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Goal

A first principle derivation of AdS/CFT
correspondence, which allows one to find
holographic duals for general QFTs”

*For general QFTs, holographic duals can be non-classical / non-
local. However, we would like to find a general prescription to
construct them.
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Plan

* RG flow as wavefunction collapse
* The collapse is described by holographic dual
* Horizon from dynamical critical point



From action to state
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* An action of QFT in D-dimensional space defines a D-
dimensional quantum state

* The Boltzmann weight becomes wavefunction



Sources as variational parameters
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e State can be labeled by the sources of operators



Tensor representation
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j. : ¢ : ¢ : In general, O,,depends on multiple
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points in spacetime (e.g. bi-local operator
in vector model, Wilson loop in gauge theory)
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0,, can be composite of
multiple operators




Tensor representation
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* Local action generates states given by a product of
local tensors

 They are over-complete



Single-trace operator
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* Minimal set of operators of which all singlet
operators can be written as polynomial



States generated from single-trace
operators form a complete basis
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States generated from single-trace
operators form a complete basis
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Partition function is an overlap
between states
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RG flow as wave-function collapse

Z = (So|S1) = (Sole 1| S,) = (Sp| Sy + 65, )

* |S,>is the ground state of H* with zero energy
* Hacting on |S;> generates RG flow

[ = <SQ}6_Zﬁ}Sl>




Example : Wilson-Polchinski RG equation
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Direct product state for the reference
state (tentative IR fixed point)
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Coarse graining
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Quantum RG
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State with multi-trace tensors can be written as a linear superposition
of single-trace states

Non-local single-trace tensors are generated
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Quantum RG
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* The RG flow is confined to the space of [
single-trace sources

 Sum over all RG path in the single-trace
space

/

» Single-trace sources are promoted to .
quantum operators [, i1 ] = " ;
* Quantum RG to Wilsonian RG is what
guantum computer is to classical computer

subspace of N
single—trace operators

\



Further comments

* The bulk tensor network involves single-trace
tensors of all sizes ( no pre-assigned local
structure ) : kinematic non-locality is a necessary
condition for diffeomorphism invariance in the bulk

* The bulk theory include dynamical gravity : the
source for single-trace energy momentum tensor
(metric) gets promoted to dynamical variables

* Regularization of quantum gravity boils down to
regularization of QFT



Question

Is the projection always smooth ?

Answer : It depends on S, and S;.

* If the full theory Sy+S, is in the same phase as S,
|S,> is smoothly projected.

* Otherwise, e2"|S,> undergoes a phase transition
as a function of z



S

Example : Vector model
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Lattice Regularization :
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Example : Vector model

Z = (S|t

Gapped phase (direct product state) H\(Jl ij
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Deformation to the gapped fixed point (entangled state)
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Hamiltonian
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* His not Hermitian, but has real eigenvalues
(related to Hermitian through a similarity
transformation)

* |S,>is the ground state of H*
« e?M gradually removes entanglement™ in |t©)>

* Entanglement in spacetime




Bulk Hamiltonian (in a fixed gauge)
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* t*; (t;) creates (annihilates) a quantum of
connectivity

 The Hamiltonian describes evolution of quantum
geometry in the bulk




Background independence
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* There is no bare kinetic term for the bi-local object
* No pre-imposed background



Background independence

Vtitin = thti < tip >
* t; can move only in the presence of condensate

 The condensate, which is dynamical, determines
the geometry on which t; propagates



Saddle point approximation

* [n the large N limit, semi-classical RG path
dominates the partition function
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Metric

* Fluctuations away from saddle point

~ —

Lij = lij — i

* Anti-symmetric component obeys a simple diffusive equation in
the bulk
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Gapped phase

The range of entanglement (hopping) saturates in
the large z limit

The strength of hopping (entanglement) decays
exponentially in z

ez |S,> is smoothly projected to the direct
product state in the large z limit

The bulk terminates at a finite proper distance

The proper distance measures the complexity : # of

RG steps needed to remove all entanglement
[Susskind]
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Gapless phase

The range of entanglement (hopping) keep
increasing with increasing z

e |S;> can not be smoothly projected to the
direct product state in the large z limit

In the large z limit, the range of entanglement
diverges : crltlcal point - > Pomcare horizon

ds® = L e Z dxtdzt

In metallic phase, horizon arises at finite z

[Q. Hu, SL, to appear]



Summary

* RG flow is a gradual wavefunction collapse

* The process of collapse is described by dual
holographic theory via qguantum RG

* Obstruction to smooth projection of one phase

to another phase manifests itself as a horizon in
the bulk

€_ZH ‘ S > Dynamical quantum critical point
1 = Horizon



