CHAINS



Replica Approach:

ENTANGLEMENT NEGATIVITY IN MANY BODY SYSTEMS

QFT methods:  [Calabrese, Cardy, Tonni, 2011]

“Good Measure” of Entanglement:    Pure states 
                                          Mixed states

Exact results available in CFT:

EA1: A2 = lnTr|⇢T2 |



NEGATIVITY IN RANDOM SPIN CHAINS

Random Singlet Phase

A1 A2B1B2 B2

STRONG DISORDER RG

EA1:A2 ⇠ nA1:A2 log 2

hEA1:A2i ⇠
log 2

6

log

✓
`1`2

`1 + `2

◆
Adjacent intervals: Disjoint intervals:

A1 A2B1B2 B2

`1 `2r

(XX, Heisenberg, Ising)

Single Realization 
of the Disorder:

Average over disorder (SDRG)

hEA1:A2i = � log 2

6

log

✓
1� `1`2

(`1 + r)(`2 + r)

◆
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Entanglement Entropy of Scattering Particles
Shigenori Seki 

This poster presentation is based on the work:  
R. Peschanski (IPhT, CEA-Saclay) and SS,  
“Entanglement entropy of scattering particles”, Phys. Lett. B758 (2016) 89.

What is the entanglement entropy between the particles in the two-particle final state?

A

A

B

B

interaction

QUESTION

unentangled 
initial state

final state 
(two particles)

S-matrix S

Let us consider a scattering process of two particles.

|inii = |~k iA ⌦ |� ~k iB

|fini = QS|inii

Q(    : projection operator onto the  
Hilbert space of two-particle states)

(center of mass)



OUR ANSWER

SEE = � lnK , K ⇠ 1�
�el � 1

R2
d�el
dt

��
t=0

4⇡R2 � �inel

�el : integrated elastic cross section

�inel : integrated inelastic cross section R : maximal impact parameter

: differential elastic cross sectiond�el

dt

By introducing the physical Hilbert space, we obtain the formula that describes the 
entanglement entropy in terms of physical observables;

There are elastic and inelastic channels: A+B ! A+B

A+B ! X

“elastic”
“inelastic” (multi-particle)

SEE = � ln

��P
`(2`+ 1)s`

��2
P

`,`0(2`+ 1)(2`0 + 1)|s`|2

By using partial wave expansions, we calculate the entanglement entropy;

⇡k

EA~k + EB~k

hh~p |s|~k ii =
X

`

(2`+ 1)s`P`(cos ✓)

s` = 1 + 2i⌧` , Im⌧` = |⌧`|2 +
1

2

f` (unitarity)

~k
�~k

�~p

~p

✓A B
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Z4 topological crystalline insulators and superconductors

Ken Shiozaki, University of Illinois at Urbana Champaign

• Topological insulators + nonsymmorphic space group 

• Periodic table from K-theory

• Glide + Time-reversal symmetry → Z4 phase

Z4=１ phase

Z4=2 phase

KS, M. Sato, K. Gomi, arXiv:1511.01463

=
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A B C 

At T = 0,  

   a topological phase defined in terms of GS.   

At T > 0,  

how do we characterize a 1D topological SC ?  

𝝁 QCP 

Temperature 

? 

Topological Trivial 

YeJe Park,  Seung-Sup Lee and Heung-Sun Sim* 

Use  mixed-state entanglement measure 𝜀𝑋|𝑌(𝜌) 

     to introduce a topological quantity 𝚪𝜺(𝝆). 

Question Our solution 

𝚪𝜺(𝝆) = 𝜀𝐵|𝐴𝐶 𝜌 − 𝜀𝐴|𝐵𝐶 𝜌 − 𝜀𝐶|𝐴𝐵(𝜌) 

KAIST, Korea 

𝚪𝛆 

𝝁 

𝑻 = 𝟎 

Topological Trivial 

 Sudden Death and Birth of Topological Entanglement 

 in 1D Fermions at Finite Temperature  



𝟏 𝟐 𝟑 𝟒 

𝝁 

Temperature 

 Topological quantity Γ𝜀 at T > 0 

𝟏 𝟒 = 𝟑 𝟐 = 

+ 

Majorana fermions as entangled nonlocal qubits  

In the topological region at T > 0, 

 the nonlocal qubits formed by bulk Majoranas 

 are entangled.  

A B C 

YeJe Park,  Seung-Sup Lee and Heung-Sun Sim* 

KAIST, Korea 

𝚪𝜺 

 Sudden Death and Birth of Topological Entanglement 

 in 1D Fermions at Finite Temperature  
 Sudden Death and Birth of Topological Entanglement 

 in 1D Fermions at Finite Temperature  
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Sang-Jin	Sin	(HYU) 		
2016.06.15@Kyoto	

	A	few	examples	for	Holography	vs.	experiment	

1	



Anomalous	Hall	coefficient	Rs	

and Lippert !1932" established that an empirical relation
between !xy, Hz, and Mz,

!xy = R0Hz + RsMz, !1.1"

applies to many materials over a broad range of external
magnetic fields. The second term represents the Hall-
effect contribution due to the spontaneous magnetiza-
tion. This AHE is the subject of this paper. Unlike R0,
which was already understood to depend mainly on the
density of carriers, Rs was found to depend subtly on a
variety of material specific parameters and, in particular,
on the longitudinal resistivity !xx=!.

In 1954, Karplus and Luttinger !KL" !Karplus and
Luttinger, 1954" proposed a theory for the AHE that, in
hindsight, provided a crucial step in unraveling the AHE
problem. KL showed that when an external electric field
is applied to a solid, electrons acquire an additional con-
tribution to their group velocity. KL’s anomalous velocity
was perpendicular to the electric field and therefore
could contribute to the Hall effects. In the case of ferro-
magnetic conductors, the sum of the anomalous velocity
over all occupied band states can be nonzero, implying a
contribution to the Hall conductivity "xy. Because this
contribution depends only on the band structure and is
largely independent of scattering, it has recently been
referred to as the intrinsic contribution to the AHE.
When the conductivity tensor is inverted, the intrinsic
AHE yields a contribution to !xy#"xy /"xx

2 and therefore
it is proportional to !2. The anomalous velocity is depen-
dent only on the perfect crystal Hamiltonian and can be
related to changes in the phase of Bloch state wave
packets when an electric field causes them to evolve in
crystal momentum space !Chang and Niu, 1996;
Sundaram and Niu, 1999; Bohm et al., 2003; Xiao and
Niu, 2009". As mentioned, the KL theory anticipated by
several decades the modern interest in the Berry phase
and the Berry curvature review here effects, particularly
in momentum space.

Early experiments to measure the relationship be-
tween !xy and ! generally assumed to be of the power-
law form, i.e., !xy$!#, mostly involved plotting !xy !or
Rs" vs !, measured in a single sample over a broad inter-
val of T !typically 77–300 K". As we explain below, com-

peting theories in metals suggested that either #=1 or 2.
A compiled set of results was published by Kooi !1954";
see Fig. 2. The subsequent consensus was that such plots
do not settle the debate. At finite T, the carriers are
strongly scattered by phonons and spin waves. These in-
elastic processes, difficult to treat microscopically even
today, lie far outside the purview of the early theories.
Smit suggested that, in the skew-scattering theory !see
below", phonon scattering increases the value # from 1
to values approaching 2. This was also found by other
investigators. A lengthy calculation by Lyo !1973"
showed that skew scattering at T$%D !the Debye tem-
perature" leads to !xy$!!2+a!", with a as a constant. In
an early theory by Kondo considering skew scattering
from spin excitations !Kondo, 1962", it may be seen that
!xy also varies as !2 at finite T.

The proper test of the scaling relation in comparison
with present theories involves measuring !xy and ! in a
set of samples at 4 K or lower !where impurity scattering
dominates". By adjusting the impurity concentration ni,
one may hope to change both quantities sufficiently to
determine accurately the exponent # and use this iden-
tification to tease out the underlying physics.

The main criticism of the KL theory centered on the
complete absence of scattering from disorder in the de-
rived Hall response contribution. The semiclassical
AHE theories by Smit and Berger focused instead on

FIG. 1. The Hall effect in Ni !data from Smith, 1910". From
Pugh and Rostoker, 1953.

FIG. 2. Extraordinary Hall constant as a function of resistivity.
The shown fit has the relation Rs$!1.9. From Kooi, 1954.

1541Nagaosa et al.: Anomalous Hall effect

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

three mechanisms for AHE has been suggested : i) intrinsic one due to anomalous velocity,

ii) side jump, iii) skew scattering. Anomalous part of the Hall resistivity depends on (lon-

gitudinal) resistivity with characteristic power law ⇢xy ⇠ ⇢↵ with ↵ = 2 for i), ii) and ↵ = 1

for iii). Scenario i) was suggested in 1950’s by Karpulus and Luttinger. In modern days, the

anomalous velocity is understood by the Berry phase (va =
e
~E⇥ bBerry) and was argued to

be the dominant cause[Nagaosa][13]. The fundamental interaction in all these mechanism

is the spin-orbit interaction.

What we will show is that both of two scaling behaviours are contained in our exact

result as various limiting cases: coherent regime with sharp Drude peak, has ↵ = 2. Also

if the axionic coupling ✓ is weak, ↵ = 2 while ↵ = 1 for strong coupling. As we increases

disorder parameter � or coupling ✓, the exponent ↵ decreases to 1. Such transition is a

smooth cross over.

We first calculate the resistivity by inverting the conductivity matrix ⇢ = ��1. In the

weak field limit, the Hall resistivity can be written as

⇢H ⌘ RHH +RsM0, (20)

where RH is usual Hall coe�cient and Rs is called anomalous Hall coe�cient. Since there

has been known that Rs has scaling behaviour ⇢↵xx, it is good idea to check whether our

non-linear result contains it as a special limits.

The transverse resistivity is given by

⇢H

���
H=0

=
r20�

6q�
�8q2� + r40(�

2 + µ2)2
:= RsM0, (21)

where we use (15) in the last step. Then the anomalous Hall coe�cient is

Rs =
3

r0µ

1

✓2 + (1 + µ2/�2)2
. (22)

The longitudinal resistivity at H = 0 is

⇢xx =
1 + µ2/�2

✓2 + (1 + µ2/�2)2
. (23)

For small �/µ limit, Rs ⇠ �4 while ⇢xx ⇠ �2. Therefore we have

Rs ⇠ ⇢2xx. (24)

The same behaviour is also obtained for small ✓ limit, that is when q��
2 << r20. Notice that

small beta regime has coherent optical conductivity [14] which has a well defined Drude
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For	Intrinsic	deflecMon/
Side	jump		

Figure 3: Relation between ⇢xx and q0
3 Rs with µ/T = 0.1(black), 1(red), 2(blue), 5(green)

and 10(purple) in log-log plot. q0
3 Rx ⇠ ⇢2xx or ⇠ ⇢xx in small ( large ) �/µ regime. Arrow

direction is increasing � and we fix q� = 1.

peak as if it has quasi particles. Therefore it is not surprising to get the same result with

the fermi liquid. In large �/µ limit, or in the large theta limit Rs and ⇢xx are related by

Rs ⇠ ⇢xx. (25)

The full calculation is shown in Figure 3. Figure 3 show the relation between ⇢xx and Rs

and its log-log plot. For small (large) �, Rx ⇠ ⇢2xx (⇢xx). Notice the sharp transition from

small to large � regime. This behavior does not depend on the temperature.

5 Conclusion

In this paper we consider the magneto-electric interaction from holographic point of view.

When electron spins are correlated, adding charge carrier changes the magnetic property

as well as the charge transport. In e↵ective field theory approach, such crossing electric-

magnetic e↵ect can be implied by adding Chern-Simon term ⇠ A^F in 2+1 dimension. It

act as crossing source of electricity and magnetism. With such term, system can pick up

magnetic source when we provide electric charge and vice versa.

We work at finite temperature, chemical potential, magnetic fields. The metric, gauge

fields and axion scalar fields (gµ⌫ , Aµ, I) are playing the role of coupled order parameters.

We could find exact solution of such complicated coupled system with non-trivial interaction,

which made it possible to get an explicit and analytic result for the DC conductivity.

The back reacted system shows diamagnetic response. Our results on Hall resistivity

shows non-linear diamagnetic response which agrees with that of graphite system and also

with high Tc material BiSrCaCuO. to a surprsing detail. Also DC transport result shows

that our non-linear anomalous Hall coe�cients interpolate the linear and quadratic regime

9

For	skew	scaQering	

2	
-3 -2 -1 0 1

-8

-6

-4

-2

0

Log[�xx ]

Lo
g[
R
s]

Figure 3: Relation between ⇢xx and q0
3 Rs with µ/T = 0.1(black), 1(red), 2(blue), 5(green)

and 10(purple) in log-log plot. q0
3 Rx ⇠ ⇢2xx or ⇠ ⇢xx in small ( large ) �/µ regime. Arrow

direction is increasing � and we fix q� = 1.

peak as if it has quasi particles. Therefore it is not surprising to get the same result with

the fermi liquid. In large �/µ limit, or in the large theta limit Rs and ⇢xx are related by

Rs ⇠ ⇢xx. (25)

The full calculation is shown in Figure 3. Figure 3 show the relation between ⇢xx and Rs

and its log-log plot. For small (large) �, Rx ⇠ ⇢2xx (⇢xx). Notice the sharp transition from

small to large � regime. This behavior does not depend on the temperature.

5 Conclusion

In this paper we consider the magneto-electric interaction from holographic point of view.

When electron spins are correlated, adding charge carrier changes the magnetic property

as well as the charge transport. In e↵ective field theory approach, such crossing electric-

magnetic e↵ect can be implied by adding Chern-Simon term ⇠ A^F in 2+1 dimension. It

act as crossing source of electricity and magnetism. With such term, system can pick up

magnetic source when we provide electric charge and vice versa.

We work at finite temperature, chemical potential, magnetic fields. The metric, gauge

fields and axion scalar fields (gµ⌫ , Aµ, I) are playing the role of coupled order parameters.

We could find exact solution of such complicated coupled system with non-trivial interaction,

which made it possible to get an explicit and analytic result for the DC conductivity.

The back reacted system shows diamagnetic response. Our results on Hall resistivity

shows non-linear diamagnetic response which agrees with that of graphite system and also

with high Tc material BiSrCaCuO. to a surprsing detail. Also DC transport result shows

9

three mechanisms for AHE has been suggested : i) intrinsic one due to anomalous velocity,

ii) side jump, iii) skew scattering. Anomalous part of the Hall resistivity depends on (lon-

gitudinal) resistivity with characteristic power law ⇢xy ⇠ ⇢↵ with ↵ = 2 for i), ii) and ↵ = 1

for iii). Scenario i) was suggested in 1950’s by Karpulus and Luttinger. In modern days, the

anomalous velocity is understood by the Berry phase (va =
e
~E⇥ bBerry) and was argued to

be the dominant cause[Nagaosa][13]. The fundamental interaction in all these mechanism

is the spin-orbit interaction.

What we will show is that both of two scaling behaviours are contained in our exact

result as various limiting cases: coherent regime with sharp Drude peak, has ↵ = 2. Also

if the axionic coupling ✓ is weak, ↵ = 2 while ↵ = 1 for strong coupling. As we increases

disorder parameter � or coupling ✓, the exponent ↵ decreases to 1. Such transition is a

smooth cross over.

We first calculate the resistivity by inverting the conductivity matrix ⇢ = ��1. In the

weak field limit, the Hall resistivity can be written as

⇢H ⌘ RHH +RsM0, (20)

where RH is usual Hall coe�cient and Rs is called anomalous Hall coe�cient. Since there

has been known that Rs has scaling behaviour ⇢↵xx, it is good idea to check whether our

non-linear result contains it as a special limits.

The transverse resistivity is given by

⇢H

���
H=0

=
r20�

6q�
�8q2� + r40(�

2 + µ2)2
:= RsM0, (21)

where we use (15) in the last step. Then the anomalous Hall coe�cient is

Rs =
3

r0µ

1

✓2 + (1 + µ2/�2)2
. (22)

The longitudinal resistivity at H = 0 is

⇢xx =
1 + µ2/�2

✓2 + (1 + µ2/�2)2
. (23)

For small �/µ limit, Rs ⇠ �4 while ⇢xx ⇠ �2. Therefore we have

Rs ⇠ ⇢2xx. (24)

The same behaviour is also obtained for small ✓ limit, that is when q��
2 << r20. Notice that

small beta regime has coherent optical conductivity [14] which has a well defined Drude
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The model and background solution: With motivations described above, we start from

the Einstein-Maxwell-axion action with the Chern-Simons interaction

22S =

Z
d4x

p�g

8
<

:R+
6

L2

� 1

4
F 2 �

X

I=1,2

1

2
(@�I)

2

9
=

;� 1

16

Z
q�(@�I)

2F ^ F + Sc , (1)

where q� is a coupling, and 2 = 8⇡G and L is the AdS radius and we set 22 = L = 1. Sc is the

counter term which is necessary to make the action finite. Explicit form of Sc is written in (25)

at the end of this paper. The axion (�I) which is linear in {x, y} direction breaks translational

symmetry and hence gives an e↵ect of momentum dissipation [32]. Instanton density coupled with

the axion can generate magneto-electric property: if we add charge, non-trivial magnetization is

generated. The equations of motion are rather long so we wrote it in (26) at the end.

As ansatz to solutions, we use the following form

A = a(r)dt+
1

2
H (xdy � ydx) ,

�
1

= � x , �
2

= � y ,
(2)

with the metric ansatz

ds2 = �U(r)dt2 +
dr2

U(r)
+ r2(dx2 + dy2) . (3)

From the equations of motion, we found exact solution

U(r) = r2 � �2

2
� m

0

r
+

q2 +H2

4r2
+

�4H2q2�
20r6

� �2Hqq�
6r4

,

a(r) = µ� q

r
+

�2Hq�
3r3

,

(4)

where µ is a free parameter interpreted as the chemical potential and q and m
0

are determined

by the condition At(r0) = U(r
0

) = 0 at the black hole horizon(r
0

). q is the conserved U(1) charge

interpreted as a number density at the boundary system. m
0

turns out to be half of the energy

density (9) and � is related to momentum relaxation rate.

q = r
0

µ+
1

3
✓H with ✓ =

�2q�
r2
0

,

m
0

= r3
0

+
r2
0

µ2 +H2 � 2�2r2
0

4r
0

+
✓2H2

45r
0

.

(5)

The solution (4) reproduces the dyonic black hole solution with momentum relaxation [12] when

q� vanishes.

Diamagnetic response: The thermodynamic potential density W in the boundary theory

is computed by the Euclidean on-shell action SE of (25): SE ⌘ V
2

W/T ,V
2

=
R
dxdy using the

solutions (2)-(3).

W = �r3
0

� 1

4r
0

�
µ2r2

0

+ 2�2r2
0

� 3H2

�
+

2

3
µ✓H +

7

45r
0

✓2H2. (6)

3

 arXiv:1512.08916	Phys.Le6.	B759	(2016)	104-109	
	 	 	 	KY.	Kim,	KK.Kim,	Y.Seo	+	sj	



Theory vs. experiment in Dirac Fluid of graphene   

3	

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁ

Á
Á

ÁÁ

Á
Á
ÁÁ
Á
Á
Á
ÁÁ
ÁÁÁÁÁÁ
Á
Á
ÁÁ
Á
Á
Á
ÁÁ

Á
Á
Á

ÁÁ
Á

Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

-400 -200 0 200 400

2

4

6

8

-4 -2 2 4

2

4

6

8

		Holography	(HYU)	to	appear		
	U(1)	x	U(1)		

4

0 100 200
0

5

10

15

20

25

Temperature (K)

L 
/ 

L 0

 

 

B

1 10 100 1000
109

1010

1011

Temperature (K)

n
m

in
 (c

m
-2

)

Disorder
Limited

Thermally
Limited

S3
S2
S1

A

−6 −4 −2 0 2 4 6
0

4

8

12

16

20

n (1010 cm−2)

L/
L 0

 

C

40 60 80 100
0

2

4

6

8

10

T (K)

H
  

(e
V

/µ
m

2
)

 

 

CH
e

h

-V+V
e

h

∆Vg = 0

FIG. 3. Disorder in the Dirac fluid. (A) Minimum car-
rier density as a function of temperature for all three sam-
ples. At low temperature each sample is limited by disorder.
At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm

T

2
�min

and n

2
0 =

H�min

e

2
vFlm

. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. (2) are undeter-
mined for any given sample: lm and H. For simplic-
ity, we assume we are well within the DF limit where
lm and H are approximately independent of n. We fit
Eqn. (2) to the experimentally measured L(n) for all
temperatures and densities in the Dirac fluid regime to
obtain lm and H for each sample. Fig 3C shows three
representative fits to Eqn. (2) taken at 60 K. lm is esti-
mated to be 1.5, 0.6, and 0.034 µm for samples S1, S2,
and S3, respectively. For the system to be well described
by hydrodynamics, lm should be long compared to the
electron-electron scattering length of ⇠0.1 µm expected
for the Dirac fluid at 60 K [18]. This is consistent with
the pronounced signatures of hydrodynamics in S1 and
S2, but not in S3, where only a glimpse of the DF appears
in this more disordered sample. Our analysis also allows
us to estimate the thermodynamic quantity H(T ) for the
DF. The Fig. 3C inset shows the fitted enthalpy density
as a function of temperature compared to that expected
in clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H
varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
is necessary [40, 41]. The enthalpy densities reported
here are larger than the theoretical estimation obtained
for disorder free graphene, consistent with the picture
that chemical potential fluctuations prevent the sample
from reaching the Dirac point. While we find thermal
conductivity well described by Ref. [5, 6], electrical con-
ductivity increases slower than expected away from the
CNP, a result consistent with hydrodynamic transport in
a viscous fluid with charge puddles [41].

In a hydrodynamic system, the ratio of shear viscos-
ity ⌘ to entropy density s is an indicator of the strength
of the interactions between constituent particles. It is
suggested that the DF can behave as a nearly perfect
fluid [18]: ⌘/s approaches a conjecture by Kovtun-Son-
Starinets: (⌘/s)/(~/kB) & 1/4⇡ for a strongly inter-
acting system [42]. A non-perturbative hydrodynamic
framework can be employed to estimate ⌘, as we discuss
elsewhere [41]. A direct measurement of ⌘ is of great
interest.

We have experimentally discovered the breakdown of
the WF law and provided evidence for the hydrodynamic
behavior of the Dirac fermions in graphene. This pro-
vides an experimentally realizable Dirac fluid and opens
the way for future studies of strongly interacting rela-
tivistic many-body systems. Beyond a diverging thermal
conductivity and an ultra-low viscosity, other peculiar
phenomena are expected to arise in this plasma. The
massless nature of the Dirac fermions is expected to re-
sult in a large kinematic viscosity, despite a small shear
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Fidelity approach to 
Adiabatic Quantum Computation 
of hard problems Jun Takahashi (Univ. of Tokyo)

E
ne

rg
y

E0

E1

Annealing parameter λ
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Main Question
The 1st-order phase transitions are actually 
strongly sample dependent.
Can we understand them as a whole?
(e.g. a non self-averaging behavior within a 
spin glass phase?)
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fix: Maximum Independent Set as a NP-complete problem
Stochastic Series Expansion (SSE) + Replica Exchange (λ direction)

Our study suggests that 
fidelity susceptibility is so far the 
best way to see the sample-averaged 
phase transition
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Increasing disorder degrees of  freedom

Free disordered system

Dense random
matrix model
GUE, GOE, GSE

Sparse random

matrix models



#37 



Fixed Point Matrix Product States and 1+1D
Topological Quantum Field Theory

Alex Turzillo

California Institute of Technology
Based on work with Anton Kapustin and Minyoung You

June 14, 2016



Idea

I Matrix Product States (MPS) efficiently approximate ground
states of 1D gapped local Hamiltonians. Each gapped phase
of these Hamiltonians corresponds to a Fixed Point MPS.

I Lattice TQFT also describes gapped systems at fixed points.
I Idea: build a dictionary between these two frameworks.

I both are classified by the same algebraic data
I MPS and parent Hamiltonians arise from the state-sum



Generalizations

I The algebraic data that classifies these theories makes sense
in other categorical contexts ⇒ generalizations

I Idea: passing structured (ie not strictly topological) field
theories through the dictionary returns variants of MPS.

I Equivariant TQFT −→ Symmetric MPS
I describes gapped symmetric phases: SPTs/SETs
I twisted sectors and symmetry breaking

I Spin TQFT −→ Fermionic MPS
I describes fermionic phases, eg the nontrivial Majorana chain
I related to symmetric MPS by bosonization



#38 



#39 



Holographic	duality	from	random	tensor
arxiv:1601.01694

Construction

a

b

c

d

a

b

c

e

f

g

e

=		∑ 	#$….#',)$…)* Ma1a2…an,b1b2...bm

|a1a2...an><b1b2...bm|

=		∑ 	#)567 Tabcde |abcde>

Haar	random	state	in	the	
product	Hilbert	space⌦5

i=1Hi

Every	vertex:



Holographic	duality	from	random	tensor
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Properties

• RT	formula	&	bulk	correction
Hawking-Page	transition	

• Quantum	error	correction

• Correlation	spectrum
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Engineering Holographic Superconductor Phase Diagrams 

Jiunn-Wei Chen, Shou-Huang Dai, Debaprasad Maity, Yun-Long Zhang

(see, e.g., Figure 1 of [27]). As we have already discussed above, at low temperature,
distinct phases can be obtained by tuning the doping parameter. In order to understand
the basic mechanism of quantum phase transition near zero temperature, we consider
interacting order parameter fields.

According to the standard AdS/CFT dictionary, the chemical potential µ
q

, conjugate to
the charge density n

q

, is dual to a bulk gauge fieldA
µ

, such that µ
q

and n
q

are encoded in the
non-normalizable and normalizable modes of the asymptotic behavior of A

µ

respectively.
Similarly, in our model in this section, the doping parameter should be dual to a bulk scalar
field �. In the asymptotic solution of this so-called “tuning field” �, the non-normalizable
mode is dual to the source J

�

on the boundary, interpreted as the doping parameter since it
is an intensive quantity, just like the role of the chemical potential as the non-normalizable
mode of the asymptotic A

µ

. The normalizable mode of �, on the other hand, is dual to
the expectation value of the conjugate variable to the doping parameter, which we do not
specify.

We consider two order parameter fields to be neutral scalar fields  1, 2 in AdS bulk.
We also conjecture that the controlling parameter of our system is dual to another neutral
field � which is coupled to  1, 2 with a certain degree of fine tuning, such that we can
reproduce the experimental phase diagram.

Our goal is to understand the phase diagram and the scaling behavior near the quantum
critical point in such a system. In order for the two order parameters to be controlled by
tuning the external parameter, it requires  1,  2 interact with the tuning field � in some
non-linear way. Therefore, we introduce the following minimal Lagrangian density

L
M

=
X

i=1,2

L
 i + L

�

+ L
int

, (14)

where

g2
M

L
 i = �1

2
(@ 

i

)2 � V ( 
i

), V ( 
i

) =
1

2
m2

i

 2
i

+
1

4
�
i

 4
i

, (15)

g2
M

L
�

= �1

2
(@�)2 � V (�), V (�) =

1

2
m2
�

�2 +
1

4
�
�

�4, (16)

with g2
M

indicate the coupling constant, m2
i

,m2
�

< 0 and �
i

,�
�

> 0. The interaction terms
between  1,  2 and � are given by

g2
M

L
int

=� 1

2

X

i=1,2

F
i

(�) 2
i

, (17)

where the detailed form of the coupling function F
i

(�) will be given later. Di↵erent F
i

(�)
implies di↵erent ways that the condensation of  1 and  2 are controlled by � via shifting
their e↵ective masses. Consequently, di↵erent phase structures arise. We will work in the
probe limit of the scalar fields, namely 22/g2

M

! 0.
The equations of motion for the scalar fields turn out to be
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3 Phase diagrams near quantum critical region

In this section, we aim to holographically realize the phase diagram of quantum phase
transition ( e.g. Figure 1 of [21]). As we have already discussed before, at low tempera-
ture, distinct phases can be obtained by tuning the doping parameter. We also show the
existence of a quantum critical region extended from the quantum critical point in the
phase diagram. In order to understand the basic mechanism of quantum phase transi-
tion near zero temperature, we consider interacting order parameter fields. Our simplified
model would be a stepping stone toward a realistic holographic model for the cuperate
superconductor phase diagram.

According to the standard AdS/CFT dictionary. the chemical potential µ
q

, conjugate
to the charge density n

q

, is dual to a bulk gauge field A
µ

, such that µ
q

, n
q

are encoded in the
non-normalizable and normalizable modes of the asymptotic behavior of A

µ

respectively.
Similarly, in our model in this section, the doping parameter should be dual to a bulk scalar
field �. In the asymptotic solution of this so-called “tuning field” �, the non-normalizable
mode is dual to the source J

�

on the boundary, interpreted as the doping parameter since it
is an intensive quantity, just like the role of the chemical potential as the non-normalizable
mode of the asymptotic A

µ

. The normalizable mode of �, on the other hand, is dual to
the expectation value of the conjugate variable to the doping parameter, which we don’t
specify.

We consider two order parameter fields to be neutral scalar fields  1, 2 in AdS bulk.
We also conjecture that the controlling parameter of our system is dual to another neutral
field � which is coupled to  1, 2 with a certain degree of fine tuning, such that we can
reproduce the experimental phase diagram.

Our goal is to understand the phase diagram and the scaling behavior near the quantum
critical point in such a system. For the sake of convenience, we set L = 1 in our analysis.
In order for the two order parameters to be controlled by tuning the external parameter,
it requires  1,  2 interact with the tuning field � in some non-linear way. Therefore, we
introduce the following minimal Lagrangian density

L
M

=
X

i=1,2

L
 i + L

�

+ L
int

, (13)

where
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g2
M

L
�

= �1

2
(@�)2 � V (�), V (�) =

1

2
m2
�

�2 +
1

4
�
�

�4, (15)

with m2
i

,m2
�

< 0 and �
i

,�
�

> 0. The interaction terms between  1,  2 and � are given by

g2
M

L
int

=� 1

2

X

i=1,2

F
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(�) 2
i

, (16)
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see from the phase diagram 4, that the quantum critical point is covered by a dome with
non-zero condensation of O2 6= 0, which normally happens in real physical systems. One
also notices that there exists an overlapping phase which we left for future studies. The
other motivation of the choices of parameters in our second model refer to the schematic
diagram on the scaling symmetries in Appendix C, where the quantum critical point at
zero source J can emerge a nature V-shape area at the finite temperature.

[�� /(μ� )
Δ�
+
]×���

�

�

�

�

�

[�� /(μ� )
Δ�
+
]×���

����

����

����

����

����

����

����

Figure 4: The phase diagram of model II around a natural quantum critical point. It
is the density plot phase 1(blue) and phase 2 (orange) with coupling functions F1(�) =
�(�+ 2), F2(�) = �2/2. The green parts are the overlap region.

Once we numerically compute various condensations for the di↵erent phases, one needs
to compare the free energy among various phases in Figure 4. As we have calculated the
free energy for various phase, in the Figure 5 we have plotted them using the expressions
(25) and (26). We show the free energy density di↵erence �⌦��⌦

�

at a particular value
(T/µ

q

) ' 0.028⇥ 10�3. The blue and orange lines correspond to the free energy di↵erence
of phase 1 and phase 2, respectively. And the dashed black line stands for the baseline of
the free energy of the normal phase with only � condensate.

One notices that in the region J
�

< 0, �⌦ � �⌦
�

< 0. Therefore, the ground state
of the system will be in the phase with O1 6= 0. On the other hand near J

�

= 0 region,
we found that the free energy �⌦ becomes almost comparable to �⌦

�

, as one sees from
the Figure 5. But still O2 6= 0 is preferable near the J

�

= 0, T = 0. The green region
is the overlap region, and usually there exist some competing and coexistence orders. see
references e.g. [22] -[27]. This region is not the main purpose of our model, and it would
be interesting to explore more on this issue in future work.
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Figure 10: Left: the 3D schematic diagram of Figure 4 in terms of {µ
q

, J̃
�

, T}, where the
blue, orange and green region correspond to ordered phase 1, phase 2 and the overlap
phase. Three light green surfaces indicate parameter constrain of constant r

h

; Right: T vs.
J̃
�

diagram with a fixed µ
q

/T . The dashed line indicate the scalings, and the solid gray
line indicate parameter constrain of constant r

h

.

As indicated in Figures 9 and 10, the di↵erent colour shapes correspond to di↵erent
ordered phases. Blue region is phase 1 and orange region is phase 2. And the three
light green surfaces indicate parameter constraint of constant r

h

. In more detail, if we
assuming T̃ = T/r

h

, µ̃
q

= µ
q

/r
h

, then from relation (7) we obtain T̃ = 3⇡
4 (1� µ̃2

q

/3). This

indicate that T̃ and µ̃
q

are not independent any more. The light green surfaces indicate
the constraint relation between T = T̃ r

h

and µ
q

= µ̃
q

r
h

, with three di↵erent constants r
h

.
The 2 dimensional phase diagram crossed by di↵erent light green surfaces can be related
through scaling along with r

h

.
Although we introduce the external scaler fields in probe limit, our whole system still

have the scaling symmetries. However, in the real condensed matters systems, the scaling
symmetry only excites in the V-shape quantum critical region, and it is destroyed at large
J and large T . Thus, in order to compare with the full phase diagram holographically, it
is interesting to study how to destroy the scalings naturally at large J and large T , or how
to embed our V-shape region in to a whole condensed matter system.
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