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Introduction



AdS/CFT correspondence (Maldacena 98)

(d+1)-dim string theory

d-dim CFT

• Powerful framework to study strongly-

interacting systems

• Advanced our understanding of quantum 

gravity

bulk boundary
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The AdS/CFT correspondence, proposed by Maldacena, is awesome (how?) and

had a huge impact on various branches of physics and mathematics. It has been

conjectured that physics of the AdS/CFT correspondence can be captured (quantum

limit? in what sense?) by tenor networks studied in quantum information theory.

However, a concrete model with desired properties (what kinds of properties?) has

not been built to date. In this paper, we construct a toy model of the AdS/CFT

correspondence by borrowing an idea from quantum error-correcting codes. Our

model not only is consistent with AdS/CFT correspondence, RT formula etc, but

also provides new perspectives and give predictions which may be tested by some

theory.
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Ryu-Takayanagi formula (06)

• Bulk/Boundary duality to Geometry/Entanglement duality

Holographic entanglement entropy

bulk

boundary

minimal
bulk 

surface

To compute entropy of region A in
the boundary field theory, find 
minimal area of the bulk surface 
with the same boundary:

Ryu and Takayanagi 2006

Recover, for example, in 1+1 
dimensional conformal field 
theory:
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MERA (Vidal 07)

• Powerful numerical method to study strongly-correlated systems.
Entanglement Renormalization and Holography

Think of a growing tensor network as a model of an evolving bulk spatial 
slice. The slice expands, corresponding to adding additional layers to the 
network.

In AdS/CFT, the emergent 
dimension of space can be 
regarded as a 
renomalization scale. 

Entanglement 
renormalization, run 
backwards, prepares a 
region of length L in circuit 
depth O(log L).

View the bulk space as a 
prescription for building up 
the boundary state 
(Swingle, 2009).

remove short-range 

entanglement

MERA = Multiscale entanglement renormalization ansatz



AdS/CFT as a tensor network (Swingle 09)

AdS/CFT correspondence can be explained by a tensor network ?

AdS$metric$

Class$of$Quantum$Many6Body$States$That$Can$
Be$Efficiently$Simulated$Guifre$Vidal$(2008)$

MERA$

|`A|

S(⇢A)



The bulk-locality paradox



A bulk operator     can be represented by some integral of local 
boundary operators supported on A if and only if     is contained inside 
the causal wedge of A. 

Rindler-wedge reconstruction

geodesic line

Figure 11. Bulk field reconstruction in the causal wedge. On the left is a spacetime diagram,
showing the full spacetime extent of the causal wedge C[A] associated with a boundary sub-
region A that lies within a boundary time slice ⌃. The point x lies within C[A] and thus any
operator at x can be reconstructed on A. On the right is a bulk time slice containing x and ⌃,
which has a geometry similar to that of our tensor networks. The point x can simultaneously
lie in distinct causal wedges, so �(x) has multiple representations in the CFT.

This novel feature of AdS/CFT, that a bulk local observable can be represented

by boundary CFT operators in multiple ways, is illustrated in figure 11. The idea

is that any fixed-time CFT subregion A defines a subregion in the bulk, the causal

wedge C[A]. For any point x 2 C[A], bulk quantum field theory ensures that any bulk

local operator �(x) can be represented in the CFT as some nonlocal operator on A.

This representation is called the AdS-Rindler reconstruction of the operator [34, 35].

Because a given bulk point x can lie within distinct causal wedges associated with

di↵erent boundary regions, the bulk operator �(x) can have distinct representations in

the CFT with di↵erent spatial support.

In [1] the non-uniqueness of the CFT operator corresponding to the bulk operator

�(x) was interpreted as indicating that �(x) is a logical operator preserving a code

subspace of the Hilbert space of the CFT. This code subspace is protected against

“errors” in which parts of the boundary are “erased.” If the boundary operator corre-

sponding to �(x) acts on a subsystem of the CFT which is protected against erasure

of the boundary region Ac, then this operator can be represented in the CFT as an

operator supported on A, the complement of the erased region. Thus we may inter-

pret the AdS-Rindler reconstruction of �(x) on boundary region A as correcting for

the erasure of Ac; choosing the erased portion of the boundary in di↵erent ways leads

– 22 –
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to perturbatively construct operators in the CFT which obey the bulk equations of

motion, with the boundary conditions set by the dictionary (1.1). For simplicity we

will assume that all bulk interactions are suppressed by inverse powers of a quantity

N , which will also set the AdS radius in Planck units. At leading order in 1/N , this

procedure results in a straightforward prescription for the CFT representation of a bulk

field �(x); we simply have

�(x) =

Z

Sd�1⇥R
dY K(x;Y )O(Y ), (2.2)

where the integral is over the conformal boundary and K(x, Y ) is a so-called “smearing

function”. The smearing function obeys the bulk wave equation in its x index, and leads

to (1.1) as we take x to the boundary. It can be chosen to only have support when x

and Y are spacelike separated, which we illustrate for AdS3 in the left diagram of figure

1; the point x is represented by a boundary integral over the green region only. In the

case of empty AdS, where we take (2.1) to hold everywhere, explicit representations of

the smearing function can be found in [7, 18].3 1/N corrections can be systematically

included [18, 19], although we won’t really need to discuss them here. At higher orders

in this perturbation theory we will need to confront the problem of defining local

operators in a di↵eomorphism invariant theory, but we postpone discussion of this

until section 5.

It is not obvious from the definition that the operators (2.2) have the expected com-

mutators in the bulk; this has been checked perturbatively within low point correlation

functions in [19], but must eventually break down in states with enough excitations to

avoid a contradiction with the argument in our introduction. We will argue below that,

within the subspace of states that are “perturbatively close” to the vacuum, it breaks

down only at the level of non-perturbatively small corrections.

Note that once we have a representation of the form (2.2), we can use the CFT

Hamiltonian to re-express all operators on the right hand side in terms of Heisenberg

picture fields on a single Cauchy surface in the CFT, denoted as ⌃ in figure 1. This

representation is quite nontrivial, in general it involves severely nonlocal and multitrace

operators. It also has the property that if we take x to be near the boundary but

not quite on it, the single-time CFT representation of �(x) still involves operators

3One subtlety here is that for more general asymptotically AdS backgrounds, we are not aware of a
rigorous argument for the existence of K, even in the distributional sense that we will see we need to
allow in the following subsection. One obvious problem is that x could be behind a horizon, but even
for geometries with no horizons the only precise argument for the existence of K (or more precisely
the existence of the “spacelike Green’s function” it is built from) requires spherical symmetry [18]. We
are not aware of any obstruction to its existence, but it would nonetheless be very interesting to see
a detailed analysis of this somewhat nonstandard problem in partial di↵erential equations.

– 4 –



Bulk locality paradox 

All the bulk operators must correspond to identity operators on the 
boundary. 

If so, the AdS/CFT correspondence seems boring ...



AdS/CFT is a quantum code ?
Solution: The AdS/CFT correspondence can be viewed as a 
quantum error-correcting code. 
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They are different operators, but act in the same manner in a low 
energy subspace. 

cf. Quantum secret-sharing code



Logical operators in the Toric code

• String-like Pauli X and Pauli Z logical operators

X X X X

Z

Z

Z

Z

Z
Z

Z
Z X

X

X
X

X X

Z



Entanglement wedge reconstruction

Operators in the entanglement wedge can be reconstructed (?)

* Whether this is possible or not remains open.

(entanglement wedge may extend over the singularity).



Holographic code



Minimal model

Let us construct the simplest toy model !

• 5 qubits on the boundary
• 1 qubit on the bulk
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Causal wedge reconstruction implies 



Minimal model
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Desired properties

A bulk operator must have representations on any region 

with three qubits.



Five qubit code
Encode one logical qubit into five physical qubits.
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input output

Pauli X, Z logical Pauli X, Z

Logical Pauli X,Z have representations on any region with 

three qubits. 



4 constraints for 5 qubits, so there are two states        and        in C.

• For a system of 5 qubits, consider the following stabilizer operators

41

universal quantum computation scheme by using the language of SPT phases. Also, it

may be interesting to characterize the gauge color code [27] by this framework.

(d) SPT phases with q-form global symmetry provide a number of interesting quantum

critical Hamiltonians as boundary modes. Analytical and numerical studies of such

boundary modes may provide further insights into problems of quantum criticality in

higher dimensions.

(e) Spatial dimension of symmetry operators can be non-integer values [43–45]. Namely,

one can construct an SPT Hamiltonian protected by fractal-like symmetry operators.

Studies of such fractal SPT phases and their gauged models may be an interesting future

problem.

S1 = X ⌦ Z ⌦ Z ⌦ X ⌦ I (73)

S2 = I ⌦ X ⌦ Z ⌦ Z ⌦ X (74)

S3 = X ⌦ I ⌦ X ⌦ Z ⌦ Z (75)

S4 = Z ⌦ X ⌦ I ⌦ X ⌦ Z (76)
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Eigenvalues +1, -1
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discussions and comments. I also thank Burak Şahinoğlu for suggesting this problem to
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Z = Z ⌦ Z ⌦ Z ⌦ Z ⌦ Z (81)

Logical operators commute with stabilizer operators, but act non-trivially inside C
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Logical operators are like Pauli X and Z operators for the logical qubit

Five-minute introduction to five-qubit code (1)



Five-minute introduction to five-qubit code (2)
• There are many logical operators which are equivalent inside C
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logical operators

stabilizer operators
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X = X ⌦ X ⌦ X ⌦ X ⌦ X (81)

Z = Z ⌦ Z ⌦ Z ⌦ Z ⌦ Z (82)

X ⇠ XS1 = I ⌦ Y ⌦ Y ⌦ I ⌦ X (83)
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• Five-qubit code has code distance 3

Logical operators must have supports on at least three qubits.

• Why is this a quantum error-correcting code ?

41

universal quantum computation scheme by using the language of SPT phases. Also, it

may be interesting to characterize the gauge color code [27] by this framework.

(d) SPT phases with q-form global symmetry provide a number of interesting quantum

critical Hamiltonians as boundary modes. Analytical and numerical studies of such

boundary modes may provide further insights into problems of quantum criticality in

higher dimensions.

(e) Spatial dimension of symmetry operators can be non-integer values [43–45]. Namely,

one can construct an SPT Hamiltonian protected by fractal-like symmetry operators.

Studies of such fractal SPT phases and their gauged models may be an interesting future

problem.

S1 = X ⌦ Z ⌦ Z ⌦ X ⌦ I (73)

S2 = I ⌦ X ⌦ Z ⌦ Z ⌦ X (74)

S3 = X ⌦ I ⌦ X ⌦ Z ⌦ Z (75)

S4 = Z ⌦ X ⌦ I ⌦ X ⌦ Z (76)

C = {| i : Sj| i = | i 8j} (77)

| 0i | 1i (78)

| i = ↵| 0i + �| 1i (79)
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distance 3

set of states with distance 1

The code tolerates single-qubit 

errors !



Five-minute introduction to five-qubit code (3)
For any subset of three qubits, logical X and logical Z operators can be found.

lost qubits

Both Pauli X and Pauli Z logical operators can be supported on shaded qubits.

The code can tolerate loss of 2 qubits. 

Logical Pauli X,Z have representations on any region with 

three qubits. 



Desired properties

A bulk operator must have representations on any region 

with three qubits.



Five qubit code
Encode one logical qubit into five physical qubits.

Lattice gauge theory

Beni Yoshida

(Dated: April 14, 2015)

A note on discrete, Abelian and non-Abelian lattice gauge theory, based on Kogut’s 1979 review.
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input output

Pauli X, Z logical Pauli X, Z

Logical Pauli X,Z have representations on any region with 

three qubits. 



Six-qubit tensor

X

X

Y

Y

=

injecting a Pauli operator 
into one tensor leg

pushing into three 
tensor legs

Tensor pushing

Any leg can be used as an input leg !!!



Holographic Code



Causal wedge reconstruction

Input

A

A

B

C

D

Input



Entanglement wedge reconstruction

Input

A

A

B

C

D

Input



Generic properties : Perfect 
tensors



Perfect state / tensor 

• A pure state with maximal entanglement in any bipartition

A

B

to construct a tensor network with exact correspondence between bulk tensors and

boundary wavefunctions. For instance, one can insert additional tensor legs in a tensor

tree which control the choice of tensors as proposed in [].

The AdS/CFT correspondence is a statement on a duality where there are two

equivalent descriptions for the same theory. Namely, bulk/boundary operators are re-

lated by some isomorphism. One then might think that the Hilbert spaces H
bulk

, H
boundary

are isomorphic to each other with the same dimensions. However, Harlow and his

friends pointed out that this leads to a contradiction.

Consider a bulk operator �(x0, r, t = 0) at t = 0 and boost the system to the frame

where an observer at (x0, r) moves to (x0, r0) at the boundary (r0 > r) in a direction

perpendicular to the boundary. Letting U
t

be a boost unitary operator, the AdS/CFT

correspondence states that

U�(x0, r, t = 0)U † = O(x0, t) r0 � r = ct. (1.3)

In the original frame, the boundary CFT operator O(x, t) can be written as

O(x, t) = UO0(t = 0)U † (1.4)

where the CFT operator O0(t = 0) depends only on O(x, t) where x is within the

causal wedge. Thus, the bulk operator �(x0, r, t = 0) can be represented by boundary

operators inside the causal wedge.

2 Perfect tensor

In this section, we introduce the notion of perfect tensors. Consider a system of 2n

spins. Let v be the number of states per spin. A wavefunction | i is said to be a

perfect state i↵ its reduced density matrix ⇢
A

for all A such that |A|  n is maximally

entangled:

⇢
A

/ I
A

for all |A|  n (2.1)

where I
A

is an identity matrix on A. So, for any bipartition, the entanglement entropy

has a maximal value. Let | i be a perfect state, A be a subset of spins with |A|  n

and B be the complement of A. Since A is maximally entangled with B, any quantum

operation acting on A has a dual quantum operation acting on B. Namely, let U
A

⌦ I

be an arbitrary unitary operator which acts exclusively on A. Then there always exists
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where T
i1i2...in = hi1i2 . . . i

n

| i. We shall shall call such a tensor a perfect tensor. The

duality of unitary operators in a bipartition can be concisely represented in a language

of tensors. Recall that a unitary operator acting on k spins can be represented as a

tensor with 2k legs where k legs correspond to a bra and other k legs correspond to a

ket.

One can construct an isomorphism from perfect tensors. Let T
i1i2...i2n be a perfect

tensor with 2n legs. Let M
i1,...,ik

be a tensor representation of an input state | i which

is a k spin state. By contracting legs i1, . . . , ik of M
i1,...,ik

and T
i1i2...i2n , one obtains a

new tensor N
ik+1,...,i2n , which corresponds to the output state |�i of the map:

N
ik+1,...,i2n =

X

i1,...,ik

T
i1i2...i2nMi1,...,ik

. (2.5)

This contraction defines the map  : (Cv)⌦k ! (Cv)⌦2n�k whose input is M
i1,...,ik

and

output is N
ik+1,...,i2n . This map is an isometry since pairwise orthogonal states remain

to orthogonal. Such an isometry can be viewed as an encoding map of a quantum

error-correcting code where k -spin input states are encoded in 2n � k-spin output

states where k input legs can be viewed as logical legs. A quantum code with k = 1,

constructed from a perfect tensor, will be called a perfect code (Fig. 2).

(a) (b) logical leg

Figure 2. (a) Perfect state. (b) Perfect code.

For readers from quantum information science, it may be convenient to characterize

a quantum error-correcting code by a standard notation [[n, k, d]]
v

where n represents

the total number of spins, k represents the number of logical v-dimensional spins (so

there are vk orthogonal states in the codeword space), d represents the code distance

and v represents the number of states in each spin. According to this notation, a

perfect code is represented by [[2n � 1, 1, n]]
v

. Similarly, a perfect state is represented

by [[2n, 0, n + 1]]
v

. We shall demonstrate that a perfect code [[2n � 1, 1, n]]
v

can be

converted into a perfect state [[2n, 0, n + 1]]
v

, and vise versa.
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a dual unitary operator I ⌦ V
B

that acts only on B such that (Fig. 1(a))

U
A

⌦ I| i = I ⌦ V
B

| i. (2.2)

This duality is often referred to as a gate teleportation which is a generalized notion of

state teleportation with EPR pairs. This duality between U
A

and V
B

is a result of the

Choi-Jamiolkowski isomorphism where a state is interpreted as a quantum channel.

An important consequence of the duality is that, in any bipartition, one can distill

a maximal number of EPR pairs. Here an EPR pair refers to a maximally entangled

two-spin state: |EPRi = 1p
v

P
v�1
j=0 |ji ⌦ |ji. Consider a perfect state with 2n spins | i

in a bipartition into A and B such that |A|  n. Then there always exists a unitary

transformation I ⌦ U
B

which acts exclusively on B such that |�i = I ⌦ U
B

| i consists

of |A| decoupled copies of EPR pairs supported over spins in A and B, and 2n � 2|A|
decoupled spins in B. Namely,

|�i = |EPRi⌦|A| ⌦ |0i⌦2n�2|A|. (2.3)

So, one can distill |A| decoupled copies of EPR pairs by applying a local unitary only

on B as depicted in Fig 1(b).

TUA T VB=
duality

T UB
distillation

(a) (b)

A B

UA VB

A B

=

UB

A B

=

A B

EPR pair

A B

UA VB

A B

=

UB

A B

=

A B

EPR pair

Figure 1. (a) Duality of unitary operators in a perfect state. (b) Distillation of EPR pairs.

We then introduce the notion of perfect tensors. A perfect state | i can be written

by a tensor as follows:

| i =
v�1X

i1=0

v�1X

i2=0

· · ·
v�1X

in=0

T
i1i2...in |i1i2 . . . i

n

i (2.4)
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Perfect state (2n spins) Perfect tensor (2n legs)



Duality of unitary operators

TUA T VB=
duality

A B

UA VB

A B

=

UB

A B

=

A B

EPR pair
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We then introduce the notion of perfect tensors. A perfect state | i can be written

by a tensor as follows:

| i =
v�1X

i1=0

v�1X

i2=0

· · ·
v�1X

in=0

T
i1i2...in |i1i2 . . . i

n

i (2.4)
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• Given UA, there always exists VB such that

“gate teleportation”

will lead to bulk/
boundary duality...



Distillation of EPR pairs

• By applying a unitary only on B, EPR pairs can be distilled

only on B !

will lead to the RT 
formula...

T UB
distillation

A B

UA VB

A B

=

UB

A B

=

A B

EPR pair



Holographic quantum state / code

(a) (b)

Figure 3. (a) The holographic state. White dots represent physical legs. (b) The holographic

code. Red dots connected by dotted lines represent logical legs.

We then define a holographic state with a black hole. Similar construction works

for a holographic code too. Given a holographic state defined on a tiling of a hyperbolic

space, we cut all the tensor legs crossed by a “circle” (i.e. an isoperimetric region) as

depicted in Fig. 4(a). For all the open legs on the bulk, we inject maximally mixed

states. Since we have injected mixed states, the resulting state is also a mixed state.

We call such a state simply a black hole since its properties resemble those of an actual

black hole. The cutting circle may be viewed as an event horizon as one cannot retrieve

any information inside it.

One may also view the black hole as a contraction of two holographic states. Con-

sider two identical copies of holographic states denoted by A and B. Let us cut tensor

legs of two holographic states along some circles at the same location and contract

open legs from each copy of holographic states together. This may be viewed as a

geometry with two AdS spaces which are connected by a wormhole (Fig. 4(b)). The

resulting tensor network represents a pure state |�i which has entanglement between

two systems A and B. By tracing out the second system

Tr
B

(|�ih�|) = ⇢ (3.1)

one obtains the mixed state ⇢ on A which is identical to the one obtained by injecting

maximally mixed states to open legs of a single copy of holographic state.
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holographic state holographic code

physical legs

logical legs



A black hole and wormhole

horizon

black hole

A

B
wormhole

(a) (b)

Figure 4. Wormhole geometry for a black hole.

4 Entanglement in holographic state

In this section, we study entanglement entropies of a holographic state. Namely, we

show that the holographic wavefunction obeys the Ryu-Takayanagi formula exactly for

bipartite entanglement of contiguous regions in the absence and presence of a black

hole, and satisfies the negativity of tripartite entanglement entropy in multi-partition.

4.1 Bipartite entanglement

In this subsection, we show that the Ryu-Takayangi formula for bipartite entanglement

of contiguous regions holds exactly for a holographic state. Consider a single connected

region A at the boundary. Imagine all the possible lines on the bulk with the same

endpoints as the piece of boundary A. The line which cuts the minimal number of

tensor legs is called a geodesic. To construct a geodesic for a connected region A, we

begin by drawing a line which intersects all the legs attached to spins in A. We then

move the line according to a certain set of rules, which we call the local moves ; Given

a line connecting endpoints of A, consider a tensor just above the line toward the bulk

direction. If the line cuts k legs of a tensor (k � n), then we move the line through

the tensor so that the line cuts 2n � k legs. Examples of local moves of the line are

depicted in Fig. 5(b). Except for k = n, local moves decreases the length of the line

while increasing the volume contained inside the line. We repeat this procedure until

one cannot move the line anymore, and the line becomes a geodesic 1.

1
This characterization of a geodesic line by local moves is not unique. Yet, for the tilings of

hyperbolic space used in the construction of a holographic state, one can prove that local moves will

pick up a particular geodesic line which contains the largest volume. Thus all the geodesic lines are
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Yes, perfect states exist

• 2n : total number of spins
   v : spin dimension

• For v=2, perfect states with n=1,3 exist

-- EPR pair
-- 6-qubit state (5-qubit code)

• For large n, perfect states with v ~ O(n^1/2) exist 

• Pick a Haar random pure state, then it is a nearly perfect 
state (canonical typicality).



Holographic state 
(bipartition)



AdS$metric$

Class$of$Quantum$Many6Body$States$That$Can$
Be$Efficiently$Simulated$Guifre$Vidal$(2008)$

MERA$

|`A|

S(⇢A)

Ryu-Takayanagi formula, it’s exact !

[Claim] Entanglement entropy for A (connected region) is equal to the 
geodesic length.

A

B

local move

geodesic

(a) (b)

Figure 5. (a) Construction of a geodesic. (b) Local moves.

Consider the entanglement entropy of | i on a single connected region A, denoted

by S
A

. Clearly, S
A

is upper bounded by S
A

 �
A

as each leg may contribute up to

unity to S
A

where S
A

is measured by taking v as a base of the logarithm. Here �
A

represents the length of a geodesic. In our construction, a holographic state obeys the

Ryu-Takayanagi formula exactly.

Result 1. Consider a wavefunction | i characterized by hyperbolic tiling of perfect

tensors. Then its entanglement entropy S
A

on a connected region A is given by

S
A

= log2 v · �
A

(4.1)

where �
A

is the length of the geodesic line of A.

In fact, the above result holds for any tiling of a space with nonpositive curvature

as long as the distance functions have no local minima.

To obtain the result, we use the correspondence between local moves and distilla-

tions of EPR pairs. Let us first consider a wavefunction which is obtained by contracting

two perfect tensors as depicted in Fig. 6(a). By applying local unitary transformations

exclusively acting on A, one can decouple spins which are not entangled with B, and

distill EPR pairs bridging across A and B. In Fig. 6(a), we first distill EPR pairs by

applying some appropriate unitary transformation on spins in A which are connected

by a left tensor. We then repeat a similar procedure for the right tensor. The key

observation is that this distillation process corresponds to the local move as depicted in

contained inside this volume. Geodesic lines constructed by local moves from A and B =

¯A do not

coincide in general. Yet all the geodesic lines are contained inside the volume created by these two

geodesic lines constructed from local moves. See appendix for details.
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Geodesic line from local moves

A

B

local move

geodesic

local moves



Local move = distillation of EPR pairs

• Local moves distill EPR pairs and decouple “junks”. 

Fig. 6(b). In general, local moves correspond to some distillation processes since local

moves always bring a line over the tensor so that it reduces the number of cuts. As we

have seen, in a perfect state in a bipartition into A and B such that |A|  n, one can

distill |A| copies of EPR pairs by applying local unitary transformations only on B.

A

B

A

B

(a)

(b)

A

B

A

B

Figure 6. (a) Distillation of two EPR pairs. (b) The corresponding local moves.

With these observations, the derivation of the result is straightforward. First, we

apply local unitary transformations strictly inside B and decouple some spins which

are not entangled with A as depicted in Fig. 7. This leaves physical spins which are

sitting along the geodesic. We then apply similar procedure on A to obtain multiple

EPR pairs bridging A and B. This leaves pairs of physical spins which are sitting along

the geodesic. The number of EPR pairs is exactly the number of cuts made by the

geodesic, i.e. the length of the geodesic. It is possible that geodesic lines of A and B

may di↵er.

A A

B B

Figure 7. The geometric map of entanglement. White dots represent physical spins after

local unitary transformations on A and B.
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local move

distillation of 
EPR pairs



Geometric map of entanglement

• Graphical representation of entanglement in the AdS/CFT 
correspondence.

Fig. 6(b). In general, local moves correspond to some distillation processes since local

moves always bring a line over the tensor so that it reduces the number of cuts. As we

have seen, in a perfect state in a bipartition into A and B such that |A|  n, one can

distill |A| copies of EPR pairs by applying local unitary transformations only on B.
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(b)
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Figure 6. (a) Distillation of two EPR pairs. (b) The corresponding local moves.

With these observations, the derivation of the result is straightforward. First, we

apply local unitary transformations strictly inside B and decouple some spins which

are not entangled with A as depicted in Fig. 7. This leaves physical spins which are

sitting along the geodesic. We then apply similar procedure on A to obtain multiple

EPR pairs bridging A and B. This leaves pairs of physical spins which are sitting along

the geodesic. The number of EPR pairs is exactly the number of cuts made by the

geodesic, i.e. the length of the geodesic. It is possible that geodesic lines of A and B

may di↵er.

A A

B B

Figure 7. The geometric map of entanglement. White dots represent physical spins after

local unitary transformations on A and B.
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Entanglement in a black hole

A

B2

B1

Figure 8. The geometric map of entanglement for the wormhole geometry (color online).

Arrows represent local moves and distillation of EPR pairs.

geodesic lines for B and ABC as shown in Fig 9(c). Therefore, if we change the size

of B by fixing the sizes of A and C, there will be a “phase transition” in the structure

of multipartite entanglement. This naturally motivates us to study multipartite entan-

glement among A, B, C, D for three cases (i) |B| � |A|, |C|, (ii) |B| = |A|, |C| and (iii)

|B| ⌧ |A|, |C|.

A

(a)

B C

D

A B C

A B C

(b)

(c)

Figure 9. (a) A partition into four connected regions. (b) Geodesic for AC when |B| �
|A|, |C|. (c) Geodesic for AC when |B| ⌧ |A|, |C|.

Residual regions: We argue that multipartite entanglement in three cases can be

concisely understood by the notion of residual regions as introduced below. Let us first

consider the case where |B| � |A|, |C|. We draw geodesics for each of four connected

regions on the bulk. There are a few important observations concerning four geodesic

lines. First, geodesic lines for neighboring regions nearly coincide with each other near

the boundary as schematically depicted in Fig 10(a) since the geodesic lines, starting

from the boundary, are always perpendicular to the boundary. Second, geodesic lines

for B and D nearly coincide with each other as depicted in Fig 10(a) even though B
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• EPR pairs along the wormhole (ER=EPR ?)
• RT formula with a black hole
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Multi-partite entanglement 

• It is not difficult to create a wavefunction with                     , but...

• The Lorentz invariance is emerging.

• The model is exactly solvable.

1. At an appropriate limit of smooth geometry, the AdS/CFT correspondence is

exactly recovered. Namely, the RT formula holds exactly not only for single connected

regions, but also under multi-partitions.

2. The bulk and boundary unitary operators are related by duality. Bulk boundary

have multiple equivalent representations via boundary operators.

Multipartite entanglement: Imagine that some one-dimensional wavefunction

is generated by a tensor network such as a MERA which covers a hyperbolic space. It

is immediate to show that its bipartite entanglement S
A

for a single connected region

A is upper bounded by the minimal number of cuts one needs to make to connect two

endpoints of A, i.e. the length of the geodesic line of A. Here, the Ryu-Takayanagi

formula serves as a generic upper bound on the bipartite entanglement of a wavefunction

arising from MERA circuits, so the wavefunction does not necessarily saturates the RT

formula. Yet, it is not di�cult to construct a wavefunction that approximately satisfies

the Ryu-Takayanagi formula for bipartite entanglement along specific cuts by some

MERA tensor network. For instance, one may achieve this goal by distributing EPR

pairs at di↵erent length scales in a scale invariant way so that S
A

/ log(L) where L is

the length of A. Such distributions of EPR pairs may be possible by using tensors with

tree structures or placing the so-called disentanglers at each layer of a MERA circuit.

However such simple constructions with EPR pairs do not give rise to wavefunc-

tions with genuine multi-partite entanglement which a holographic wavefunction must

possess. To see this, let us recall a result by Patrick Hayden and his friends on the

negativity of the tripartite entanglement under the gauge/gravity correspondence. For

three non-overlapping subsets of spins A, B, C, the tripartite entanglement is defined

as follows

I(A, B, C) = S
A

+ S
B

+ S
C

� S
AB

� S
AC

� S
BC

+ S
ABC

. (1.1)

For a generic quantum state, this quantity can be negative, positive or zero. Let us

now consider a wavefunction | i which is dual to some classical gravity with negative

curvature, and consider three connected regions A, B, C. We assume that a wavefunc-

tion satisfies the RT formula, meaning that the entanglement entropy is proportional

to the geodesic in gravitational dual. Then, the RT formula predicts the negativity of
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eg) distribute EPR pairs in a 

tensor tree

• Negativity of tripartite entanglement entropy (any “holographic 

state”)

-- EPR pair, then I(A,B,C)=0.  

-- GHZ state, then I(A,B,C)>0.
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• Identified segment of geodesic lines = EPR pairs
• Residual regions = Multipartite entanglement ?



Residual regions in holographic state 
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Figure 11. The map of entanglement and residual regions in a holographic state. (a) A and
C are far apart. (b) Intermediate regime.

interested in entanglement among A, B, C, D, we apply local unitary transformations

on A, B, C, D and distill EPR pairs according to the local moves. We obtain EPR

pairs along the identified segment of the neighboring geodesic lines. Inside the bulk,

we find residual regions R
A

and R
C

where only a few tensors are supported, which are

responsible for tripartite entanglement among A, B, D and among B, C, D respectively.

Similarly we consider the case where |B| ⇡ |A|, |C| as in Fig. 11(b). We find a residual

region R which is surrounded by geodesic lines of A, B, C, D where only a few tensors

are supported which is responsible for quadripartite entanglement among A, B, C, D.

Finally, we consider the case where |B| ⌧ |A|, |C|. By studying several examples, we

find two residual regions R
B

and R
D

although we can not draw it graphically in this

paper since the number of tensor legs needs to be enormously large.

Volume of residual regions: In all these three cases, we find that the volume

of residual regions remain finite in a sense that they contain only a finite number of
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The RT formula still holds



Negativity of tripartite entanglement 

• Perfect tensor (state) is the key for negative tripartite 
entanglement !

A
B

C

D

-- Split 2n-perfect state into four subsets A, 
B, C, D.

-- Assume 0< |A|, |B|, |C|, |D| < n+1 

Then the tripartite entanglement is always 
negative !

• The Lorentz invariance is emerging.

• The model is exactly solvable.

1. At an appropriate limit of smooth geometry, the AdS/CFT correspondence is

exactly recovered. Namely, the RT formula holds exactly not only for single connected

regions, but also under multi-partitions.

2. The bulk and boundary unitary operators are related by duality. Bulk boundary

have multiple equivalent representations via boundary operators.

Multipartite entanglement: Imagine that some one-dimensional wavefunction

is generated by a tensor network such as a MERA which covers a hyperbolic space. It

is immediate to show that its bipartite entanglement S
A

for a single connected region

A is upper bounded by the minimal number of cuts one needs to make to connect two

endpoints of A, i.e. the length of the geodesic line of A. Here, the Ryu-Takayanagi

formula serves as a generic upper bound on the bipartite entanglement of a wavefunction

arising from MERA circuits, so the wavefunction does not necessarily saturates the RT

formula. Yet, it is not di�cult to construct a wavefunction that approximately satisfies

the Ryu-Takayanagi formula for bipartite entanglement along specific cuts by some

MERA tensor network. For instance, one may achieve this goal by distributing EPR

pairs at di↵erent length scales in a scale invariant way so that S
A

/ log(L) where L is

the length of A. Such distributions of EPR pairs may be possible by using tensors with

tree structures or placing the so-called disentanglers at each layer of a MERA circuit.

However such simple constructions with EPR pairs do not give rise to wavefunc-

tions with genuine multi-partite entanglement which a holographic wavefunction must

possess. To see this, let us recall a result by Patrick Hayden and his friends on the

negativity of the tripartite entanglement under the gauge/gravity correspondence. For

three non-overlapping subsets of spins A, B, C, the tripartite entanglement is defined

as follows

I(A, B, C) = S
A

+ S
B

+ S
C

� S
AB

� S
AC

� S
BC

+ S
ABC

. (1.1)

For a generic quantum state, this quantity can be negative, positive or zero. Let us

now consider a wavefunction | i which is dual to some classical gravity with negative

curvature, and consider three connected regions A, B, C. We assume that a wavefunc-

tion satisfies the RT formula, meaning that the entanglement entropy is proportional

to the geodesic in gravitational dual. Then, the RT formula predicts the negativity of
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Holographic quantum state / code

(a) (b)

Figure 3. (a) The holographic state. White dots represent physical legs. (b) The holographic

code. Red dots connected by dotted lines represent logical legs.

We then define a holographic state with a black hole. Similar construction works

for a holographic code too. Given a holographic state defined on a tiling of a hyperbolic

space, we cut all the tensor legs crossed by a “circle” (i.e. an isoperimetric region) as

depicted in Fig. 4(a). For all the open legs on the bulk, we inject maximally mixed

states. Since we have injected mixed states, the resulting state is also a mixed state.

We call such a state simply a black hole since its properties resemble those of an actual

black hole. The cutting circle may be viewed as an event horizon as one cannot retrieve

any information inside it.

One may also view the black hole as a contraction of two holographic states. Con-

sider two identical copies of holographic states denoted by A and B. Let us cut tensor

legs of two holographic states along some circles at the same location and contract

open legs from each copy of holographic states together. This may be viewed as a

geometry with two AdS spaces which are connected by a wormhole (Fig. 4(b)). The

resulting tensor network represents a pure state |�i which has entanglement between

two systems A and B. By tracing out the second system

Tr
B

(|�ih�|) = ⇢ (3.1)

one obtains the mixed state ⇢ on A which is identical to the one obtained by injecting

maximally mixed states to open legs of a single copy of holographic state.
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Future works

Fast scrambler ? Computational complexity and Einstein-Rosen bridge ?

For D > 3 f(r) has the more complicated form,

f(r) =
r2

l2
+ 1� µ2

rD�3
. (2.15)

with

µ2 =
GNMl2

!D�2
(2.16)

and !D�2 being the volume of a unit (D � 2)-sphere.

The full spacetime geometry described by 2.12 is pathological—it contains white holes

as well as black holes on both sides—and is very unstable with respect to perturbations

in the lower half of the diagram. For our purposes we can throw away the lower half

and assume that the system was created at t = 0 by some unspecified quantum event, for

example a Hartle-Hawking instanton. The history then starts at t = 0 with the embedding

diagram shown in left-most part of figure 8 As we move up the boundaries of the Penrose

Figure 8: Embedding diagram showing the growth of the two-sided ERB.

diagram, the time t increases. The embedding diagrams shown in the other two parts of

figure 8 indicate how the ERB grows.

Consider a rotationally invariant slice defined by giving r as a function of t. The volume

of such a slice is given by,

V = !D�2

Z
dt
p
|f(r)|rD�2

17


