Holographic quantum error-correcting code - exactly solvable toy models for the AdS/ CFT correspondence

Beni Yoshida (Caltech)

joint work with

Daniel Harlow Fernando Pastawski

John Preskill

Introduction

AdS/CFT correspondence (Maldacena 98)

d-dim CFT

time

(d+1)-dim string theory

- Powerful framework to study stronglyinteracting systems
- Advanced our understanding of quantum gravity

Ryu-Takayanagi formula (06)

Bulk/Boundary duality to Geometry/Entanglement duality

MERA (Vidal 07)

• Powerful numerical method to study strongly-correlated systems.

MERA = Multiscale entanglement renormalization ansatz

AdS/CFT as a tensor network (Swingle 09)

AdS/CFT correspondence can be explained by a tensor network ?

The bulk-locality paradox

Rindler-wedge reconstruction

A bulk operator ϕ can be represented by some integral of local boundary operators supported on A if and only if ϕ is contained inside the causal wedge of A.

Bulk locality paradox

All the bulk operators must correspond to identity operators on the boundary.

If so, the AdS/CFT correspondence seems boring ...

AdS/CFT is a quantum code ?

Solution: The AdS/CFT correspondence can be viewed as a *quantum error-correcting code*.

They are different operators, but act in the same manner in a low energy subspace.

cf. Quantum secret-sharing code

Logical operators in the Toric code

• String-like Pauli X and Pauli Z logical operators

Entanglement wedge reconstruction

Operators in the entanglement wedge can be reconstructed (?)

(entanglement wedge may extend over the singularity).

* Whether this is possible or not remains open.

Holographic code

Minimal model

Let us construct the simplest toy model !

- 5 qubits on the boundary
- 1 qubit on the bulk

Minimal model

Let us construct the simplest toy model !

- 5 qubits on the boundary
- 1 qubit on the bulk

Causal wedge reconstruction implies

A bulk operator must have representations on ABC, BCD,

Minimal model

Let us construct the simplest toy model !

- 5 qubits on the boundary
- 1 qubit on the bulk

Entanglement wedge reconstruction implies

A bulk operator must have representations on ABD, BCE,

Desired properties

A bulk operator must have representations on any region with three qubits.

Five qubit code

Encode one logical qubit into five physical qubits.

Logical Pauli X,Z have representations on any region with three qubits.

Five-minute introduction to five-qubit code (1)

- For a system of 5 qubits, consider the following stabilizer operators
 - $S_1 = X \otimes Z \otimes Z \otimes X \otimes I$ They pairwise commute.

 $S_2 = I \otimes X \otimes Z \otimes Z \otimes X$

 $S_3 = X \otimes I \otimes X \otimes Z \otimes Z$

 $S_4 = Z \otimes X \otimes I \otimes X \otimes Z$

Eigenvalues +1, -1

- The codeword space is specified by $\mathcal{C} = \{ |\psi\rangle : S_j |\psi\rangle = |\psi\rangle \; \forall j \}$ 4 constraints for 5 qubits, so there are two states $|\psi_0\rangle$ and $|\psi_1\rangle$ in C. $|\psi\rangle = \alpha |\psi_0\rangle + \beta |\psi_1\rangle$ encodes one logical qubit in an entangled state.
- Logical operators are given by $\overline{X} = X \otimes X \otimes X \otimes X \otimes X$

$$\overline{Z} = Z \otimes Z \otimes Z \otimes Z \otimes Z$$

Logical operators commute with stabilizer operators, but act non-trivially inside C

$$[\overline{X}, S_j] = [\overline{Z}, S_j] = 0$$

Logical operators are like Pauli X and Z operators for the logical qubit

Five-minute introduction to five-qubit code (2)

• There are many logical operators which are equivalent inside C

• Five-qubit code has code distance 3

Logical operators must have supports on at least three qubits.

• Why is this a quantum error-correcting code ?

set of states with distance 1

The code tolerates single-qubit errors !

Five-minute introduction to five-qubit code (3)

For any subset of three qubits, logical X and logical Z operators can be found.

Both Pauli X and Pauli Z logical operators can be supported on shaded qubits.

The code can tolerate loss of 2 qubits.

Logical Pauli X,Z have representations on any region with three qubits.

Desired properties

A bulk operator must have representations on any region with three qubits.

Five qubit code

Encode one logical qubit into five physical qubits.

Logical Pauli X,Z have representations on any region with three qubits.

Six-qubit tensor

Tensor pushing

Any leg can be used as an input leg !!!

Holographic Code

Causal wedge reconstruction

Entanglement wedge reconstruction

Generic properties : Perfect tensors

Perfect state / tensor

• A pure state with maximal entanglement in any bipartition

Perfect state (2n spins)

Perfect tensor (2n legs)

 $\rho_A \propto I_A \quad \text{for all} \quad |A| \le n$

v - 1 v - 1v-1 $|\psi\rangle = \sum \sum \cdots \sum T_{i_1 i_2 \dots i_n} |i_1 i_2 \dots i_n\rangle$ $i_1 = 0 \ i_2 = 0 \qquad i_n = 0$

Duality of unitary operators

• Given UA, there always exists VB such that $U_A \otimes I |\psi\rangle = I \otimes V_B |\psi\rangle$

Distillation of EPR pairs

• By applying a unitary only on B, EPR pairs can be distilled

Holographic quantum state / code

O 0 Ø 0 logical legs 0

holographic state

holographic code

A black hole and wormhole

As a mixed state ρ

As a purified state $|\phi
angle$

inject maximally mixed state

Yes, perfect states exist

- 2n : total number of spins
 v : spin dimension
- For v=2, perfect states with n=1,3 exist
 - -- EPR pair
 - -- 6-qubit state (5-qubit code)
- For large n, perfect states with v ~ O(n^1/2) exist
- Pick a Haar random pure state, then it is a nearly perfect state (canonical typicality).

Holographic state (bipartition)

Ryu-Takayanagi formula, it's exact !

[Claim] Entanglement entropy for A (connected region) is equal to the geodesic length.

Geodesic line from local moves

Local move = distillation of EPR pairs

• Local moves distill EPR pairs and decouple "junks".

Geometric map of entanglement

Graphical representation of entanglement in the AdS/CFT correspondence.

Geodesic line = EPR pairs

local unitary on B

local unitary on A

Entanglement in a black hole

- EPR pairs along the wormhole (ER=EPR ?)
- RT formula with a black hole

Holographic state (multi-partition)

Multi-partite entanglement

• It is not difficult to create a wavefunction with $S_A \propto \log(L)$, but...

eg) distribute EPR pairs in a tensor tree

Negativity of tripartite entanglement entropy (any "holographic state")

$$I(A, B, C) = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC}$$

- -- EPR pair, then I(A,B,C)=0.
- -- GHZ state, then I(A,B,C)>0.

|B|

➤ small

- Identified segment of geodesic lines = EPR pairs
- Residual regions = Multipartite entanglement ?

Residual regions in holographic state

Residual regions in holographic state

Residual regions in holographic state

Negativity of tripartite entanglement

• Perfect tensor (state) is the key for negative tripartite entanglement !

-- Split 2n-perfect state into four subsets A, B, C, D.

-- Assume 0< |A|, |B|, |C|, |D| < n+1

Then the tripartite entanglement is always negative !

$$I(A, B, C) = S_A + S_B + S_C - S_{AB} - S_{AC} - S_{BC} + S_{ABC}$$

Holographic quantum state / code

O 0 Ø 0 logical legs 0

holographic state

holographic code

Future works

Fast scrambler? Computational complexity and Einstein-Rosen bridge?

