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Goal	

A	first	principle	deriva+on	of	AdS/CFT	
correspondence,	which	allows	one	to	find	

holographic	duals	for	general	QFTs*		

*For	general	QFTs,	holographic	duals	can	be	non-classical	/	non-
local.	However,	we	would	like	to	find	a	general	prescrip+on	to	
construct	them.	
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Plan	

•  RG	flow	as	wavefunc+on	collapse	
•  The	collapse	is	described	by	holographic	dual	
•  Horizon	from	dynamical	cri+cal	point	



From	ac+on	to	state	

•  An	ac+on	of	QFT	in	D-dimensional	space	defines	a	D-
dimensional	quantum	state	

•  The	Boltzmann	weight	becomes	wavefunc+on	
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Sources	as	varia+onal	parameters	

•  State	can	be	labeled	by	the	sources	of	operators	
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Tensor	representa+on	

(a) (b)

(c)

In	general,	OM	depends	on	mul+ple	
points	in	space+me	(e.g.	bi-local	operator	
in	vector	model,	Wilson	loop	in	gauge	theory)	

OM	can	be	composite	of	
mul+ple	operators	
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Tensor	representa+on	
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•  Local	ac+on	generates	states	given	by	a	product	of	
local	tensors	

•  They	are	over-complete	



Single-trace	operator	

•  Minimal	set	of	operators	of	which	all	singlet	
operators	can	be	wriXen	as	polynomial	
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X
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States	generated	from	single-trace	
operators	form	a	complete	basis	



States	generated	from	single-trace	
operators	form	a	complete	basis	
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Par++on	func+on	is	an	overlap	
between	states	
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RG	flow	as	wave-func+on	collapse	

•  |S0>	is	the	ground	state	of	H+	with	zero	energy	
•  H	ac+ng	on	|S1>	generates	RG	flow		
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Example	:	Wilson-Polchinski	RG	equa+on	
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Direct	product	state	for	the	reference	
state	(tenta+ve	IR	fixed	point)	
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Coarse	graining	
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Quantum	RG	

(a) (b) (a) (b)

(c) (d)
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•  State	with	mul+-trace	tensors	can	be	wriXen	as	a	linear	superposi+on	
of	single-trace	states	

•  Non-local	single-trace	tensors	are	generated	
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Quantum	RG	

•  The	RG	flow	is	confined	to	the	space	of	
single-trace	sources	

•  Sum	over	all	RG	path	in	the	single-trace	
space	

•  Single-trace	sources	are	promoted	to	
quantum	operators	

•  Quantum	RG	to	Wilsonian	RG	is	what	
quantum	computer	is	to	classical	computer	
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Further	comments	

•  The	bulk	tensor	network	involves	single-trace	
tensors	of	all	sizes	(	no	pre-assigned	local	
structure	)	:	kinema+c	non-locality	is	a	necessary	
condi+on	for	diffeomorphism	invariance	in	the	bulk	

•  The	bulk	theory	include	dynamical	gravity	:	the	
source	for	single-trace	energy	momentum	tensor	
(metric)	gets	promoted	to	dynamical	variables	

•  Regulariza+on	of	quantum	gravity	boils	down	to	
regulariza+on	of	QFT	



Ques+on	

Is	the	projec+on	always	smooth	?	
	
Answer	:	It	depends	on	S0	and	S1.	
•  If	the	full	theory	S0+S1	is	in	the	same	phase	as	S0,	
|S1>	is	smoothly	projected.	

•  Otherwise,	e-z	H|S1>	undergoes	a	phase	transi+on	
as	a	func+on	of	z	



Example	:	Vector	model	
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Laqce	Regulariza+on	:	



��S0

↵
=

Z
D� e�m2 P

i �
⇤
i ·�i

���
↵
,

��t(0)
↵
=

Z
D� e

P
ij t

(0)
ij �⇤

i ·�j� �
N

P
i(�

⇤
i ·�i)

2���
↵

Example	:	Vector	model	
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Gapped	phase	(direct	product	state)	

Deforma+on	to	the	gapped	fixed	point	(entangled	state)	



Hamiltonian	

•  H	is	not	Hermi+an,	but	has	real	eigenvalues	
(related	to	Hermi+an	through	a	similarity	
transforma+on)	

•  |S0>	is	the	ground	state	of	H+	

•  e-zH	gradually	removes	entanglement*	in	|t(0)>	

Ĥ =
X

i


2

m2
⇡i · ⇡⇤

i + i(�i · ⇡i + �⇤
i · ⇡⇤

i )

�

*	Entanglement	in	space+me	



Bulk	Hamiltonian	(in	a	fixed	gauge)	

•  t+ij	(tij)	creates	(annihilates)	a	quantum	of	
connec+vity		

•  The	Hamiltonian	describes	evolu+on	of	quantum	
geometry	in	the	bulk	
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Background	independence	

•  There	is	no	bare	kine+c	term	for	the	bi-local	object	
•  No	pre-imposed	background	

t†iktij

i	 j	 k	 t†iktijtjk



Background	independence	

•  tij	can	move	only	in	the	presence	of	condensate		
•  The	condensate,	which	is	dynamical,	determines	
the	geometry	on	which	tij	propagates	

t†iktijtjk ! t†iktij < tjk >
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Saddle	point	approxima+on	
•  In	the	large	N	limit,	semi-classical	RG	path	
dominates	the	par++on	func+on	

•  At	the	saddle	point,	
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Metric	
•  Fluctua+ons	away	from	saddle	point	
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•  An+-symmetric	component	obeys	a	simple	diffusive	equa+on	in	
the	bulk		



Gapped	phase	
z	

Range	of	hopping	
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Gapped	phase	
•  The	range	of	entanglement	(hopping)	saturates	in	
the	large	z	limit	

•  The	strength	of	hopping	(entanglement)	decays	
exponen+ally	in	z	

•  e-z	H	|S1>		is		smoothly	projected	to	the	direct	
product	state	in	the	large	z	limit	

•  The	bulk	terminates	at	a	finite	proper	distance	
•  The	proper	distance	measures	the	complexity	:	#	of	
RG	steps	needed	to	remove	all	entanglement	
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Gapless	phase	
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Gapless	phase	

•  The	range	of	entanglement	(hopping)	keep	
increasing	with	increasing	z	

•  e-z	H	|S1>		can	not	be	smoothly	projected	to	the	
direct	product	state	in	the	large	z	limit	

•  In	the	large	z	limit,	the	range	of	entanglement	
diverges	:	cri+cal	point	->	Poincare	horizon	

•  In	metallic	phase,	horizon	arises	at	finite	z	
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Summary		

•  RG	flow	is	a	gradual	wavefunc+on	collapse	
•  The	process	of	collapse	is	described	by	dual	
holographic	theory	via	quantum	RG	

•  Obstruc+on	to	smooth	projec+on	of	one	phase	
to	another	phase	manifests	itself	as	a	horizon	in	
the	bulk	

e�zH
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↵ Dynamical	quantum	cri+cal	point	
=	Horizon	


