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Quantum quench dynamics

• A many-body quantum system is prepared in the ground-
state of H0, i.e. |Ψ0⟩ 

• At t=0, H0 ➠H, i.e. a Hamiltonian parameter is quenched

• For t>0, it evolves unitarily: |Ψ(t)⟩=e-iHt |Ψ0⟩ 

• No contact with “external” world

• What are the main features of the dynamics?

• What about a “stationary state”?

The study of quench dynamics has been boosted by cold-atom 
experiments in the last decade or so
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FIG. 7. Space-time picture illustrating how the entanglement between an interval A and the
rest of the system, due to oppositely moving coherent quasiparticles, grows linearly and then
saturates. The case where the particles move only along the light cones is shown here for clarity.

momentum p produced at x is therefore at x + v(p)t at time t, ignoring scattering effects.
Now consider these quasiparticles as they reach either A or B at time t. The field at

some point x′ ∈ A will be entangled with that at a point x′′ ∈ B if a pair of entangled
particles emitted from a point x arrive simultaneously at x′ and x′′ (see Fig. 7).

The entanglement entropy between x′ and x′′ is proportional to the length of the interval
in x for which this can be satisfied. Thus the total entanglement entropy is

SA(t) ≈
∫

x′∈A

dx′

∫

x′′∈B

dx′′

∫ ∞

−∞

dx

∫

f(p′, p′′)dp′dp′′δ
(

x′ − x − v(p′)t
)

δ
(

x′′ − x − v(p′′)t
)

.

(4.1)
Now specialize to the case where A is an interval of length ". The total entanglement

is twice that between A and the real axis to the right of A, which corresponds to taking
p′ < 0, p′′ > 0 in the above. The integrations over the coordinates then give max

(

(v(−p′) +
v(p′′))t, "

)

, so that

SA(t) ≈ 2t

∫ 0

−∞

dp′
∫ ∞

0

dp′′f(p′, p′′)(v(−p′) + v(p′′)) H(" − (v(−p′) + v(p′′))t) +

+ 2"

∫ 0

−∞

dp′
∫ ∞

0

dp′′f(p′, p′′) H((v(−p′) + v(p′′))t − ") , (4.2)
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Light-cone spreading of entanglement entropy 
PC, J Cardy 2005

• After a global quench, the initial state |ψ0› has an extensive excess of energy

• It acts as a source of quasi-particles at t=0. A particle of momentum p has 
energy Ep and velocity vp=dEp/dp

• For  t > 0 the particles moves semiclassically with velocity vp

• particles emitted from regions of size of the initial correlation length are 
entangled, particles from far points are incoherent 

• The point x ∈ A is entangled with a point x’ ∈ B if a left (right) moving particle 
arriving at x is entangled with a right (left) moving particle arriving at x’. This 
can happen only if x ± vp t ∼ x’∓ vpt



Light-cone spreading of entanglement entropy 
PC, J Cardy 2005

• The entanglement entropy of an interval A of length l	 is proportional to 
the total number of pairs of particles emitted from arbitrary points such 
that at time t, x ∈ A and x’ ∈ B 

• Denoting with f(p) the rate of production of pairs of momenta ±p and their 
contribution to the entanglement entropy, this implies 
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FIG. 7: Space-time picture illustrating how the entanglement between an interval A and the rest

of the system, due to oppositely moving coherent quasiparticles, grows linearly and then saturates.

The case where the particles move only along the light cones is shown here for clarity.

in x for which this can be satisfied. Thus the total entanglement entropy is
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Now specialize to the case where A is an interval of length `. The total entanglement

is twice that between A and the real axis to the right of A, which corresponds to taking

p0 < 0, p00 > 0 in the above. The integrations over the coordinates then give max
�
(v(�p0)+

v(p00))t, `
�
, so that

SA(t) ⇡ 2t

Z
0

�1
dp0

Z 1

0

dp00f(p0, p00)(v(�p0) + v(p00))H(`� (v(�p0) + v(p00))t) +
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0

�1
dp0

Z 1
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dp00f(p0, p00)H((v(�p0) + v(p00))t� `) , (4.3)

where H(x) = 1 if x > 0 and zero otherwise. Now since |v(p)|  1, the second term cannot

contribute if t < t⇤ = `/2, so that SA(t) is strictly proportional to t. On the other hand as

t ! 1, the first term is negligible (this assumes that v(p) does not vanish except at isolated

points), and SA is asymptotically proportional to `, as found earlier.

However, unless |v| = 1 everywhere (as is the case for the conformal field theory cal-

culation), SA is not strictly proportional to ` for t > t⇤. In fact, it is easy to see that

the asymptotic limit is always approached from below, as found for the Ising spin chain in

Sec. III. The rate of approach depends on the behavior of f(p0, p00) in the regions where

v(�p0) + v(p00) ! 0. This generally happens at the zone boundary, and, for a non-critical

quench, also at p0 = p00 = 0. If we assume that f is non-zero in those regions, we find a

correction term ⇠ �`3/t2 in the limit where t � t⇤.
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• When vp is bounded (e.g. Lieb-Robinson bounds) |vp|<vmax, the second 
term is vanishing for 2 vmax t<l and the entanglement entropy grows 
linearly with time up to a value linear in l	 



One example

PC, J Cardy 2005Transverse field Ising chain 

Evolution of entanglement entropy following a quantum quench:

Analytic results for the XY chain in a tranverse magnetic field

Maurizio Fagotti and Pasquale Calabrese
Dipartimento di Fisica dell’Università di Pisa and INFN, Pisa, Italy

(Dated: November 28, 2010)

The non-equilibrium evolution of the block entanglement entropy is investigated in the XY chain
in a transverse magnetic field after the Hamiltonian parameters are suddenly changed from and to
arbitrary values. Using Toeplitz matrix representation and multidimensional phase methods, we
provide analytic results for large blocks and for all times, showing explicitly the linear growth in
time followed by saturation. The consequences of these analytic results are discussed and the e↵ects
of a finite block length is taken into account numerically.

PACS numbers: 03.67.Mn, 02.30.Ik, 64.60.Ht

The non-equilibrium evolution of extended quantum
systems is one of the most challenging problems of con-
temporary research in theoretical physics. The subject
is in a renaissance era after the experimental realization
[1] of cold atomic systems that can evolve out of equilib-
rium in the absence of any dissipation and with high de-
gree of tunability of Hamiltonian parameters. A strongly
limiting factor for a better understanding of these phe-
nomena is the absence of e↵ective numerical methods to
simulate the dynamics of quantum systems. For meth-
ods like time dependent density matrix renormalization
group (tDMRG) [2] this has been traced back [3] to a too
fast increasing of the entanglement entropy between parts
of the whole system and the impossibility for a classical
computer to store and manipulate such large amount of
quantum information.

This observation partially moved the interest from the
study of local observables to the understanding of the
evolution of the entanglement entropy and in particular
to its growth with time. Based on early results from
conformal field theory [5, 6] and on exact/numerical ones
for simple solvable model [5, 7] it is widely accepted [3]
that the entanglement entropy grows linearly with time
for a so called global quench (i.e. when the initial state
di↵ers globally from the ground state and the excess of
energy is extensive), while at most logarithmically for a
local one (i.e. when the the initial state has only a local
di↵erence with the ground state and so a little excess of
energy). As a consequence a local quench is simulable by
means of tDMRG, while a global one is not.

However, despite this fundamental interest and a large
e↵ort of the community, still analytic results are lacking.
In this letter we fill this gap providing the full analytic
expression for the entanglement entropy at any time in
the limit of large block for the XY chain in a transverse
magnetic field. The model is described by the Hamilto-
nian

H(h, �) = �
NX

j=1


1 + �

4
�x

j

�x

j+1 +
1� �

4
�y

j
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h

2
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j

�
,

(1)

where �↵

j

are the Pauli matrices at the site j. Periodic
boundary conditions are always imposed. Despite of its
simplicity, the model shows a rich phase diagram being
critical for h = 1 and any � and for � = 0 and h  1, with
the two critical lines belonging to di↵erent universality
classes. The block entanglement entropy is defined as the
Von Neumann entropy S

`

= �Tr⇢
`

log ⇢
`

, where ⇢
`

=
Tr

n�`

⇢ is the reduced density matrix of the block formed
by ` contiguous spins. In the following we will consider
the quench with parameters suddenly changed at t = 0
from h0, �0 to h, �.

Our result is that, in the thermodynamic limit N !1
and subsequently in the limit of a large block ` � 1, the
time dependence of the entanglement entropy is

S(t) = t
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2|✏0|H(cos �
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) ,

(2)
where ✏0 = d✏/d' is the derivative of the dispersion re-
lation ✏2 = (h � cos ')2 + �2 sin2 ' and represents the
momentum dependent sound velocity (that because of
locality has a maximum we indicate as v

M

⌘ max
'

|✏0|),
cos �

'

= (hh0 � cos '(h + h0) + cos2 ' + ��0 sin2 ')/✏✏0
contains all the quench information [8] and H(x) =
�((1 + x)/2 log(1 + x)/2 + (1� x)/2 log(1� x)/2).

We first prove Eq. (2) and then discuss its interpreta-
tion and physical consequences. The readers not inter-
ested to the derivation can jump directly to latter part.

The method. Writing the entanglement entropy in
terms of a block Toeplitz matrix is rather standard
[5, 9]. One first introduce Majorana operators ǎ2l�1 ⌘�Q

m<l
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m

�
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l
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�
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l

and the corre-
lation matrix �A

`

through the relation hǎ
m

ǎ
n

i = �
mn

+
i�A

`
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with 1  m, n  `, that is a block Toeplitz matrix

�
`

=

2

66664

⇧0 ⇧1 · · · ⇧
`�1
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...
...

. . .
...

⇧1�`
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77775
, ⇧
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=
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�
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Analytically for t, l ⨠ 1 with t/l constant 
M Fagotti, PC 2008

The determination of the time-dependent state | (t)i = e�iHI(h)t| 
0

i (and consequently

of the entanglement entropy) proceeds with the Jordan-Wigner transformation in terms of

Dirac or Majorana fermionic operators. All the details of these computations can be found

in the Appendix A.

The final result is that the time-dependent entanglement entropy for ` consecutive spins

in the chain can be obtained (analogously to the ground state case [2]) from the correlation

matrix of the Majorana operators
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2l ⌘
 
Y

m<l

�z
m

!
�y
l . (3.2)

We introduce the matrix �A
` through the relation hǎmǎni = �mn + i�A
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It has the form of a block Toeplitz matrix
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Calling the eigenvalues of �A
` as ±i⌫m, m = 1 . . . `, the entanglement entropy is S =
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H(⌫m) where H(x) is
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` mn with 1  m,n  `.

It has the form of a block Toeplitz matrix

�A
` =

2

6666664

⇧
0

⇧�1

· · · ⇧
1�`

⇧
1

⇧
0

...
...

. . .
...

⇧`�1

· · · · · · ⇧
0

3

7777775
, ⇧l =

2

4 �fl gl

�g�l fl

3

5 . (3.3)

with

gl =
1

2⇡

Z
2⇡

0

d'e�i'le�i✓'(cos�' � i sin�' cos 2✏'t) ,

fl =
i

2⇡

Z
2⇡

0

d'e�i'l sin�' sin 2✏'t , (3.4)

where

✏' =
q
(h� cos')2 + sin2 ' ,

✏0' =
q
(h

0

� cos')2 + sin2 ' ,

e�i✓' =
cos'� h� i sin'

✏'
,

sin�' =
sin'(h

0

� h)

✏'✏0'
,

cos�' =
1� cos'(h+ h

0

) + hh
0

✏'✏0'
. (3.5)

Calling the eigenvalues of �A
` as ±i⌫m, m = 1 . . . `, the entanglement entropy is S =

P`
m=1

H(⌫m) where H(x) is

H(x) = �1 + x

2
log

1 + x

2
� 1� x

2
log

1� x

2
. (3.6)

8

Evolution of entanglement entropy following a quantum quench:

Analytic results for the XY chain in a tranverse magnetic field

Maurizio Fagotti and Pasquale Calabrese
Dipartimento di Fisica dell’Università di Pisa and INFN, Pisa, Italy

(Dated: November 28, 2010)

The non-equilibrium evolution of the block entanglement entropy is investigated in the XY chain
in a transverse magnetic field after the Hamiltonian parameters are suddenly changed from and to
arbitrary values. Using Toeplitz matrix representation and multidimensional phase methods, we
provide analytic results for large blocks and for all times, showing explicitly the linear growth in
time followed by saturation. The consequences of these analytic results are discussed and the e↵ects
of a finite block length is taken into account numerically.
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is in a renaissance era after the experimental realization
[1] of cold atomic systems that can evolve out of equilib-
rium in the absence of any dissipation and with high de-
gree of tunability of Hamiltonian parameters. A strongly
limiting factor for a better understanding of these phe-
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of the whole system and the impossibility for a classical
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energy is extensive), while at most logarithmically for a
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PC, J Cardy 2006/07

• Horizon: points at separation r become correlated when left- and right-
moving particles originating from the same point first reach them

• If |vp|<vmax, connected correlations are then frozen for t < r/2vmax 

Light-cone spreading of correlations 
The same scenario is valid for correlations: 

Quantum Quench in the Transverse Field Ising chain I 9

Figure 4. Numerical data for a quench within the ferromagnetic phase from h
0

= 1/3 to
h = 2/3. Left: The two-point function against the asymptotic prediction Eq. (19) for ` = 30 (up
to a multiplicative factor) showing excellent agreement in the scaling regime. Inset: Ratio between
the numerical data and asymptotic prediction (69). The leading correction is time independent,
but subleading contributions oscillate. Right: The connected correlation function for the same
parameters as on the left. For t < t

F

, ⇢xx

c

(`, t) vanishes identically in the scaling regime.

In the limit ` ! 1 (19) gives the square of the result (13) for the one-point function. For
times smaller than the Fermi time

tF =
`

2v
max

, (21)

the first exponential factor in (19) equals 1. Thus, in the space-time scaling limit, connected
correlations vanish identically for times t < tF and begin to form only after the Fermi time. This
is a general feature of quantum quenches [9, 22] and has been recently observed in experiments on
one dimensional cold-atomic gases [4]. We stress that this by no means implies that the connected
correlations are exactly zero for t < tF : in any model, both on the lattice or in the continuum
there are exponentially suppressed terms (in `) which vanish in the scaling limit. The form factor
approach gives the following result for large t and ` (see Section 4.3)
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As expected, it gives the low density approximation to the full result (19).
A comparison (for a typical quench from h

0

= 1/3 to h = 2/3) between the asymptotic results
(19) (22) and numerical results for the correlation function at a finite but large distance (` = 30) is
shown in Fig. 4. The numerical results are obtained by expressing the two-point correlator in the
thermodynamic limit as the determinant of an `⇥ ` matrix (see section 3) and then evaluating the
determinant for di↵erent times. As we are concerned with equal time correlators only we do not
need to extract the two-point function from a cluster decomposition of the 4-point function [61].
The agreement is clearly excellent. The ratio between the exact numerics and the analytic result
(19) in the space-time scaling limit is shown in the inset of Fig. 4 for two values of  = v

max

t/`.
We see the ratio approaches a constant for large `. The corrections to this constant are seen to

Example: Ising model within ferromagnetic phase
PC, F Essler, M Fagotti 2011/12



Light cone in interacting models
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FIG. 1: (color online) Time evolution of the equal-time density correlation function Ci,j(t) of spinless fermions after a quench
from the CDW ground state of H(V0) with V0 = 10, evolved by the Hamiltonian H(V ), with (a) V = 0, (b) V = 2, (c) V = 5,
(d) and V = 20.

to u(V = 0) = 2vF = 4th, as expected, where vF denotes
the Fermi velocity for V = 0. In addition to the light
cone, additional propagation fronts at later times can be
identified in Fig. 1(a), which, however, possess a lower ve-
locity. This signals that slower quasiparticles stemming
from regions without linear dispersion also participate
in spreading information. Figure 1(c) shows the evolu-
tion of the correlation function for a quench within the
CDW phase, i.e., a case which should not be describable
by conformal field theory. Interestingly, we nevertheless
find a pronounced light-cone behavior in the correlation
function. Although the conformal field theory underlying
the treatment of Calabrese and Cardy is not valid in this
region, the physical picture that ballistically propagating
quasiparticles are generated by the quench seems to hold.
However, in contrast to the case of the quench to the LL
displayed in Figs. 1(a) and (b), we see that a strong alter-
nating pattern forms in the density correlation function
and remains present and qualitatively unchanged after
the onset of the light cone.

A more detailed view of the temporal evolution of the
correlation functions is shown in Fig. 2, in which we plot
the values of Ci,j(t) as a function of time for increasing
distance | i−j | for V = 0 and V = 2, the two extremes of
the Luttinger-liquid phase. After the arrival of the first
signal, oscillatory behavior as a function of time can be
observed at each distance. However, as V is increased,
the observed oscillations both decrease in magnitude and
are damped out more rapidly. Comparing the results for
the free case to the ones obtained for V = 2 in Fig. 2, it
can be seen that the incoming front travels with a higher
velocity when V is larger, as can also be seen in Fig. 1.

In contrast to the oscillatory behavior in the Luttinger-
liquid phase, a steady increase of the correlations is ob-
served when the quench occurs within the CDW phase, as
can be seen in Fig. 3. The alternating pattern imprinted
at the onset of the light cone is preserved. Presumably,
the correlation functions saturate at some time that is
significantly longer than the maximum time reached here.
While results for both V < V0 and V > V0 show the same

Manmana et al ’08
Fermi-HubbardCorrelations and entanglement after a quench in the Bose-Hubbard model 8

0.001

0.01

0.1

1

<b
0b r>(

t)

0.01

0.1

<b
0b r>(

t)
lo

w
 p

as
s r=2

r=3
r=4
r=5
r=6

0 0.2 0.4 0.6 0.8 1 1.2 1.4
time t [J-1]

-1

0

<n
0n r>(

t)
re

sc
al

ed

+

+

Figure 3. Time-evolution of correlation functions after a quench from Ui = 2J to
Uf = 40J . The upper panel shows the single particle correlation functions

�
b†0br

⇥

for di�erent distances r. The correlations show partial revivals up to a time tr when
they start to reach a quasi-steady state. This time tr grows approximately linearly
with the distance r as marked by the vertical lines. The central panel shows the
same correlations functions after filtering out the high frequencies, see text for details.
The lowest panel shows the density density correlations function

�
n0nr

⇥
after shifting

and rescaling their amplitude for better visibility. The common vertical dashed lines
denote the arrival of the minima as determined from the density-density correlations.
The data shown is ED for a L = 14 and DMRG data for L = 32 and filling n = 1.

correlations ⇧b†jbj+r⌃ and the density-density correlations ⇧njnj+r⌃ at equal time. In

Fig. 3 we show the time-evolution of the di�erent correlations after a quench from the

superfluid, Ui = 2, to the Mott-insulating, Uf = 40, parameter regime.

Single-particle correlations The upper panel shows the correlations ⇧b†0br⌃ for di�erent

distances r‡. For short times the single particle correlations oscillate with the period

2⇥/Uf . The origin of these oscillations lies in the integer spectrum of the operator

n̂j(n̂j � 1)/2. Consider the limit of very strong interactions, where the time-evolution

is totally dominated by the interactions. The time evolution of the single particle

correlations is given by

⇧b†ibj⌃(t) =
⇤

{m},{m0}

�mi,m0
i+1 ⇥ �mj ,m0

j�1 ⇥ eiUf (m0
j�m0

i�1)tc⇥mcm0⇧{m}|b†ibj|{m⇤}⌃.

Here we use the notation {m} for the Fock state with mi particles on site i. The time-

evolution of the correlation function is determined by the non-vanishing cross terms

‡ To extract these correlations from the DMRG data with open boundary conditions the average over
central sites is taken. Note that for periodic boundary conditions this quantitiy is real due to symmetry,
whereas for open boundary conditions an imaginary part can develop. However for the shown functions
and times the imaginary part is negligible.

Kollath-Lauechli ’08
Bose-Hubbard

t
2

bosons described by the Bose-Hubbard Hamiltonian

H (U) =� Â
hR,R0i

⇣
b†

RbR0 +h.c.
⌘
+

U
2 Â

R
nR(nR �1), (3)

where R denotes a lattice site, hR,R0i a pair of nearest-
neighbor sites, b†

R (bR) the creation (annihilation) operator of
a boson on site R, nR = b†

RbR the boson density on site R,
and U the two-body interaction strength. In the following, the
lattice will be either a 1D chain or a 2D square lattice, with
periodic boundary conditions and average density hnRi = 1.
The system is first prepared in the ground state of H (Ui). At
time t = 0, it is then driven out of equilibrium upon realizing a
sudden quantum quench in the interaction strength, from Ui to
Uf. We study the dynamics of the density-density correlation
function

N(R, t) = hnR(t)n0(t)i�hnR(0)n0(0)i, (4)

where the average is over the ground state of H (Ui) and the
density operators are evolved in time with H (Uf) i.e., Eq. (2)
where both A and B are the density operators.

Our analysis makes use of the t-VMC approach [13] that we
briefly outline here. The starting point is to define a class of
time-dependent variational many-body wave functions, which
we take of the Jastrow type

Y(x, t)⌘ hx|Y(t)i= exp

Â
r

ar(t)Or(x)
�

F0(x), (5)

where x spans a configuration basis, F0(x) is a bosonic time-
independent state, and ar(t) are complex variational parame-
ters coupled to a set of operators Or that are diagonal in the x-
basis, i.e., hx|Or|x0i = dx,x0Or(x). The explicit form of these
operators and their total number define the variational sub-
space. Here we use the Fock basis, x = {ni}, and the complete
set of density-density correlations, Or = ÂR nRnR+r, where
r spans all independent distances on the lattice. The initial
state is chosen to be the variational Jastrow ground state of
H (Ui) with |F0i the noninteracting-boson ground state of
H (0). This choice provides an excellent approximation of
the exact ground state of H (Ui) [14, 15]. For instance, the
superfluid-insulator transition is obtained for Uvar

c ' 5 and
Uvar

c ' 21 in 1D and 2D respectively, in fair agreement with
exact results [16, 17].

The variational dynamics of the system is fully contained
in the trajectories of the variational parameters ar(t). The
latter are obtained by minimizing the Hilbert-space distance
between the infinitesimal exact dynamics and the time deriva-
tive of the variational state (5) at each time step. This process
is equivalent to project the exact time-evolved wave function
onto the variational subspace. It yields a closed set of coupled
equations of motion:

iÂ
r0

Sr,r0(t)
...
ar0(t) = hOrH it �hOrithH it , (6)

where Sr,r0(t) = hOrOr0 it �hOrithOr0 it and the quantum av-
erages are taken over the time-dependent variational state (5).
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Figure 1: (Color on-line) Spreading of correlations in a 1D chain.
(a) Density-density correlations N(R, t) versus separation and time
for a quench in the interaction strength from Ui = 2 to Uf = 4. The
inset shows the instantaneous velocity as obtained from t-VMC (red
points) and exact diagonalization (for a 12-site lattice; blue point).
(b) Time dependence of N(R, t) for various values of R. For clar-
ity, the curves are vertically shifted by a value proportional to R, and
the linear light-cone wave-front clearly appears. (c) Relative energy
fluctuations versus time for various values of Uf. The t-VMC calcu-
lations are performed for 200 (a and b) or 500 (c) sites.

At each time, the quantum averages appearing in Eq. (6) are
computed by variational Monte Carlo simulations and the lin-
ear system of equations (6) is solved for

...
ar(t). The trajec-

tories ar(t) are then found by time-integrating the functions
...
ar(t).

We emphasize that our variational scheme is symplectic and
exactly conserves both the total energy and the square modu-
lus of the wave function. In the numerical calculations, we use
a sufficiently small time-step, d t = 0.01, and a fourth-order
Runge-Kutta integration scheme, which conserves the energy
with a very small systematic error of the order of one part in
a thousand, for times up to t = 100. The t-VMC is therefore
intrinsically stable, amenable to simulating time scales that
exceed by about two orders of magnitudes those achievable
by t-DMRG in 1D, and applies as well in higher dimensions.

Results.— Let us first discuss our results for the 1D chain.
Figure 1(a) shows the density-density correlation N(R, t) as a
function of separation and time for a quantum quench from
Ui = 2 to Uf = 4. Figure 1(b) shows vertical cuts of the lat-
ter, plotted with a vertical shift proportional to R for clarity.
A light-cone effect is clearly visible: N(R, t) is unaffected at
short times, then develops a maximum at a finite time t?(R),
and finally undergoes damped oscillations. Similar results are
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FIG. 2. Space-time plot of the Sz correlation functions (3) for the
quench from �i = 4 to �f = cos(⇡/4). This particular value of the
final interaction is chosen due to technical reason in the Bethe ansatz
calculations. The upper panel shows ground state data whereas the
lower panel shows data from a thermal density matrix at T/J = 1.
This illustrates that the light-cone effect in this observable persists
also at finite temperatures.

product state (MPS) framework. We come back to the de-
scription of the algorithm and a discussion of its performance
towards the end of this paper.

Results.— In the following we consider quenches to the
spin-1/2 Heisenberg XXZ chain with anisotropy �

H(�) = J
L�1X

i=1

�
Sx

i S
x
i+1 + Sy

i S
y
i+1 + �Sz

i S
z
i+1

�
. (1)

Initially, the system is prepared in a Gibbs state corresponding
to an XXZ Hamiltonian with anisotropy �i at a temperature
T , i.e.

⇢(t = 0) = Z�1
� exp[��H(�i)] , � =

1

kBT
, (2)

where Z� = Tr exp[��H(�i)] (we set kB = 1). The
anisotropy is then quenched at time t = 0+ from �i to
0  �f  1, as depicted in Fig. 1(a), and the system sub-
sequently evolves unitarily with Hamiltonian H(�f ) [40]. In
order to probe the spreading of correlations we consider the
longitudinal spin correlation functions

Sz(j; t) = hSz
L/2(t)S

z
j (t)i � hSz

L/2(t)ihSz
j (t)i (3)

centered around the middle of the chain. Results for Sz(j; t)
are most easily visualized in space-time plots, and typical re-
sults are shown in Fig. 2. The most striking feature observed
in these plots is the light-cone effect: at a given separation j
connected correlations Sz(j; t) arise fairly suddenly at a time
that scales linearly with j.

These results demonstrate that the light-cone effect persists
for mixed initial states, although the visibility of the signal
is diminished with increasing temperature (until it vanished
completely at � = 0 since the initial density matrix is trivial
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FIG. 3. a) Extracted inflection points versus distance for different
initial temperatures for the quench from � = 4 to cos(⇡/4). The
straight lines correspond to the velocities extracted from the GGE
where only the offset of the time axis has been fitted. The orange
dashed line denotes the ground state Bethe ansatz velocity at �f .
b) Rescaled averaged spin correlation functions for the quench from
� = 4 to cos(⇡/4) for T/J = 1 and the ground state (dashed line)
and different distances j = 3, 5, 7 and 9. We omit the error bars for
clarity of the figure. The time axis is relative to the first inflection
point of the correlation functions for j = 3. One can see that the
signal is delayed as the initial temperature is increased.

and stationary). Comparing the time evolution of the corre-
lation functions for different initial temperatures, we see (cf
Fig. 2 and Fig. 3) that the signal front is delayed when the
temperature of the initial state is increased, signalling that the
spreading slows down. We further observe that the spreading
velocity is sensitive to the strength of the quench, i.e. the value
of the initial interaction. At this point we should note that this
finding is unexpected. Based on our current understanding of
quenches to CFTs or of Lieb-Robinson bounds, there are no
predictions available which support spreading velocities de-
pending on the initial state.

Having established the result that the spreading velocity de-
pends both on the initial density matrices and the final Hamil-
tonian, an obvious question is which properties of ⇢(t = 0)
are relevant in this context. In order to quantify this aspect we
define the precise location of the light-cone as the first inflec-
tion point of the signal front observed in Sz (alike Ref. 29).
This allows us to extract a spreading velocity vs by perform-
ing a linear fit to the largest accessible time, where expected
finite-distance effects [41] are small.

Our main result, shown in Fig. 4, is that the spreading ve-
locity is mainly determined by the final energy density

ef =
Tr[H(�f )⇢(t = 0)]

L
. (4)

Plotting the measured velocities against ef leads to a remark-
able data collapse for a variety of quenches from thermal as
well as pure initial states for various �i. This holds in spite
of the fact that the system is integrable and thus its dynam-
ics is constrained by an infinite set of conserved quantities.
As we will show in the following, the observed velocities can
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(�k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = ⌃ŝj(t)ŝj+d(t)⌥ � ⌃ŝj(t)⌥⌃ŝj+d(t)⌥ , (2)

where j labels the lattice sites. The operator ŝj(t) =
ei�[n̂j(t)�n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) ⇧ 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2⇤~)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The e⇢ective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling ~/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
⌅ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ⇤ d ⇤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in ⌃ŝj ŝj+d⌥ = ⌃ŝj⌥⌃ŝj+d⌥. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T ⇧ 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ⇥ = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ⇤ d ⇤ 6
yields v ⇥ ~/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

3

FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal
propagates with increasing time to larger distances. The ex-
perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-
ical simulation for an infinite, homogeneous system at zero
temperature (continuous line). Our analytical model (dashed
line) also qualitatively reproduces the observed dynamics. In-
set: Experimental data displayed as a colormap, revealing the
propagation of the correlation signal with a well defined ve-
locity. The experimental values result from the average over
the central N sites of more than 1000 chains, where N equals
80% of the length of each chain. Error bars represent the
standard deviation.

interference between propagating and bound quasiparti-
cle pairs (Eq. (1)). A comparison of the experimental
velocities with the ones obtained from numerical simu-
lations (Fig. 3b) shows agreement within the error bars.
The measured velocities can also be compared with two
limiting cases: On the one hand, they are significantly
larger than the spreading velocity of non-interacting par-
ticles, v = 4 Jalat/~, and twice the velocity of sound
in the superfluid phase [24]; on the other hand, they re-
main below the maximum velocity predicted by our e�ec-
tive model, that can be interpreted as a Lieb–Robinson

FIG. 3. Propagation velocity. a, Determination of the
propagation velocity for the quenches to U/J = 5.0, 7.0 and
9.0. The time of the maximum of the correlation signal is
obtained from fits to the traces Cd(t) (circles). Error bars
represent the 68% confidence interval of these fits. We then
extract the propagation velocities from weigthed linear fits
restricted to 2  d  6 (lines). The data for U/J = 5.0 and
7.0 have been oset horizontally for clarity. b, Comparison
of the experimental velocities (circles) to the ones obtained
from numerical simulations for an infinite, homogeneous sys-
tem at zero temperature (shaded area). The shaded area and
the vertical error bars denote the 68 % confidence interval of
the fit. The horizontal error bars represent the uncertainty
due to the calibration of the lattice depth. The black line cor-
responds to the bound predicted by our eective model (the
shading indicates the break down of this model). The arrows
mark the maximum velocity expected in the non-interacting
case (left) and the asymptotic value derived from our model
when U/J ! 1 (right).

bound (Fig. 3b). This bound equals 6 Jalat/~ in the limit
U/J � ⇥, corresponding to doublons and holons propa-
gating with the respective group velocities 4 Jalat/~ and
2 Jalat/~. The higher velocity of doublons simply reflects
their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-
tal observation of an e�ective light cone for the spread-
ing of correlations in an interacting quantum many-body
system. Although the observed dynamics can be under-
stood within a fermionic quasiparticle picture valid deep
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FIG. 4: Break-down of the light-cone picture as the underlying interaction range is increased. a-c. In a chain of 15 spins, the central
spin is flipped and the subsequent evolution of the magnetisation h�z

i (t)i is measured. From a to c, the interaction ranges can be fitted by
power laws with ↵ ⇠ 1.41, 1.07, 0.75. Red lines: fits to the experimentally observed magnon arrival times (see methods; examples shown
in panel d). With increasing interaction range, the signal clearly propagates faster than what is allowed by the nearest-neighbour light-cone
(white lines, derived from the maximal group velocity of the nearest-neighbour model). d. Magnetisation evolution of spins (ions) 6 and 13,
from panel a (bottom) and c (top). Solid lines: Gaussian fits to measured magnon arrival. Top: In the longest-range case, the signal arrives
clearly before what is permitted by the nearest-neighbour Lieb–Robinson bound (shaded region). Bottom: In the shortest-range case measured,
the slight violation of the nearest-neighbour Lieb–Robinson bound at short times is almost not distinguishable. e. Maximum group velocity.
With increasing ↵, the measured arrival velocities (red circles) of the magnon excitation approach the group velocity of the nearest-neighbour
light-cone (grey dash-dotted line). For smaller ↵, the measured values are consistent with the divergent behaviour predicted when considering
the full power-law interactions (black line).
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mann entropy S = �tr ⇢
A

log ⇢
A

= �tr ⇢
B

log ⇢
B

of the
reduced density matrix of either subsystem. We always
form the two bipartitions by dividing the system at the
center bond.

The type of evolution considered here can be viewed
as a “global quench” in the language of Calabrese and
Cardy [14] as the initial state is the ground state of an
artificial Hamiltonian with local fields. Evolution from an
initial product state with zero entanglement can be stud-
ied e�ciently via time-dependent matrix product state
methods until a time where the entanglement becomes
too large for a fixed matrix dimension. Since entangle-
ment cannot increase purely by local operations within
each subsystem, its growth results only from propagation
across the subsystem boundary, even though there is no
conserved current of entanglement.

The first question we seek to answer is whether there is
any qualitatively di↵erent behavior of physical quantities
when a small interaction

Hint = J
z

X

i

Sz

i

Sz

i+1 (2)

is added. With Heisenberg couplings between the spins
(J

z

= J?), the model is believed to have a dynami-
cal transition as a function of the dimensionless disor-
der strength ⌘/J

z

[4, 5, 7]. This transition is present
in generic eigenstates of the system and hence exists at
infinite temperature at some nonzero ⌘. The spin con-
ductivity, or equivalently particle conductivity after the
Jordan-Wigner transformation, is zero in the many-body
localized phase and nonzero for small enough ⌘/J

z

. How-
ever, with exact diagonalization the system size is so lim-
ited that it has not been possible to estimate the location
in the thermodynamic limit of the transition of eigen-
states or conductivities.

We find that entanglement growth shows a qualitative
change in behavior at infinitesimal J

z

. Instead of the ex-
pected behavior that a small interaction strength leads
to a small delay in saturation and a small increase in
final entanglement, we find that the increase of entan-
glement continues to times orders of magnitude larger
than the initial localization time in the J

z

= 0 case (Fig.
1). This slow growth of entanglement is consistent with
prior observations for shorter times and larger interac-
tions J

z

= 0.5J? and J
z

= J? [12, 13], although the
saturation behavior was unclear. Note that observing
a sudden e↵ect of turning on interactions requires large
systems, as a small change in the Hamiltonian applied
to the same initial state will take a long time to a↵ect
the behavior significantly. We next explain briefly the
methods enabling large systems to be studied.

Numerical methodology. – To simulate the quench, we
use the time evolving block decimation (TEBD) [15, 16]
method which provides an e�cient method to perform a
time evolution of quantum states, | (t)i = U(t)| (0)i, in
one-dimensional systems. The TEBD algorithm can be
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FIG. 1. (a) Entanglement growth after a quench starting
from a site factorized Sz eigenstate for di↵erent interaction
strengths J

z

(we consider a bipartition into two half chains of
equal size). All data is for ⌘ = 5 and L = 10, except for J

z

=
0.1 where L = 20 is shown for comparison.The inset shows
the same data but with a rescaled time axis and subtracted
J
z

= 0 values. (b) Saturation values of the entanglement
entropy as a function of L for di↵erent interaction strengths
J
z

. The inset shows the approach to saturation.

seen as a descendant of the density matrix renormaliza-
tion group [17] method and is based on a matrix product
state (MPS) representation [18, 19] of the wave functions.
We use a second-order Trotter decomposition of the short
time propagator U(�t) = exp(�i�tH) into a product of
term which acts only on two nearest-neighbor sites (two-
site gates). After each application, the dimension of the
MPS increases. To avoid an uncontrolled growth of the
matrix dimensions, the MPS is truncated by keeping only
the states which have the largest weight in a Schmidt de-
composition.

In order to control the error, we check that the ne-
glected weight after each step is small (< 10�6). Al-
gorithms of this type are e�cient because they exploit
the fact that the ground-state wave functions are only
slightly entangled which allows for an e�cient truncation.

Bardason, Pollmann, Moore, ’12

 see also: De Chiara et al ’05
Burrell & Osborne ’07

Vosk and Altman ’13 

Long-range interaction: 

 see also: Hauke & Tagliacozzo,  ’13
Schachenmayer et al ’13

Richerme et al ’14 

When the range of interaction is long 
enough there is no light cone  
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where �↵

j

are the Pauli matrices and we impose

periodic boundary conditions. The parameters

h
z

and h
x

are dimensionless, while J sets the en-

ergy scale. For h
x

= 0 we recover the integrable

transverse field Ising model (TFIM) which can

be diagonalized by a Jordan-Wigner mapping to

free spinless Majorana fermions a
k
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• For hx= 0, free fermions with dispersion 

• hz= 1 separates two massive phases 

• For  hz< 1 (ferro phase), the massive fermions can be seen as domain 
walls separating domains of magnetization σ=(1-hz )⅛

• hx induces an attractive interaction between DW that can be approximated as a 
linear potential V(x)= χ |x|, with χ=2Jhxσ

• DW do not propagate freely and they get confined into mesons 

Dynamical confinement in the transverse field Ising chain

Márton Kormos

(Dated: December 5, 2015)

I. CONFINEMENT IN THE TRANSVERSE FIELD ISING CHAIN

The Hamiltonian that we intend to study is

H = �J
LX

j=1

⇥
�x

j

�x

j+1

+ hz�z

j

+ hx�x

j

⇤
, (1)

where �↵

j

are the Pauli matrices and we impose periodic boundary conditions. Note that hz and hx

are now dimensionless factors and J sets the energy scale. This Hamiltonian is sometimes referred

to as the “tilted field Ising chain”.

For hx = 0 we recover the integrable transverse field Ising chain which can be diagonalized by

mapping it to free spinless fermions:

H
TI

=
X

k

"(k)a†
k

a
k

+ const. , (2)

where the dispersion relation is given by

"(k) = 2J
p

1� 2hz cos k + hz2 . (3)

Some care has to be taken with respect to the boundary conditions for the fermions and the

quantization of the momentum k, but we do not go into these details here.

At hz = 1 the system has a quantum critical point separating the paramagnetic and ferro-

magnetic phases. For hz < 1 the system is in the gapped ferromagnetic phase where the massive

fermions can be thought of as freely propagating domain walls separating domains of magnetization

�̄ = (1� hz2)1/8. This picture becomes more and more accurate as hz approaches zero.

A small (?) non-zero field hx induces a linear attractive potential between neighboring domain

walls which border a domain having magnetization in the direction opposite to hx. If d is the

distance between the domain walls, the potential is V (d) = � · d with � = 2Jhx�̄. Clearly, domain

walls do not propagate freely anymore and they get confined into bound states (“mesons”).

2

Free DW Bound state = meson

McCoy & Wu ’78
Bhaseen, Tsvelik ’04
+ many more, sorry



A simple approximation for the meson spectrum 
Rutkevich ’08

Consider two fermions in 1D with Hamiltonian

This can be quantized semiclassically a’la Bohr-Sommerfeld

3

The periodic motion is that of a particle in the 1D potential !(q;⇥).

First we consider the case when !(q;⇥) has only one minimum at q = 0 (see Fig. 1a). Then the

particle moves between the two symmetric turning points, ±q
a

, given by the condition

E = !(q
a

;⇥) . (16)

Let us release the particle at t = 0 at the right turning point: q(0) = q
a

, p(0) = 0. Because of Eq.

(14), p starts to decrease from zero and according to Eq. (15) the particle travels with constant

negative velocity �� until it reaches q = 0. Here the slope of the potential changes sign, p grows

back up to zero while the particle continue its constant velocity trip to �q
a

. Then the particle

travels back to q
a

with constant velocity while p grows up to its maximal value

p
max

= (E � !(0;⇥))/� = x
max

(17)

taken at q = 0 and then decreases to zero. The period of the motion is

T = 4q
a

/� . (18)

The semiclassical energy levels are given by the Bohr–Sommerfeld quantization condition,
I

dp q = 2⇡(⌫ + 1/2) , (19)

where the integration path is taken along the periodic path in the phase space. Now we use that

our particles are fermionic so only odd values of ⌫ are allowed, ⌫ = 2n � 1. The integral can be

transformed as

I
dp q = 2

q

aZ

�q

a

dq q
dp(q)

dq
= 2

q
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�q

a

dq q
ṗ(t)

�
= � 2
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dq q
@!(q;⇥)

@q
= � 2

�
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@2q
a

!(q
a

;⇥)�
q
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a

dq !(q;⇥)

1

A .

(20)

Putting together everything, the semiclassical energy spectrum of bound states of the two fermions

is determined by the equation

2E
n

(⇥)✓
a

�
✓

aZ

�✓

a

d✓ !(✓;⇥) = 2⇡�(n� 1/4) , n = 1, 2, . . . (21a)

where ✓
a

= ✓
a

(n;⇥) is the solution of the equation

!(✓
a

(n;⇥);⇥) = E
n

(⇥) . (21b)

Note that the period of the “breathing” motion is T
n

(⇥) = 4✓
a

(n;⇥)/�, and the sizes of the bound

states are

|x
2

� x
1

|
max

= (E
n

(⇥)� !(0;⇥))/� . (22)

2

A. Dispersion relation of the bound states

The energy spectrum can be understood in the following heuristic picture1. Consider two

fermions moving in 1D as a classical system with the Hamiltonian

H = "(✓
1

) + "(✓
2

) + �|x
2

� x
1

| . (4)

The coordinates are taken to be real numbers (continuum system), and ✓
1

, ✓
2

are the canonical

conjugate variables. Let us now make the canonical transformation

X =
x
1

+ x
2

2
, x = x

2

� x
1

, (5)

⇥ = ✓
1

+ ✓
2

, ✓ =
✓
2

� ✓
1

2
. (6)

Then the Hamiltonian takes the form

H = !(✓;⇥) + �|x| , (7)

where

!(✓;⇥) = "(✓ +⇥/2) + "(✓ �⇥/2) . (8)

Energy and momentum conservation give

⇥(t) = ⇥ = const. (9)

! (✓(t);⇥) + �|x(t)| = E = const. (10)

and the canonical equations of motion are

Ẋ(t) =
@!(✓;⇥)

@⇥
, (11)

ẋ(t) =
@!(✓;⇥)

@✓
, (12)

✓̇(t) = �� sgn(x(t)) . (13)

For a given value of the total momentum ⇥ these equations describe the relative motion of two

particles. The solution becomes simple if we think of q = ✓ as a spatial coordinate and consider

p = �x as the conjugate momentum. The the “kinetic energy”, �|p|, is linear in the “momentum”

and !(q;⇥) is the potential energy as a function of the “coordinate” q. The equations then read

ṗ(t) = �@!(q;⇥)

@q
, (14)

q̇(t) = � sgn(p(t)) . (15)
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where θa is the solution of 

When ω has a single minimum one obtains  
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FIG. 1: Semiclassical bound state energy levels in the “relative potential” !(✓,⇥) from the

solutions of Eqs. (21). The dashed vertical lines show the turning points ✓
a,b

.

Now we have to cover the case when !(✓;⇥) has two minima (see Fig. 1b). This happens for

⇥ > ⇥
m

= 2arccoshz (23)

when the second derivative of !(✓;⇥) at zero becomes positive and we get a double well potential.

For E > !(0;⇥) the above treatment is correct, but if E < !(0;⇥), the classical motion takes place

in one of the two separated wells, in the interval [✓
b

, ✓
a

] where the turning points are given by the

two distinct solutions of Eq. (16). This is not invariant under ✓ ! �✓, so the Pauli principle does

not restrict the allowed values of ⌫ = 0, 1, 2, . . . in Eq. (19). Thus the semiclassical energy levels

are now given by

E
n

(⇥)(✓
a

� ✓
b

)�
✓

aZ

�✓

b

d✓ !(✓;⇥) = ⇡�(n� 1/2) , n = 1, 2, . . . (24a)

and

!(✓
a,b

(n;⇥);⇥) = E
n

(⇥) . (24b)

For hz = 0.25, hx = 0.1 there are four semiclassical bound states as it is shown in Fig. 1a. For

these magnetic fields there are no bound states in the double well case when ⇥ is large. Fig. 1b

shows such a case for hz = 0.5, hx = 0.1, and ⇥ = 3.

The solutions of Eqs. (21,24) give the dispersion relations E
n

(⇥) of the bound states. We plot

the dispersion relations of the four mesons for J = 1, hz = 0.25, hx = 0.1 in Fig. 2a. The energy

gaps (masses) of these states are m = 3.662, 4.127, 4.48, 4.769. They cannot have arbitrarily large
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The number and the energies of mesons depend on hx, hz, Θ



A simple approximation for the meson spectrum 

En(θ) is the dispersion relation of the mesons 
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the first meson. Dashed lines: 1-meson states of the

second meson.

FIG. 2: Semiclassical bound state dispersion relation and the low energy spectrum.

momenta ⇥, at least semiclassically, and higher lying mesons have flatter dispersion relations. Since

their velocities are given by

v
n

(⇥) =
dE

n

(⇥)

d⇥
, (25)

this means that the heavier bound states move very slowly. The maximal velocites of the four mesons

are v = 0.274, 0.166, 0.094, 0.04. For hx = 0.2 the velocities are v = 0.188, 0.052. For comparison,

at this transverse field with zero longitudinal field the maximal velocity of the unbound domain

walls is v = 0.5

The finite size spectrum can be computed via exact diagonalization for small lattices. In Fig. 2b

we plot the low energy part of the spectrum together with one-particle dispersions E
1,2

(k ⇤ 2⇡/L)
with k = 0, 1, . . . . It is obvious that the spectrum can be interpreted as energy levels of traveling

particles, and also that the semiclassical approximation is quite accurate already for the lightest

meson. Note that the lightest two-body states lie beyond the plotted energy range having energies

E > 2E
1

(0, 0) ⇡ 7.3.

vmax = 0.274, 0.166,0.094, 0.004
vmax of DW = 0.5 

◉ Comparison with exact diagonalization:

hx =0.1, hz= 0.5

1st meson 1pt states

2nd meson 1pt states

m1=3.662  m2=4.127  m3=4.48  m4=4.77



Back to quenches 

What happens if there are mesons in the spectrum of the postquench 
Hamiltonian in the quasi-particle picture? 

     |ψ0› acts as a source of quasi-particles at t=0

pairs of quasi-particles move in opposite directions with velocity vp

moving away the quasi-particle feel the attractive interaction
Interaction will eventually turn the particle and start oscillations
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For h
x

= 0, the Hamiltonian (1) can be diagonalised by a
Jordan–Wigner mapping to free spinless Majorana fermions
with the dispersion relation ✏(k) = 2J

p
1 � 2h

z

cos k + h2

z

[23]. At h
z

= 1 the system has a quantum critical point
separating the paramagnetic and ferromagnetic phases. For
h
z

< 1 the system is in the gapped ferromagnetic phase
where the massive fermions can be thought of as freely prop-
agating domain walls separating domains of magnetisation
�̄ = (1 � h2

z

)

1/8. Switching on a non-zero field h
x

induces
a linear attractive potential between pairs of domain walls
which enclose a domain of length d and of magnetisation op-
posite to h

x

. For small h
x

, the potential can be approximated
as V (d) = � · d with � = 2Jh

x

�̄ [18]. As a result, the
domain walls are confined into bound states (mesons), a sce-
nario first proposed by McCoy and Wu [18]. For h

z

> 1 and
h
x

6= 0 the physics is very different and there is no confine-
ment [19]. The model for h

x

6= 0 is no longer integrable and
the spectrum can only be described by resorting to various ap-
proximations, such as e.g. field-theoretical ones [19–21] that
are valid in the vicinity of the critical point h

z

= 1. Here we
use a different approach: the low-density approximation of
Ref. [22], which describes the energy levels very accurately
when the system is far away from the critical point. In the
Supplementary Material [23] we report the details of this ap-
proximation and several pieces of evidence of its applicability
for the values of magnetic fields of interest. This approxima-
tion allows us to calculate all the properties of the mesons we
need, namely their number, masses, and velocities.

To simulate the time evolution of the quantum quench we
use an iTEBD [24] algorithm, details of which are reported
in [23]. In the following we report numerical results for sev-
eral observables, building up the evidence that the observed
dynamics is governed by confinement effects and it is dramat-
ically different from the unconfined one.

Expectation value of the order parameter. We first consider
the time evolution of the order parameter, i.e. the magnetisa-
tion h�x

(t)i. We recall that in the integrable case with van-
ishing longitudinal field, h�x

(t)i decays to zero exponentially
for any quench within the ferromagnetic phase [25] (see also
[23]). For non-zero h

x

, we report the iTEBD data for h�x

(t)i
in Fig. 2 (top) for two representative quenches, but the results
are qualitatively the same for all the values of initial and final
fields we considered within the ferromagnetic phase. It is ev-
ident from the figure that a small longitudinal field radically
alters the dynamics, turning the exponential relaxation into
an oscillatory behaviour with numerous different frequencies.
The qualitative change of the dynamics is the consequence of
confinement. This can be demonstrated by extracting the os-
cillation frequencies with a discrete Fourier transform of the
time series, which are reported in Fig. 2 (bottom). The domi-
nant frequencies in the resulting power spectrum are compati-
ble, to a surprising high degree of accuracy, with the masses of
the mesons and their differences (obtained explicitly in [23]).

On the more technical side, we observe that this dynam-
ics shows rather weak finite size effects. Indeed, in the figure
the iTEBD data (valid for infinite chains) are almost indistin-
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FIG. 2: Upper panels: Time evolution of the longitudinal magneti-
sation h�x(t)i after quenching from h

z

= 0.5, h
x

= 0 to h
z

= 0.25
and h

x

= 0.1, 0.2. Dots are iTEBD results, lines are exact diagonal-
isation results for L = 8, . . . , 12,. Lower panels: power spectrum
of h�x(t)i in which the dashed vertical lines show the meson masses
and their differences.

guishable (up to a given time that grows with the chain length)
from the exact diagonalisation results for chains of length be-
tween 8 and 12.

The two-point function is the quantity that shows the
strongest effects of confinement. Indeed, when the interaction
h
x

is turned on, the propagating particles are the heavy mas-
sive mesons and not the light domain walls. Mesons propagate
with a maximal velocity which is smaller than that of the do-
main walls: as shown in the Supplementary Material, together
with the masses of the mesons, their dispersion relations and
velocities can also be readily obtained in the zero-density ap-
proximation.

However, it turns out that the effect of confinement in some
cases is even stronger than an already dramatic and non-
perturbative change of speed of propagation. Let us, for ex-
ample, consider the quench from the fully ferromagnetic state
(all spins up, i.e. the ground-state at h

z

= 0) to the points
with h

z

= 0.25 and varying h
x

from 0 to 0.4. In Fig. 3 we
report the equal time connected longitudinal spin-spin corre-
lation function h�x

1

�x

m+1

i
c

. If h
x

= 0, we recover the inte-
grable dynamics that was solved exactly in [25] with a clear
light cone spreading. For a small value of h

x

= 0.025, we see
that for relatively short times (up to t ⇠ 20 = 2/h

x

in units
of J) the correlation follows qualitatively the integrable be-
haviour, but then it gets drastically slowed down and bounces
back. By further increasing h

x

, the region where there is light
cone propagation shrinks to an almost invisible portion of the
space-time. What happens is that due to the heavy masses of
the mesons, the quench only provides sufficient energy to pro-
duce them at rest. This can be understood quantitatively for

1-pt function ⟨σx⟩

Quenches ferro to ferro 

Power spectrum of ⟨σx⟩

m2-m1 =0.46, m1 =3.7, 
m2 =4.1, m3 =4.5 

m2-m1 =0.68, m1 =4.0, 
m2 =4.7 
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FIG. 5: Absolute value of the correlation function h�x

1�
x

m+1ic for:
(upper panel) quench from the paramagnetic phase (h

z

= 2, h
x

= 0)
to the ferromagnetic one (h

z

= 0.25, varying h
x

); (lower panel)
quench within the paramagnetic case from h

z

= 2 and h
x

= 0 to
h
z

= 1.75 and varying h
x

. While in the confining phase the light
cone experiences a drastic non-perturbative change, in the paramag-
netic phase it is only perturbatively modified.

iTEBD method, especially for the case when A corresponds
to half of the system. The obtained numerical results are re-
ported for three sets of quenches in Fig. 6, two within the
ferromagnetic phase and one across the critical point to the
ferromagnetic phase. We consider several different final val-
ues of the longitudinal fields. For zero h

x

, we observe a pro-
nounced linear growth in time of the entanglement entropy
in perfect agreement with the known exact results [26]. In
all cases, by turning on the interaction h

z

, the growth of the
entanglement entropy is considerably slowed down and prac-
tically saturates (during the observation time) for quenches
within the ferromagnetic phase. The latter correspond to cases
in which the light-cone of the two-point function is strongly
suppressed (i.e. practically invisible). As explained above,
this is a consequence of the fact that mesons are predomi-
nantly produced at rest and then the entanglement just oscil-
lates around a saturation value, as in the left panel of Fig. 6.
Actually the small fraction of mesons with non-negligible ve-
locities should produce a very slow increase of the entangle-
ment which however is likely too small to be observed. In the
case of a quench across the critical point, the increase of the
entanglement entropy is only reduced because of the produc-
tion of many mesons with non-vanishing velocities. Overall,
the data for the entanglement are compatible with the con-
finement scenario drawn for the correlations. In [23] we also
report some results for quenches in the non-confining phase to
show that confinement effects are absent in that case.

Furthermore, the frequencies of the oscillations of the en-
tanglement entropy are also in rough agreement with the me-
son masses and their differences, but a more accurate analysis
(similar to the case of the one-point function) is difficult due to
the presence of a long transient and the constant drift. In [23]
we show that for a quench only in h

x

(i.e. leaving h
z

con-
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FIG. 6: Time evolution of the half-chain entanglement entropy after a
quench to the confining phase. Left: starting from the ferromagnetic
phase (h

z

= 0). Right: starting from the paramagnetic phase h
z

=
2, h

x

= 0.

stant), these frequencies can be extracted effectively because
there is no drift.

Discussions and further developments. We have given com-
pelling arguments and numerical evidence showing that con-
finement strongly affects the non-equilibrium dynamics fol-
lowing a quantum quench. The main effect is a dramatic
change of the light-cone structure of correlation functions and
entanglement entropy. At the same time, the one-point func-
tions oscillates in time with frequencies equal to the meson
masses. These effects should be easily measurable in cold
atom experiments: we expect that corrections due to the trap-
ping harmonic potential should be as small as the almost neg-
ligible finite size effects we observed in the numerics. Fur-
thermore, our results show that the quench dynamics can be
used (both numerically and experimentally) to probe the con-
finement and have direct access to the meson masses from
the power spectrum of the one-point functions. This ‘quench
spectroscopy’ could turn out to be more powerful than stan-
dard equilibrium methods to measure the spectrum.

We can speculate on a few other consequences and appli-
cations of our work. It was noticed some time ago [27], that
in some quenches within the Hamiltonian (1) the system does
not approach asymptotically a thermal stationary state as ex-
pected based on the non-integrability of the model. One could
speculate that because of confinement, there are rare states in
the spectrum which prevent eigenstate thermalisation hypoth-
esis [28] to be applied. Along the same line of thought, it is
also clear that even if these confined systems eventually ther-
malise, the standard prethermalisation scenario [29] for weak
integrability breaking cannot be applied, since a small pertur-
bation not only changes the long time asymptotic expectation
values, but completely alters the dynamics even at short time
scales.

Finally, confinement is expected to have similar effects also
in higher dimensions and so for the theory of strong interac-
tions. It is natural to wonder what the consequences are for re-
alistic non-equilibrium situations in quantum chromodynam-
ics such as the quark-gluon plasma in hadron colliders. While
even approximate field-theoretical calculations for strong in-
teractions are beyond our reach, holographic methods have

Half-chain entanglement entropy 

The entanglement entropy does 
not seem to grow indefinitely but 
oscillates around a finite value

Ferro-to-Ferro Para-to-Ferro

The entanglement entropy grows 
but much slower than in the 
integrable case
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FIG. 3: Connected longitudinal spin-spin correlation function
h�x

1�
x

m+1ic after quenching to the ferromagnetic point h
z

= 0.25
with a longitudinal magnetic field h

x

= 0, 0.025, 0.05, 0.1, 0.2, 0.4.

small h
x

. For a quench with h
x

= 0, the initial state can be
written in term of the post-quench eigenstates as [25]

| 
0

i =

Y

k>0

(1 + iK(k)a†
k

a†�k

)|0i, (2)

where the explicit form of K(k) is given in [23]. Let us add
now a field h

x

in the post-quench Hamiltonian that confines
the fermions into mesons. If K(k) is small, the state is domi-
nated by the linear terms in the expansion of the above product
and there are only pairs of fermions with momentum (k,�k).
These can only form mesons of zero momentum. Quadratic
terms like K(k)K(k0)|k,�k, k0,�k0i are small corrections
but they produce pairs of mesons with non-zero momenta, e.g.
±(k±k0) (higher order terms give rise to similar pairs). When
instead K(k) is of order one, all these terms are of the same
order and mesons propagate (in pairs) with their own velocity
after the quench.

For the quench reported in Fig. 3 (from h
z

= 0 to
h
z

= 0.25), K(k) is small (⌧ 1) for all momenta and prac-
tically only zero-momentum mesons are formed. It should be
however clear that zooming in the ”white” region (i.e. the
one apparently without signal) in Fig. 3, traces of mesons
with non-zero velocities should be visible. For this reason,
we report in Fig. 4 the same connected correlation already
displayed in Fig. 3 but on a different intensity scale. Here,
the orange regions correspond to values that are out of range.
All the visible signal of Fig. 3 falls in these regions. The
signal displayed in Fig. 4 is approximately 3 orders of mag-
nitude smaller than that in Fig. 3 and shows a feeble light
cone characterised by a velocity different from that of the do-
main walls (dashed lines). We report the maximum value of
the meson velocity (full lines) obtained in the low density ap-
proximation: it is evident that for all values of h

x

this velocity
describes incredibly well the slope of the light cone.

It is very important to stress once more that these confine-
ment effects are non-perturbative: a very small perturbation

FIG. 4: The same correlation function in Fig. 3 but on a different
scale: the plotted signal is around 10�3 times the one in Fig. 3 and
the orange regions represent out of range values of the correlation
function.

such as h
x

= 0.025 is enough to destroy completely the sharp
light cone of the integrable model.

As a further confirmation of the above scenario it is natural
to consider a very large quench to a confining Hamiltonian in
such a way that K(k) in Eq. (2) is not small and mesons with
non-zero velocities are formed with high probability. In Fig. 5
(top) we report the connected correlations corresponding to a
quench from the paramagnetic phase (h

z

= 2, h
x

= 0) to the
ferromagnetic confining one (h

z

= 0.25, varying h
x

). In this
case the light cones are visible without zooming. Their veloc-
ities always correspond to the maximal speed of the mesons
(reported as a straight line). A final check for the validity
of the overall scenario is that for quenches to the paramag-
netic phase in the presence of an external longitudinal field
there should not be any strong change in the light-cone since
there is no confinement. This is quite apparent in Fig. 5 (bot-
tom) where we report the data for a quench from h

z

= 2 and
h
x

= 0 to h
z

= 1.75 and varying h
x

. It is clear that adding
the magnetic field h

x

does not alter the qualitative shape of
the light-cone.

We have also studied the connected correlation function of
the transverse component of the spin (density in the fermionic
language). This correlation function also reflects the change
of the light cone due to the modified velocity of the mesons.
We report the corresponding density plots in the Supplemen-
tary Material [23]. Furthermore, we also examined quenches
from and to several other values of the two magnetic fields
in the Hamiltonian, and the overall picture for the correlation
functions is found to be the one we extracted from the first few
examples, so we stress that our conclusions are very general
and not limited to the reported cases.

Entanglement entropy is another important probe (indeed
a true smoking gun) for the quasi-particle propagation and
hence light cone effects [13]. It is defined as the von Neu-
mann entropy S

A

= �Tr⇢
A

ln ⇢
A

of the reduced density ma-
trix ⇢

A

of a subsystem A. This can be readily accessed by the

hz=0, hx =0, hz =0.250 0
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where the explicit form of K(k) is given in [23]. Let us add
now a field h
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in the post-quench Hamiltonian that confines
the fermions into mesons. If K(k) is small, the state is domi-
nated by the linear terms in the expansion of the above product
and there are only pairs of fermions with momentum (k,�k).
These can only form mesons of zero momentum. Quadratic
terms like K(k)K(k0)|k,�k, k0,�k0i are small corrections
but they produce pairs of mesons with non-zero momenta, e.g.
±(k±k0) (higher order terms give rise to similar pairs). When
instead K(k) is of order one, all these terms are of the same
order and mesons propagate (in pairs) with their own velocity
after the quench.
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with non-zero velocities should be visible. For this reason,
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ment effects are non-perturbative: a very small perturbation

FIG. 4: The same correlation function in Fig. 3 but on a different
scale: the plotted signal is around 10�3 times the one in Fig. 3 and
the orange regions represent out of range values of the correlation
function.

such as h
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= 0.025 is enough to destroy completely the sharp
light cone of the integrable model.

As a further confirmation of the above scenario it is natural
to consider a very large quench to a confining Hamiltonian in
such a way that K(k) in Eq. (2) is not small and mesons with
non-zero velocities are formed with high probability. In Fig. 5
(top) we report the connected correlations corresponding to a
quench from the paramagnetic phase (h

z

= 2, h
x

= 0) to the
ferromagnetic confining one (h

z

= 0.25, varying h
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). In this
case the light cones are visible without zooming. Their veloc-
ities always correspond to the maximal speed of the mesons
(reported as a straight line). A final check for the validity
of the overall scenario is that for quenches to the paramag-
netic phase in the presence of an external longitudinal field
there should not be any strong change in the light-cone since
there is no confinement. This is quite apparent in Fig. 5 (bot-
tom) where we report the data for a quench from h

z

= 2 and
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= 1.75 and varying h
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. It is clear that adding
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We have also studied the connected correlation function of
the transverse component of the spin (density in the fermionic
language). This correlation function also reflects the change
of the light cone due to the modified velocity of the mesons.
We report the corresponding density plots in the Supplemen-
tary Material [23]. Furthermore, we also examined quenches
from and to several other values of the two magnetic fields
in the Hamiltonian, and the overall picture for the correlation
functions is found to be the one we extracted from the first few
examples, so we stress that our conclusions are very general
and not limited to the reported cases.

Entanglement entropy is another important probe (indeed
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Let’s zoom:

Conclusions: there is a feeble light-cone (a factor 10-3) 
                      having the mesons velocity!
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FIG. 5: Absolute value of the correlation function h�x

1�
x

m+1ic for:
(upper panel) quench from the paramagnetic phase (h

z

= 2, h
x

= 0)
to the ferromagnetic one (h

z

= 0.25, varying h
x

); (lower panel)
quench within the paramagnetic case from h

z

= 2 and h
x

= 0 to
h
z

= 1.75 and varying h
x

. While in the confining phase the light
cone experiences a drastic non-perturbative change, in the paramag-
netic phase it is only perturbatively modified.

iTEBD method, especially for the case when A corresponds
to half of the system. The obtained numerical results are re-
ported for three sets of quenches in Fig. 6, two within the
ferromagnetic phase and one across the critical point to the
ferromagnetic phase. We consider several different final val-
ues of the longitudinal fields. For zero h

x

, we observe a pro-
nounced linear growth in time of the entanglement entropy
in perfect agreement with the known exact results [26]. In
all cases, by turning on the interaction h

z

, the growth of the
entanglement entropy is considerably slowed down and prac-
tically saturates (during the observation time) for quenches
within the ferromagnetic phase. The latter correspond to cases
in which the light-cone of the two-point function is strongly
suppressed (i.e. practically invisible). As explained above,
this is a consequence of the fact that mesons are predomi-
nantly produced at rest and then the entanglement just oscil-
lates around a saturation value, as in the left panel of Fig. 6.
Actually the small fraction of mesons with non-negligible ve-
locities should produce a very slow increase of the entangle-
ment which however is likely too small to be observed. In the
case of a quench across the critical point, the increase of the
entanglement entropy is only reduced because of the produc-
tion of many mesons with non-vanishing velocities. Overall,
the data for the entanglement are compatible with the con-
finement scenario drawn for the correlations. In [23] we also
report some results for quenches in the non-confining phase to
show that confinement effects are absent in that case.

Furthermore, the frequencies of the oscillations of the en-
tanglement entropy are also in rough agreement with the me-
son masses and their differences, but a more accurate analysis
(similar to the case of the one-point function) is difficult due to
the presence of a long transient and the constant drift. In [23]
we show that for a quench only in h

x

(i.e. leaving h
z

con-
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FIG. 6: Time evolution of the half-chain entanglement entropy after a
quench to the confining phase. Left: starting from the ferromagnetic
phase (h

z

= 0). Right: starting from the paramagnetic phase h
z

=
2, h

x

= 0.

stant), these frequencies can be extracted effectively because
there is no drift.

Discussions and further developments. We have given com-
pelling arguments and numerical evidence showing that con-
finement strongly affects the non-equilibrium dynamics fol-
lowing a quantum quench. The main effect is a dramatic
change of the light-cone structure of correlation functions and
entanglement entropy. At the same time, the one-point func-
tions oscillates in time with frequencies equal to the meson
masses. These effects should be easily measurable in cold
atom experiments: we expect that corrections due to the trap-
ping harmonic potential should be as small as the almost neg-
ligible finite size effects we observed in the numerics. Fur-
thermore, our results show that the quench dynamics can be
used (both numerically and experimentally) to probe the con-
finement and have direct access to the meson masses from
the power spectrum of the one-point functions. This ‘quench
spectroscopy’ could turn out to be more powerful than stan-
dard equilibrium methods to measure the spectrum.

We can speculate on a few other consequences and appli-
cations of our work. It was noticed some time ago [27], that
in some quenches within the Hamiltonian (1) the system does
not approach asymptotically a thermal stationary state as ex-
pected based on the non-integrability of the model. One could
speculate that because of confinement, there are rare states in
the spectrum which prevent eigenstate thermalisation hypoth-
esis [28] to be applied. Along the same line of thought, it is
also clear that even if these confined systems eventually ther-
malise, the standard prethermalisation scenario [29] for weak
integrability breaking cannot be applied, since a small pertur-
bation not only changes the long time asymptotic expectation
values, but completely alters the dynamics even at short time
scales.

Finally, confinement is expected to have similar effects also
in higher dimensions and so for the theory of strong interac-
tions. It is natural to wonder what the consequences are for re-
alistic non-equilibrium situations in quantum chromodynam-
ics such as the quark-gluon plasma in hadron colliders. While
even approximate field-theoretical calculations for strong in-
teractions are beyond our reach, holographic methods have

hz=2, hx =0, hz =0.250 0
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FIG. 2: Upper panels: Time evolution of the longitudinal magneti-
sation h�x(t)i after quenching from h

z

= 0.5, h
x

= 0 to h
z

= 0.25
and h

x

= 0.1, 0.2. Lines are iTEBD results, symbols are exact diag-
onalisation results for L = 8, . . . , 12. Notice the weakness of finite
size effects: the iTEBD data for infinite chains are almost indistin-
guishable (up to a given time) from the exact diagonalisation results.
Lower panels: power spectrum of h�x(t)i. The vertical lines show
the meson masses m

i

and their differences m
ij

.

almost invisible portion of the space-time. This effect can be
explained by considering that for a quench with h

x

= 0 the
initial state can be written as [17]

| 
0

i =
Y

k>0

(1 + iK(k)a†
k

a†�k

)|0i (2)

in terms of the post-quench domain wall excitation (K(k) is
given in SI). Adding a field h

x

confines the domain walls into
mesons. When K(k) is small, the state is dominated by the
linear terms which only contain (k,�k) domain walls pairs
that get confined into mesons at rest. Quadratic terms (and
higher order ones) lead to propagating mesons, but they are
only substantial when K(k) is large enough. These have ve-
locities that are significantly different from those of the do-
main walls, see SI.

For the quench in Fig. 3 (a), K(k) ⌧ 1 for all momenta and
practically only zero-momentum mesons are formed. Zoom-
ing in the “white” region apparently without signal in Fig. 3
(a), traces of mesons with non-zero velocities should be visi-
ble. This is done in Fig. 3 (b) where the same connected cor-
relation is displayed on a different intensity scale. The signal
in panel (b) is 3 orders of magnitude smaller than that in panel
(a) and shows a feeble light-cone characterised by a velocity
different from that of the domain walls. The maximum meson
velocity describes incredibly well the slope of the light-cone
for all values of h

x

.
As further supporting evidence for the above scenario, in

Fig. 3 (c) we report connected correlations for a large quench

(with K(k) � 1) from the paramagnetic phase to the fer-
romagnetic confining one. In this case, given that mesons
with non-zero velocities are formed with high probability, the
light-cones are visible without zooming, and their slopes cor-
respond to the maximal velocity of the mesons. A crucial con-
sistency check of the validity of the overall scenario is that
for quenches to the paramagnetic (non-confining) phase with
h
x

6= 0 there is no radical change in the light-cone as shown
in Fig. 3 (d).

Similarly, the connected correlation function of the trans-
verse component of the spin also reflects the change of the
light-cone due to the modified velocity of the mesons, see SI.
Furthermore, for quenches from and to several other values
of the magnetic fields the overall picture is unchanged, so our
conclusions are very general and not limited to the reported
cases.

Entanglement entropy provides another smoking gun for
the quasiparticle propagation and light-cone effects [14]. For
zero h

x

, we observe in Fig. 4 a linear growth in time of the
half-chain entanglement entropy in agreement with the known
exact results [19]. By turning on the interaction h

x

, the growth
of the entanglement entropy for quenches within the ferro-
magnetic phase is strongly slowed down and, after a transient,
it appears to oscillate around a saturation value. The frequen-
cies of these oscillations are in rough agreement with the me-
son masses and their differences as reported in SI. This is a
consequence of the fact that mesons are predominantly pro-
duced at rest and it is consistent with the strong suppression
of the light-cone of the two-point function. Actually, the small
fraction of mesons with non-negligible velocities should pro-
duce a very slow increase of the entanglement which, how-
ever, is too small to be observed numerically. Conversely, for
a quench across the critical point, the growth of the entangle-
ment entropy is only considerably reduced due to the produc-
tion of many mesons with non-vanishing velocities. Overall,
the data for the entanglement are compatible with the confine-
ment scenario drawn for the correlations.

Discussions. We have given compelling arguments and nu-
merical evidence proving that confinement strongly affects
the non-equilibrium dynamics following a quantum quench.
The main effect is a dramatic change of the light-cone struc-
ture of correlation functions and entanglement entropy. At
the same time, the one-point function oscillates in time with
frequencies equal to the meson masses. These effects should
be easily measurable in cold atom experiments; corrections
due to the trapping harmonic potential are expected to be as
small as the finite-size effects we observed. We also showed
that the quench dynamics provides direct access to the me-
son masses via the power spectrum of the one-point functions.
This ‘quench spectroscopy’ could turn out to be more power-
ful than standard equilibrium methods to measure the spec-
trum.

To conclude, we speculate on a few other consequences and
applications of our work. It was noticed some time ago [20]
that in some quenches within the Hamiltonian (1) the system
does not approach asymptotically a thermal stationary state

For hx=0, the initial state can be written in the postquench basis as 

hx confines the domain walls into mesons. 

When K(k) is small, the state is dominated by the linear terms which only 
contain (k, -k) pairs that get confined into mesons at rest. 

Quadratic terms (and higher) lead to propagating mesons, but can be seen 
only when K(k) is large enough. 

Mesons have velocities that are very different from the domain walls, 



Quench para→para

No dramatic qualitative difference 
with increasing hx, reflecting the 
absence of mesons 
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FIG. 5: Absolute value of the correlation function h�x

1�
x

m+1ic for:
(upper panel) quench from the paramagnetic phase (h

z

= 2, h
x

= 0)
to the ferromagnetic one (h

z

= 0.25, varying h
x

); (lower panel)
quench within the paramagnetic case from h

z

= 2 and h
x

= 0 to
h
z

= 1.75 and varying h
x

. While in the confining phase the light
cone experiences a drastic non-perturbative change, in the paramag-
netic phase it is only perturbatively modified.

iTEBD method, especially for the case when A corresponds
to half of the system. The obtained numerical results are re-
ported for three sets of quenches in Fig. 6, two within the
ferromagnetic phase and one across the critical point to the
ferromagnetic phase. We consider several different final val-
ues of the longitudinal fields. For zero h

x

, we observe a pro-
nounced linear growth in time of the entanglement entropy
in perfect agreement with the known exact results [26]. In
all cases, by turning on the interaction h

z

, the growth of the
entanglement entropy is considerably slowed down and prac-
tically saturates (during the observation time) for quenches
within the ferromagnetic phase. The latter correspond to cases
in which the light-cone of the two-point function is strongly
suppressed (i.e. practically invisible). As explained above,
this is a consequence of the fact that mesons are predomi-
nantly produced at rest and then the entanglement just oscil-
lates around a saturation value, as in the left panel of Fig. 6.
Actually the small fraction of mesons with non-negligible ve-
locities should produce a very slow increase of the entangle-
ment which however is likely too small to be observed. In the
case of a quench across the critical point, the increase of the
entanglement entropy is only reduced because of the produc-
tion of many mesons with non-vanishing velocities. Overall,
the data for the entanglement are compatible with the con-
finement scenario drawn for the correlations. In [23] we also
report some results for quenches in the non-confining phase to
show that confinement effects are absent in that case.

Furthermore, the frequencies of the oscillations of the en-
tanglement entropy are also in rough agreement with the me-
son masses and their differences, but a more accurate analysis
(similar to the case of the one-point function) is difficult due to
the presence of a long transient and the constant drift. In [23]
we show that for a quench only in h

x

(i.e. leaving h
z

con-
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FIG. 6: Time evolution of the half-chain entanglement entropy after a
quench to the confining phase. Left: starting from the ferromagnetic
phase (h

z

= 0). Right: starting from the paramagnetic phase h
z

=
2, h

x

= 0.

stant), these frequencies can be extracted effectively because
there is no drift.

Discussions and further developments. We have given com-
pelling arguments and numerical evidence showing that con-
finement strongly affects the non-equilibrium dynamics fol-
lowing a quantum quench. The main effect is a dramatic
change of the light-cone structure of correlation functions and
entanglement entropy. At the same time, the one-point func-
tions oscillates in time with frequencies equal to the meson
masses. These effects should be easily measurable in cold
atom experiments: we expect that corrections due to the trap-
ping harmonic potential should be as small as the almost neg-
ligible finite size effects we observed in the numerics. Fur-
thermore, our results show that the quench dynamics can be
used (both numerically and experimentally) to probe the con-
finement and have direct access to the meson masses from
the power spectrum of the one-point functions. This ‘quench
spectroscopy’ could turn out to be more powerful than stan-
dard equilibrium methods to measure the spectrum.

We can speculate on a few other consequences and appli-
cations of our work. It was noticed some time ago [27], that
in some quenches within the Hamiltonian (1) the system does
not approach asymptotically a thermal stationary state as ex-
pected based on the non-integrability of the model. One could
speculate that because of confinement, there are rare states in
the spectrum which prevent eigenstate thermalisation hypoth-
esis [28] to be applied. Along the same line of thought, it is
also clear that even if these confined systems eventually ther-
malise, the standard prethermalisation scenario [29] for weak
integrability breaking cannot be applied, since a small pertur-
bation not only changes the long time asymptotic expectation
values, but completely alters the dynamics even at short time
scales.

Finally, confinement is expected to have similar effects also
in higher dimensions and so for the theory of strong interac-
tions. It is natural to wonder what the consequences are for re-
alistic non-equilibrium situations in quantum chromodynam-
ics such as the quark-gluon plasma in hadron colliders. While
even approximate field-theoretical calculations for strong in-
teractions are beyond our reach, holographic methods have
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The masses of the mesons are seen even more 
neatly due to the absence of transient and drift
 ⇒ entanglement quench spectroscopy



Conclusions

In the Ising chain, mesons freeze the light cone spreading 
of correlations and entanglement 

Questions:
Is it a general property of the many models displaying 
confinement? Presumably yes, possible to check numerically

Is it true in higher dimensions? e.g. in QCD?  
maybe holographically one can have some hints

Can it prevent thermalization? as in Banuls et al 2011?

What about prethermalization? 


